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Preface

This volume contains the proceedings of Formal Methods 2006, the 14th
International Symposium on Formal Methods, held at McMaster University,
Hamilton, Canada, during August 21-27, 2006. Formal Methods Europe (FME,
www.fmeurope.org) is an independent association which aims to stimulate the
use of, and research on, formal methods for system development. The first sym-
posium in this series was VDM Europe in 1987. The scope of the symposium has
grown since then, encompassing all aspects of software and hardware which are
amenable to formal analysis. As in the previous years, this symposium brings
together researchers, tool developers, vendors and users.

We received 145 submissions from 31 countries, making it a truly interna-
tional event. Each submission was carefully refereed by at least three reviewers.
The Program Committee selected 36 papers for presentation at the symposium,
after an intensive, in-depth discussion. We would like to thank all the Program
Committee members and the referees for their excellent and efficient work.

Apart from the regular contributions, there were five invited talks for the
general symposium (Ernie Cohen, Nicholas Griffin, Thomas A. Henzinger, Peter
Lindsay and George Necula); the contribution of Henzinger (with Sifakis as a
co-author) and an abstract from Cohen are included in this volume.

Nicholas Griffin gave a general and informal talk about Russell’s work in logic
and the foundations of mathematics in the early years of the twentieth century.
It focussed on the philosophical views that underlay Russell’s attempts to solve
the Russell paradox (and several others) which culminated in the ramified theory
of types.

The FM 2006 symposium was planned to include four workshops and ten
tutorials. Additionally, there was a Doctoral Symposium which included presen-
tations by doctoral students, and a Poster and Tool Exhibition.

An Industry Day was organized by the Formal Techniques Industrial Associ-
ation (ForTIA) alongside the main symposium. This was directly related to the
main theme of the symposium: the use of well-founded formal methods in the
industrial practice of software design, development and maintenance. The theme
of the Industry Day in this symposium was “Formal Methods for Security and
Trust in Industrial Applications.” There were eight invited talks for Industry Day
(Randolph Johnson, Jan Jürjens, Scott A. Lintelman, Dusko Pavlovic, Werner
Stephan, Michael Waidner, Jim Woodcock and David von Oheimb); abbreviated
versions of some of the talks are included in this volume.

The electronic submission, refereeing and Program Committee discussions
would not have been possible without support of the EasyChair system, de-
veloped by Andrei Voronkov at the University of Manchester, UK. In addition
to developing a system of great flexibility, Andrei was available for help and
advice throughout; our heart-felt thanks to him. Our thanks to Springer, and,
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particularly, Ursula Barth, Anna Kramer and Frank Holzwarth, for help with
preparation of this volume.

August 2006 Jayadev Misra
Tobias Nipkow
Emil Sekerinski
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Douglas Stuart Martyn Thomas Christian Topnik
Helen Treharne Stavros Tripakis Emilio Tuosto
Laurent Voisin Marina de Vos Thomas Wahl
Thai Son Wang Andrzej Wasowski Heike Wehrheim
Bernd Westphal Luke Wildman Martin Wildmoser
Jim Woodcock Fei Xie Alex Yakovlev
Letu Yang Pamela Zave Gefei Zhang



X Organization

Sponsors

We are thankful for the organizational support from FME and Formal Tech-
niques Industrial Association (ForTIA). We gratefully acknowledge sponsorships
from the following organizations: Microsoft Research, Tourism Hamilton, SAP
Labs France, Software Quality Research Laboratory of McMaster University,
and Faculty of Engineering of McMaster University.



. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

. . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .



. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



The Embedded Systems Design Challenge�

Thomas A. Henzinger1 and Joseph Sifakis2

1 EPFL, Lausanne
2 VERIMAG, Grenoble

Abstract. We summarize some current trends in embedded systems
design and point out some of their characteristics, such as the chasm
between analytical and computational models, and the gap between
safety-critical and best-effort engineering practices. We call for a coher-
ent scientific foundation for embedded systems design, and we discuss
a few key demands on such a foundation: the need for encompassing
several manifestations of heterogeneity, and the need for constructivity
in design. We believe that the development of a satisfactory Embedded
Systems Design Science provides a timely challenge and opportunity for
reinvigorating computer science.

1 Motivation

Computer Science is going through a maturing period. There is a perception
that many of the original, defining problems of Computer Science either have
been solved, or require an unforeseeable breakthrough (such as the P versus NP
question). It is a reflection of this view that many of the currently advocated
challenges for Computer Science research push existing technology to the limits
(e.g., the semantic web [4]; the verifying compiler [15]; sensor networks [6]), to
new application areas (such as biology [12]), or to a combination of both (e.g.,
nanotechnologies; quantum computing). Not surprisingly, many of the bright-
est students no longer aim to become computer scientists, but choose to enter
directly into the life sciences or nanoengineering [8].

Our view is different. Following [18,22], we believe that there lies a large un-
charted territory within the science of computing. This is the area of embedded
systems design. As we shall explain, the current paradigms of Computer Sci-
ence do not apply to embedded systems design: they need to be enriched in
order to encompass models and methods traditionally found in Electrical Engi-
neering. Embedded systems design, however, should not and cannot be left to
the electrical engineers, because computation and software are integral parts of
embedded systems. Indeed, the shortcomings of current design, validation, and
maintenance processes make software, paradoxically, the most costly and least

� Supported in part by the ARTIST2 European Network of Excellence on Embedded
Systems Design, by the NSF ITR Center on Hybrid and Embedded Software Systems
(CHESS), and by the SNSF NCCR on Mobile Information and Communication
Systems (MICS).

J. Misra, T. Nipkow, and E. Sekerinski (Eds.): FM 2006, LNCS 4085, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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reliable part of systems in automotive, aerospace, medical, and other critical ap-
plications. Given the increasing ubiquity of embedded systems in our daily lives,
this constitutes a unique opportunity for reinvigorating Computer Science.

In the following we will lay out what we see as the Embedded Systems Design
Challenge. In our opinion, the Embedded Systems Design Challenge raises not
only technology questions, but more importantly, it requires the building of a
new scientific foundation — a foundation that systematically and even-handedly
integrates, from the bottom up, computation and physicality [14].

2 Current Scientific Foundations for Systems Design,
and Their Limitations

2.1 The Embedded Systems Design Problem

What Is an Embedded System? An embedded system is an engineering arti-
fact involving computation that is subject to physical constraints. The physical
constraints arise through two kinds of interactions of computational processes
with the physical world: (1) reaction to a physical environment, and (2) execu-
tion on a physical platform. Accordingly, the two types of physical constraints
are reaction constraints and execution constraints. Common reaction constraints
specify deadlines, throughput, and jitter; they originate from the behavioral re-
quirements of the system. Common execution constraints put bounds on avail-
able processor speeds, power, and hardware failure rates; they originate from the
implementation requirements of the system. Reaction constraints are studied in
control theory; execution constraints, in computer engineering. Gaining control
of the interplay of computation with both kinds of constraints, so as to meet a
given set of requirements, is the key to embedded systems design.

Systems Design in General. Systems design is the process of deriving, from
requirements, a model from which a system can be generated more or less au-
tomatically. A model is an abstract representation of a system. For example,
software design is the process of deriving a program that can be compiled; hard-
ware design, the process of deriving a hardware description from which a circuit
can be synthesized. In both domains, the design process usually mixes bottom-up
and top-down activities: the reuse and adaptation of existing component models;
and the successive refinement of architectural models in order to meet the given
requirements.

Embedded Systems Design. Embedded systems consist of hardware, soft-
ware, and an environment. This they have in common with most computing
systems. However, there is an essential difference between embedded and other
computing systems: since embedded systems involve computation that is sub-
ject to physical constraints, the powerful separation of computation (software)
from physicality (platform and environment), which has been one of the cen-
tral ideas enabling the science of computing, does not work for embedded sys-
tems. Instead, the design of embedded systems requires a holistic approach that
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integrates essential paradigms from hardware design, software design, and con-
trol theory in a consistent manner.

We postulate that such a holistic approach cannot be simply an extension of
hardware design, nor of software design, but must be based on a new founda-
tion that subsumes techniques from both worlds. This is because current design
theories and practices for hardware, and for software, are tailored towards the
individual properties of these two domains; indeed, they often use abstractions
that are diametrically opposed. To see this, we now have a look at the abstrac-
tions that are commonly used in hardware design, and those that are used in
software design.

2.2 Analytical Versus Computational Modeling

Hardware Versus Software Design. Hardware systems are designed as the
composition of interconnected, inherently parallel components. The individual
components are represented by analytical models (equations), which specify their
transfer functions. These models are deterministic (or probabilistic), and their
composition is defined by specifying how data flows across multiple components.
Software systems, by contrast, are designed from sequential components, such
as objects and threads, whose structure often changes dynamically (components
are created, deleted, and may migrate). The components are represented by
computational models (programs), whose semantics is defined operationally by
an abstract execution engine (also called a virtual machine, or an automaton).
Abstract machines may be nondeterministic, and their composition is defined by
specifying how control flows across multiple components; for instance, the atomic
actions of independent processes may be interleaved, possibly constrained by a
fixed set of synchronization primitives.

Thus, the basic operation for constructing hardware models is the composition
of transfer functions; the basic operation for constructing software models is
the product of automata. These are two starkly different views for constructing
dynamical systems from basic components: one analytical (i.e., equation-based),
the other computational (i.e., machine-based). The analytical view is prevalent
in Electrical Engineering; the computational view, in Computer Science: the
netlist representation of a circuit is an example for an analytical model; any
program written in an imperative language is an example for a computational
model. Since both types of models have very different strengths and weaknesses,
the implications on the design process are dramatic.

Analytical and Computational Models Offer Orthogonal Abstractions.
Analytical models deal naturally with concurrency and with quantitative con-
straints, but they have difficulties with partial and incremental specifications
(nondeterminism) and with computational complexity. Indicatively, equation-
based models and associated analytical methods are used not only in hardware
design and control theory, but also in scheduling and in performance evaluation
(e.g., in networking).

Computational models, on the other hand, naturally support nondeterminis-
tic abstraction hierarchies and a rich theory of computational complexity, but
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they have difficulties taming concurrency and incorporating physical constraints.
Many major paradigms of Computer Science (e.g., the Turing machine; the
thread model of concurrency; the structured operational semantics of program-
ming languages) have succeeded precisely because they abstract away from all
physical notions of concurrency and from all physical constraints on compu-
tation. Indeed, whole subfields of Computer Science are built on and flourish
because of such abstractions: in operating systems and distributed computing,
both time-sharing and parallelism are famously abstracted to the same concept,
namely, nondeterministic sequential computation; in algorithms and complexity
theory, real time is abstracted to big-O time, and physical memory to big-O
space. These powerful abstractions, however, are largely inadequate for embed-
ded systems design.

Analytical and Computational Models Aim at Different System
Requirements. The differences between equation-based and machine-based de-
sign are reflected in the type of requirements they support well. System designers
deal with two kinds of requirements. Functional requirements specify the ex-
pected services, functionality, and features, independent of the implementation.
Extra-functional requirements specify mainly performance, which characterizes
the efficient use of real time and of implementation resources; and robustness,
which characterizes the ability to deliver some minimal functionality under cir-
cumstances that deviate from the nominal ones. For the same functional re-
quirements, extra-functional properties can vary depending on a large number
of factors and choices, including the overall system architecture and the charac-
teristics of the underlying platform.

Functional requirements are naturally expressed in discrete, logic-based for-
malisms. However, for expessing many extra-functional requirements, real-valued
quantities are needed to represent physical constraints and probabilities. For
software, the dominant driver is correct functionality, and even performance and
robustness are often specified discretely (e.g., number of messages exchanged;
number of failures tolerated). For hardware, continuous performance and ro-
bustness measures are more prominent and refer to physical resource levels such
as clock frequency, energy consumption, latency, mean-time to failure, and cost.
For embedded systems integrated in mass-market products, the ability to quan-
tify trade-offs between performance and robustness, under given technical and
economic constraints, is of strategic importance.

Analytical and Computational Models Support Different Design
Processes. The differences between models based on data flow and models based
on control flow have far-reaching implications on design methods. Equation-
based modeling yields rich analytical tools, especially in the presence of stochas-
tic behavior. Moreover, if the number of different basic building blocks is small, as
it is in circuit design, then automatic synthesis techniques have proved extraor-
dinarily successful in the design of very large systems, to the point of creating an
entire industry (Electronic Design Automation). Machine-based models, on the
other hand, while sacrificing powerful analytical and synthesis techniques, can
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be executed directly. They give the designer more fine-grained control and pro-
vide a greater space for design variety and optimization. Indeed, robust software
architectures and efficient algorithms are still individually designed, not auto-
matically generated, and this will likely remain the case for some time to come.
The emphasis, therefore, shifts away from design synthesis to design verification
(proof of correctness).

Embedded systems design must even-handedly deal with both: with com-
putation and physical constraints; with software and hardware; with abstract
machines and transfer functions; with nondeterminism and probabilities; with
functional and performance requirements; with qualitative and quantitative anal-
ysis; with booleans and reals. This cannot be achieved by simple juxtaposition
of analytical and computational techniques, but requires their tight integration
within a new mathematical foundation that spans both perspectives.

3 Current Engineering Practices for Embedded Systems
Design, and Their Limitations

3.1 Model-Based Design

Language-Based and Synthesis-Based Origins. Historically, many method-
ologies for embedded systems design trace their origins to one of two sources: there
are language-based methods that lie in the software tradition, and synthesis-based
methods that come out of the hardware tradition. A language-based approach is
centered on a particular programming language with a particular target run-time
system. Examples include Ada and, more recently, RT-Java [5]. For these lan-
guages, there are compilation technologies that lead to event-driven implementa-
tions on standardized platforms (fixed-priority scheduling with preemption). The
synthesis-based approaches, on the other hand, have evolved from hardware de-
sign methodologies. They start from a system description in a tractable (often
structural) fragment of a hardware description language such as VHDL and Ver-
ilog and, ideally automatically, derive an implementation that obeys a given set of
constraints.

Implementation Independence. Recent trends have focused on combining
both language-based and synthesis-based approaches (hardware/software code-
sign) and on gaining, during the early design process, maximal independence
from a specific implementation platform. We refer to these newer aproaches col-
lectively as model-based, because they emphasize the separation of the design
level from the implementation level, and they are centered around the semantics
of abstract system descriptions (rather than on the implementation semantics).
Consequently, much effort in model-based approaches goes into developing effi-
cient code generators. We provide here only a short and incomplete selection of
some representative methodologies.

Model-Based Methodologies. The synchronous languages, such as Lustre
and Esterel [11], embody an abstract hardware semantics (synchronicity) within
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different kinds of software structures (functional; imperative). Implementation
technologies are available for several platforms, including bare machines and
time-triggered architectures. Originating from the design automation commu-
nity, SystemC [19] also chooses a synchronous hardware semantics, but allows
for the introduction of asynchronous execution and interaction mechanisms from
software (C++). Implementations require a separation between the components
to be implemented in hardware, and those to be implemented in software; dif-
ferent design-space exploration techniques provide guidance in making such par-
titioning decisions. A third kind of model-based approaches are built around a
class of popular languages exemplified by MATLAB Simulink, whose semantics
is defined operationally through its simulation engine.

More recent modeling languages, such as UML [20] and AADL [10], attempt
to be more generic in their choice of semantics and thus bring extensions in two
directions: independence from a particular programming language; and empha-
sis on system architecture as a means to organize computation, communication,
and constraints. We believe, however, that these attempts will ultimately fall
short, unless they can draw on new foundational results to overcome the current
weaknesses of model-based design: the lack of analytical tools for computational
models to deal with physical constraints; and the difficulty to automatically
transform noncomputational models into efficient computational ones. This leads
us to the key need for a better understanding of relationships and transforma-
tions between heterogeneous models.

Model Transformations. Central to all model-based design is an effective
theory of model transformations. Design often involves the use of multiple mod-
els that represent different views of a system at different levels of granularity.
Usually design proceeds neither strictly top-down, from the requirements to the
implementation, nor strictly bottom-up, by integrating library components, but
in a less directed fashion, by iterating model construction, model analysis, and
model transformation. Some transformations between models can be automated;
at other times, the designer must guide the model construction. The ultimate
success story in model transformation is the theory of compilation: today, it
is difficult to manually improve on the code produced by a good optimizing
compiler from programs (i.e., computational models) written in a high-level lan-
guage. On the other hand, code generators often produce inefficient code from
equation-based models: fixpoints of equation sets can be computed (or approx-
imated) iteratively, but more efficient algorithmic insights and data structures
must be supplied by the designer.

For extra-functional requirements, such as timing, the separation of human-
guided design decisions from automatic model transformations is even less well
understood. Indeed, engineering practice often relies on a ‘trial-and-error’ loop
of code generation, followed by test, followed by redesign (e.g., priority tweaking
when deadlines are missed). An alternative is to develop high-level program-
ming languages that can express reaction constraints, together with compilers
that guarantee the preservation of the reaction constraints on a given execution
platform [13]. Such a compiler must mediate between the reaction constraints
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specified by the program, such as timeouts, and the execution constraints of the
platform, typically provided in the form of worst-case execution times. We believe
that an extension of this approach to other extra-functional dimensions, such as
power consumption and fault tolerance, is a promising direction of investigation.

3.2 Critical Versus Best-Effort Engineering

Guaranteeing Safety Versus Optimizing Performance. Today’s systems
engineering methodologies can be classified also along another axis: critical sys-
tems engineering, and best-effort systems engineering. The former tries to guar-
antee system safety at all costs, even when the system operates under extreme
conditions; the latter tries to optimize system performance (and cost) when the
system operates under expected conditions. Critical engineering views design
as a constraint-satisfaction problem; best-effort engineering, as an optimization
problem.

Critical systems engineering is based on worst-case analysis (i.e., conservative
approximations of the system dynamics) and on static resource reservation. For
tractable conservative approximations to exist, execution platforms often need
to be simplified (e.g., bare machines without operating systems; processor ar-
chitectures that allow time predictability for code execution). Typical examples
of such approaches are those used for safety-critical systems in avionics. Real-
time constraint satisfaction is guaranteed on the basis of worst-case execution
time analysis and static scheduling. The maximal necessary computing power is
made available at all times. Dependability is achieved mainly by using massive
redundancy, and by statically deploying all equipment for failure detection and
recovery.

Best-effort systems engineering, by contrast, is based on average-case (rather
than worst-case) analysis and on dynamic resource allocation. It seeks the effi-
cient use of resources (e.g., optimization of throughput, jitter, or power) and is
used for applications where some degradation or even temporary denial of ser-
vice is tolerable, as in telecommunications. The ‘hard’ worst-case requirements
of critical systems are replaced by ‘soft’ QoS (quality-of-service) requirements.
For example, a hard deadline is either met or missed; for a soft deadline, there
is a continuum of different degrees of satisfaction. QoS requirements can be en-
forced by adaptive (feedback-based) scheduling mechanisms, which adjust some
system parameters at run-time in order to optimize performance and to recover
from deviations from nominal behavior. Service may be denied temporarily by
admission policies, in order to guarantee that QoS levels stay above minimum
thresholds.

A Widening Gap. The two approaches —critical and best-effort engineering—
are largely disjoint. This is reflected by the separation between ‘hard’ and ‘soft’
real time. They correspond to different research communities and different prac-
tices. Hard approaches rely on static (design-time) analysis; soft approaches, on
dynamic (run-time) adaptation. Consequently, they adopt different models of
computation and use different execution platforms, middleware, and networks.
For instance, time-triggered technologies are considered to be indispensable for
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drive-by-wire automotive systems [17]. Most safety-critical systems adopt very
simple static scheduling principles, either fixed-priority scheduling with preemp-
tion, or round-robin scheduling for synchronous execution. It is often said that
such a separation is inevitable for systems with uncertain environments. Meet-
ing hard constraints and making the best possible use of the available resources
seem to be two conflicting requirements. The hard real-time approach leads to
low utilization of system resources. On the other hand, soft approaches take the
risk of temporary unavailability.

We believe that, left unchecked, the gap between the two approaches will
continue to widen. This is because the uncertainties in embedded systems design
keep increasing for two reasons. First, as embedded systems are deployed in a
greater variety of situations, their environments are less perfectly known, with
greater distances between worst-case and expected behaviors. Second, because
of the rapid progress in VLSI design, embedded systems are implemented on
sophisticated, hardware/software layered multicore architectures with caches,
pipelines, and speculative execution. The ensuing difficulty of accurate worst-
case analysis makes conservative, safety-critical solutions ever more expensive, in
both resource and design cost, in comparison to best-effort solutions. The divide
between critical and best-effort engineering already leads often to a physical
separation between the critical and noncritical parts of a system, each running
on dedicated hardware or during dedicated time slots. As the gap between worst-
case and average-case solutions increases, such separated architectures are likely
to become more prevalent.

Bridging the Gap. We think that technological trends oblige us to revise the
dual vision and separation between critical and best-effort practices. The in-
creasing computing power of system-on-chip and network-on-chip technologies
allows the integration of critical and noncritical applications on a single chip.
This reduces communication costs and increases hardware reliability. It also al-
lows a more rational and cost-effective management of resources. To achieve this,
we need methods for guaranteeing a sufficiently strong, but not absolute, separa-
tion between critical and noncritical components that share common resources.
In particular, design techniques for adaptive systems should make flexible use of
the available resources by taking advantage of any complementarities between
hard and soft constraints. One possibility may be to treat the satisfaction of
critical requirements as minimal guaranteed QoS level. Such an approach would
require, once again, the integration of boolean-valued and quantitative methods.

4 Two Demands on a Solution

Heterogeneity and Constructivity. Our vision is to develop an Embedded
Systems Design Science that even-handedly integrates analytical and compu-
tational views of a system, and that methodically quantifies trade-offs between
critical and best-effort engineering decisions. Two opposing forces need to be ad-
dressed for setting up such an Embedded Systems Design Science. These corre-
spond to the needs for encompassing heterogeneity and achieving constructivity
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during the design process. Heterogeneity is the property of embedded systems
to be built from components with different characteristics. Heterogeneity has
several sources and manifestations (as will be discussed below), and the existing
body of knowledge is largely fragmented into unrelated models and correspond-
ing results. Constructivity is the possibility to build complex systems that meet
given requirements, from building blocks and glue components with known prop-
erties. Constructivity can be achieved by algorithms (compilation and synthesis),
but also by architectures and design disciplines.

The two demands of heterogeneity and constructivity pull in different direc-
tions. Encompassing heterogeneity looks outward, towards the integration of
theories to provide a unifying view for bridging the gaps between analytical and
computational models, and between critical and best-effort techniques. Achiev-
ing constructivity looks inward, towards developing a tractable theory for system
construction. Since constructivity is most easily achieved in restricted settings,
an Embedded Systems Design Science must provide the means for intelligently
balancing and trading off both ambitions.

4.1 Encompassing Heterogeneity

System designers deal with a large variety of components, each having different
characteristics, from a large variety of viewpoints, each highlighting different
dimensions of a system. Two central problems are the meaningful composition
of heterogeneous components to ensure their correct interoperation, and the
meaningful refinement and integration of heterogeneous viewpoints during the
design process. Superficial classifications may distinguish between hardware and
software components, or between continuous-time (analog) and discrete-time
(digital) components, but heterogeneity has two more fundamental sources: the
composition of subsystems with different execution and interaction semantics;
and the abstract view of a system from different perspectives.

Heterogeneity of Execution and Interaction Semantics. At one extreme
of the semantic spectrum are fully synchronized components, which proceed
in lock-step with a global clock and interact in atomic transactions. Such a
tight coupling of components is the standard model for most synthesizable hard-
ware and for hard real-time software. At the other extreme are completely
asynchronous components, which proceed at independent speeds and interact
nonatomically. Such a loose coupling of components is the standard model for
most multithreaded software. Between the two extremes, a variety of interme-
diate and hybrid models exist (e.g., globally-asynchronous locally-synchronous
models). To better understand their commonalities and differences, it is useful
to decouple execution from interaction semantics [21].

Execution Semantics. Synchronous execution is typically used in hardware, in
synchronous programming languages, and in time-triggered systems. It consid-
ers a system’s execution as a sequence of global steps. It assumes synchrony,
meaning that the environment does not change during a step, or equivalently,
that the system is infinitely faster than its environment. In each execution step,
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all system components contribute by executing some quantum of computation.
The synchronous execution paradigm, therefore, has a built-in strong assump-
tion of fairness: in each step all components can move forward. Asynchronous
execution, by contrast, does not use any notion of global computation step. It
is adopted in most distributed systems description languages such as SDL [16]
and UML, and in multithreaded programming languages such as Ada and Java.
The lack of built-in mechanisms for sharing computation between components
can be compensated through constraints on scheduling (e.g., priorities; fairness)
and through mechanisms for interaction (e.g., shared variables).

Interaction Semantics. Interactions are combinations of actions performed by
system components in order to achieve a desired global behavior. Interactions
can be atomic or nonatomic. For atomic interactions, the state change induced in
the participating components cannot be altered through interference with other
interactions. As a rule, synchronous programming languages and hardware de-
scription languages use atomic interactions. By contrast, languages with buffered
communication (e.g., SDL) and multithreaded languages (e.g., Java) generally
use nonatomic interactions. Both types of interactions may involve strong or
weak synchronization. Strongly synchronizing interactions can occur only if all
participating components agree (e.g., CSP rendezvous). Weakly synchronizing
interactions are asymmetric; they require only the participation of an initiating
action, which may or may not synchronize with other actions (e.g., outputs in
synchronous languages).

Heterogeneity of Abstractions. System design involves the use of models
that represent a system at varying degrees of detail and are related to each
other in an abstraction (or equivalently, refinement) hierarchy. Heterogeneous
abstractions, which relate different styles of models, are often the most powerful
ones: a notable example is the boolean-valued gate-level abstraction of real-
valued transistor-level models for circuits.

In embedded systems, a key abstraction is the one relating application soft-
ware to its implementation on a given platform. Application software is largely
untimed, in the sense that it abstracts away from physical time. References to
physical time may occur in the parameters of real-time statements, such as time-
outs, which are treated as external events. The application code running on a
given platform, however, is a dynamical system that can be modeled as a timed
or hybrid automaton [1]. The run-time state includes not only the variables of
the application software, but also all variables that are needed to characterize
its dynamic behavior, including clock variables. Modeling implementations may
require additional quantitative constraints, such as probabilities to describe fail-
ures, and arrival laws for external events. We need to find tractable theories
to relate the application and implementation layers. In particular, such theo-
ries must provide the means for preserving, in the implementation, all essential
properties of the application software.

Another cause of heterogeneity in abstractions is the use of different ab-
stractions for modeling different extra-functional dimensions (or ‘aspects’) of



The Embedded Systems Design Challenge 11

a system. Some dimensions, such as timing and power consumption in certain
settings, may be tightly correlated; others, such as timing and fault tolerance,
may be achievable through independent, composable solutions. In general we
lack practical theories for effectively separating orthogonal dimensions, and for
quantifying the trade-offs between interfering dimensions.

Metamodeling. We are not the first to emphasize the need for encompassing
heterogeneity in systems design. Much recent attention has focused on so-called
‘metamodels,’ which are semantic frameworks for expressing different models
and their interoperation [2,9,3]. We submit that we need a metamodel which is
not just a disjoint union of submodels within a common (meta)language, but one
which preserves properties during model composition and supports meaningful
analyses and transformations across heterogeneous model boundaries. This leads
to the issue of constructivity in design.

4.2 Achieving Constructivity

The system construction problem can be formulated as follows: “build a system
meeting a given set of requirements from a given set of components.” This is a
key problem in any engineering discipline; it lies at the basis of various systems
design activities, including modeling, architecting, programming, synthesis, up-
grading, and reuse. The general problem is by its nature intractable. Given a
formal framework for describing and composing components, the system to be
constructed can be characterized as a fixpoint of a monotonic function which
is computable only when a reduction to finite-state models is possible. Even in
this case, however, the complexity of the algorithms is prohibitive for real-world
systems.

What are the possible avenues for circumventing this obstacle? We need results
in two complementary directions. First, we need construction methods for specific,
restricted application contexts characterized by particular types of requirements
and constraints, and by particular types of components and composition mecha-
nisms. Clearly, hardware synthesis techniques, software compilation techniques,
algorithms (e.g., for scheduling, mutual exclusion, clock synchronization), archi-
tectures (such as time-triggered; publish-subscribe), as well as protocols (e.g., for
multimedia synchronization) contribute solutions for specific contexts. It is impor-
tant to stress that many of the practically interesting results require little compu-
tation and guarantee correctness more or less by construction.

Second, we need theories that allow the incremental combination of the above
results in a systematic process for system construction. Such theories would
be particularly useful for the integration of heterogeneous models, because the
objectives for individual subsystems are most efficiently accomplished within
those models which most naturally capture each of these subsystems. A re-
sulting framework for incremental system construction is likely to employ two
kinds of rules. Compositionality rules infer global system properties from the
local properties of subsystems (e.g., inferring global deadlock-freedom from the
deadlock-freedom of the individual components). Noninterference rules guar-
antee that during the system construction process, all essential properties of
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subsystems are preserved (e.g., establishing noninterference for two scheduling
algorithms used to manage two system resources). This suggests the following
action lines for research.

Constructivity for Performance and Robustness. The focus must shift
from compositional methods and architectures for ensuring only functional prop-
erties, to extra-functional requirements such as performance and robustness.

Performance. The key issue is the construction of components (schedulers) that
manage system resources so as to meet or optimize given performance require-
ments. These cover a large range of resource-related constraints involving upper
and lower bounds, averages, jitter, and probabilities. Often the requirements for
different resources are antagonistic, for instance, timeliness and power efficiency,
or respecting deadlines and maximizing utilization. Thus we need construction
methods that allow the joint consideration of performance requirements and the
analysis of trade-offs.

Another inherent difficulty in the construction of schedulers comes from
uncertainty and unpredictability in a system’s execution and external environ-
ments. In this context, poor precision for time constants used in static schedul-
ing techniques implies poor performance [23]. One approach is to build adaptive
schedulers, which control execution by dynamically adjusting their scheduling
policies according to their knowledge about the system’s environment. However,
currently there is no satisfactory theory for combining adaptive techniques for
different kinds of resources. Such an approach must address the concerns of
critical systems engineering, which currently relies almost exclusively on static
techniques. The development of a system construction framework that allows the
joint consideration of both critical and noncritical performance requirements for
different classes of resources is a major challenge for the envisioned Embedded
Systems Design Science.

Robustness. The key issue is the construction of components performing as de-
sired under circumstances that deviate from the normal, expected operating en-
vironment. Such deviations may include extreme input values, platform failures,
and malicious attacks. Accordingly, robustness requirements include a broad
spectrum of properties, such as safety (resistance to failures), security (resis-
tance to attacks), and availability (accessibility of resources). Robustness is a
transversal issue in system construction, cutting across all design activities and
influencing all design decisions. For instance, system security must take into ac-
count properties of the software and hardware architectures, information treat-
ment (encryption, access, and transmission), as well as programming disciplines.
The current state of the art in building robust systems is still embryonic. A
long-term and continuous research effort is necessary to develop a framework for
the rigorous construction of robust systems. Our purpose here is only to point
out the inadequacy of some existing approaches.

In dynamical systems, robustness can be formalized as continuity, namely,
that small perturbations of input values cause small perturbations of output
values. No such formalization is available for discrete systems, where the change
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of a single input or state bit can lead to a completely different output behavior.
Worse, many of our models for embedded systems are nonrobust even in the
continuous domain. For example, in timed automata, an arbitrarily small change
in the arrival time of an input may change the entire behavior of the automaton.

In computer science, redundancy is often the only solution to build reliable
systems from unreliable components. We need theories, methods, and tools
that support the construction of robust embedded systems without resorting
to such massive, expensive overengineering. One hope is that continuity can be
achieved in fully quantitative models, where quantitative information expresses
not only probabilities, time, and other resource consumption levels, but also func-
tional characteristics. For example, if we are no longer interested in the absolute
(boolean-valued) possibility or nonpossibility of failure, but in the (real-valued)
mean-time to failure, we may be able to construct continuous models where small
changes in certain parameters induce only small changes in the failure rate.

Incremental Construction. A practical methodology for embedded systems
design needs to scale, and overcome the limitations of current algorithmic
verification and synthesis techniques. One route for achieving scalability is to
rely on compositionality and noninterference rules which require only light-
weight analyses of the overall system architecture. Such correct-by-construction
techniques exist for very specific properties and architectures. For example, time-
triggered architectures ensure timely and fault-tolerant communication for dis-
tributed real-time systems; a token-ring protocol guarantees mutual exclusion
for strongly synchronized processes that are connected in a ring. It is essential
to extend the correct-by-construction paradigm by studying more generally the
interplay between architectures and properties.

A related class of correct-by-construction techniques is focused on the use of
component interfaces [7]. A well-designed interface exposes exactly the informa-
tion about a component which is necessary to check for composability with other
components. In a sense, an interface formalism is a ‘type theory’ for component
composition. Recent trends have been towards rich interfaces, which expose func-
tional as well as extra-functional information about a component, for example,
resource consumption levels. Interface theories are especially promising for in-
cremental design under such quantitative constraints, because the composition
of two or more interfaces can be defined as to calculate the combined amount of
resources that are consumed by putting together the underlying components.

5 Summary

We believe that the challenge of designing embedded systems offers a unique
opportunity for reinvigorating Computer Science. The challenge, and thus the
opportunity, spans the spectrum from theoretical foundations to engineering
practice. To begin with, we need a mathematical basis for systems modeling and
analysis which integrates both abstract-machine models and transfer-function
models in order to deal with computation and physical constraints in a consis-
tent, operative manner. Based on such a theory, it should be possible to combine



14 T.A. Henzinger and J. Sifakis

practices for critical systems engineering to guarantee functional requirements,
with best-effort systems engineering to optimize performance and robustness.
The theory, the methodologies, and the tools need to encompass heterogeneous
execution and interaction mechanisms for the components of a system, and they
need to provide abstractions that isolate the subproblems in design that require
human creativity from those that can be automated. This effort is a true grand
challenge: it demands paradigmatic departures from the prevailing views on both
hardware and software design, and it offers substantial rewards in terms of cost
and quality of our future embedded infrastructure.
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Abstract. The Mondex case study about the specification and refine-
ment of an electronic purse as defined in [SCJ00] has recently been pro-
posed as a challenge for formal system-supported verification. This paper
reports on the successful verification of the major part of the case study
using the KIV specification and verification system. We demonstrate that
even though the hand-made proofs were elaborated to an enormous level
of detail, we still could find small errors in the underlying data refinement
theory as well as the formal proofs of the case study.

We also provide an alternative formalisation of the communication
protocol using abstract state machines.

Finally the Mondex case study verifies functional correctness assuming
a suitable security protocol. Therefore we propose to extend the case
study to include the verification of a suitable security protocol.

1 Introduction

Mondex smart cards implement an electronic purse [MCI]. They have become
famous for having been the target of the first ITSEC evaluation of the highest
level E6 [CB99], which requires formal specification and verification.

The formal specification and proofs were done in [SCJ00] using the Z speci-
fication language [Spi92]. Two models of electronic purses were defined: an ab-
stract one which models the transfer of money between purses as elementary
transactions, and a concrete level that implements money transfer using a com-
munication protocol that can cope with lost messages using a suitable logging of
failed transfers. A suitable data refinement theory was developed in [CSW02].

Although the refinement proofs based on this theory were done manually
(with an auxiliary type checker) they were elaborated to the detail of almost
calculus level. The Mondex case study has been recently proposed as a challenge
for theorem provers [Woo06].

In this paper we show that verifying the refinement mechanically, using the
KIV theorem prover, can be done within a few weeks of work. We verify the
full Mondex case study except for the operations that archive failure logs from a
smart card to a central archive. These are independent of the protocol for money
transfer.
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The Mondex case study is too big to be presented completely within a paper
of 16 pages ([SCJ00] has 240 pages, [CSW02] additional 54 pages). Therefore we
unfortunately will have to refer to these papers quite often. To view the details
of the KIV proofs we have prepared a technical report [SGHR06] and a Web
presentation of the full KIV specifications and of all proofs, which can be found
at [KIV]. The interested reader can find all details there.

Nevertheless we have tried to extract the core of the refinement problem and
to give a concise definition of the case study in section 2. To this purpose we
introduce the case study using abstract state machines (ASM, [Gur95], [BS03]).
Since the relational approach of Z is quite different from the operational de-
scription of ASMs, this paper can also be used to compare the two specification
styles. To check the adequacy of the ASM formalization we have also verified the
central proof obligations of [SCJ00]: backward simulation and an invariant for
the concrete level. We discuss these proofs in section 3. Doing them was sufficient
to uncover small problems in the invariant of the concrete level.

While the proofs could be elaborated to a full ASM refinement proof which
would be our traditional verification approach ([BR95], [Sch01], [Bör03]), we
decided to mimic the data refinement proofs faithfully to succeed in verifying
the challenge. Therefore we formalised the underlying data refinement theory.
We report on a correction for this theory and an extension using invariants in
section 4.

Finally we instantiated the data refinement theory with the operations of
the Mondex case study. Our proofs improve the ones of [SCJ00] by using one
refinement instead of two. Section 5 also reports on the additional complexity
caused by using operations similar to Z instead of a simple ASM, and gives some
statistics of the effort required.

When we discovered the Mondex case study, we were astonished to find that
it has been given the highest security level ITSEC E6, when in fact the case
study assumes a suitable security protocol rather than proving it. Since the real
security protocol of Mondex smart cards has never been published, we discuss a
probable security protocol in section 6 and propose a refinement of the concrete
Mondex level to a specification that includes such a security protocol as an
extension of the case study.

2 Two Simple ASMs for the Mondex Case Study

The Mondex case study is based on smart cards that are being used as electronic
purses. Each card has a balance and may be used to transfer money to other
cards. Unfortunately it is very hard to get a clear picture of their use in real life.
The original web site [MCI] says that the smart cards are used to transfer money
over the internet using a card reader on each end. [RE03] says one card reader
is used, the ‘from’ purse (where money is taken from) is first put in the card
reader, then the ’to’ purse (which receives the money). This seems not really
compatible with the protocol given later on. Finally, the Mondex paper [SCJ00]
and the ITSEC evaluation [CB99] suggest an interface device, which seems to be
a card reader with two slots, where both cards can be inserted simultaneously.
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It is also not clear how cryptography is used, [CCW96] suggest that this was
never disclosed, and that the Mondex card therefore is a classical example of
“security by obscurity”. Maybe this is the reason why a security protocol is not
considered in the Mondex case study.

The smart cards of the formal specification are specified on two levels: An ab-
stract level which defines transfer of money between purses as an atomic trans-
action, and a concrete level which defines a protocol to transfer money.

In this section we now give an alternative version of the Mondex refinement
problem using abstract state machines (ASMs, [Gur95], [BS03]) and algebraic
specifications as used in KIV [RSSB98].

The abstract state machines can also be found on the Web [KIV] in the
Mondex project as simple-AASM and simple-BASM. We have tried to stay as
close as possible to the notation of the original Mondex case study, but we have
removed all details that we thought were not essential to understand the problem
described by the Mondex refinement.

2.1 The Abstract Level

The abstract specification of a purse consists of a function balance from purse
names to their current balance. Since the transfer of money from one to another
purse may fail (due to the card being pulled abruptly from the card reader, or
for internal reasons like lack of memory) the state of an abstract purse also must
log the amount of money that has been lost in such failed transfers.

In the formalism of ASMs this means that the abstract state consists of two
dynamic functions

balance : name → IN
lost : name → IN

Purses may be faked, so we have a finite number of names which satisfy a
predicate authentic1. How authenticity is checked (using secret keys, pins etc.)
is left open on both levels of the specification, so the predicate is simply left
unspecified. We will come back to this point in section 6.

Transfer of money between authentic purses is done with the following simple
ASM rule2

ABTRANSFER#
choose from, to, value, fail?
with authentic(from) ∧ authentic(to) ∧ from �= to ∧ value ≤ balance(from)
in if ¬ fail? then balance(from) := balance(from)− value

balance(to) := balance(to) + value
else balance(from) := balance(from)− value

lost(from) := lost(from) + value

1 In the original Z specification, authentic is defined to be the domain of partial
AbAuthPurse and ConAuthPurse functions. For simplicity, we use total functions in-
stead, and use authentic to restrict their domain.

2 By convention our rule names end with a # sign to distinguish them from predicates.
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The rule nondeterministically chooses two different, authentic purses with
names from and to, and an amount value for which the from purse has enough
money and transfers it. The transfer may fail for internal reasons as indicated
by the randomly chosen boolean variable fail?. In this case the from purse logs
the lost money in its lost component.

This already completes the specification of the abstract level. Compared to
the Z specification in [SCJ00] we have left out the operation ABIGNORE# which
skips (i.e. does nothing): In data refinement such a skip operation is needed,
since every operation must be refined by a 1:1 diagram. ASM refinement directly
allows to use 0:1 diagrams, therefore such a skip operation is not needed.

2.2 The Concrete Level

On the concrete level transferring money is done using a protocol with 5 steps.
To execute the protocol, each purse needs a status that indicates how far it has
progressed executing the protocol. The possible states a purse may be in are
given by the enumeration status = idle | epr | epv | epa. Compared to [SCJ00] we
have merged the two states eaFrom and eaTo into one idle state. The behavior
of a purse in eaTo state is exactly the same as that of a purse in eaFrom state,
so we saw no necessity to distinguish them.

Purses not participating in any transfer are in the idle state. To avoid replay
attacks each purse stores a sequence number nextSeqNo that can be used in the
next transaction. This number is incremented during any run of the protocol.
During the run of the protocol each purse stores the current payment details in
a variable pdAuth of type PayDetails. These are tuples consisting of the names
of the from and to purse, the transaction numbers these use for this transaction
and the amount of money that is transferred. In KIV we define a free data type
PayDetails =

mkpd(. .from : name; . .fromno : nat; . .to : name; . .tono : nat; . .value : nat)
with postfix selectors (so pd.from is the name of the from purse stored in payment
details pd). The state of a purse finally contains a log exLog of failed transfers
represented by their payment details. The protocol is executed sending messages
between the purses. The ether collects all messages that are currently available.
A purse receives a message by selecting a message from the ether. Since the
environment of the card is assumed to be hostile the message received may be
any message that has already been sent, not just one that is directed to the
card (this simple model of available messages is also used in many abstract
specifications of security protocols, e.g. the traces of [Pau98]). The state of the
concrete ASM therefore is:

balance : name → IN
state : name → status
pdAuth : name → PayDetails
exLog : name → set(PayDetails)
ether : set(message)

The protocol is started by two messages startFrom(msgna, value,msgno) and
startTo(msgna, value,msgno) which are sent to the from and to purse respectively
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by the interface device. These two messages are assumed to be always available,
so the initial ether already contains every such message. The arguments msgna
and msgno of startFrom(msgna, value,msgno) are assumed to be the name and
nextSeqNo of the to purse, value is the amount of value transfered. Similarly, for
startTo(msgna, value,msgno) msgna and msgno are the corresponding data of the
from purse.

On receiving a startFrom message msg from ether (selecting a message from
ether is defined in the full ASM rule BOP# at the end of this section) in the idle
state a purse named receiver3 executes the following step:

STARTFROM#
let msgna = msg.name, value = msg.value,msgno = msg.nextSeqNo
in if authentic(msgna) ∧ receiver �= msgna

∧ value ≤ balance(receiver) ∧ ¬ fail?
then choose n with nextSeqNo(receiver) < n in

pdAuth(receiver) := mkpd(receiver, nextSeqNo(receiver),
msgna,msgno, value)

state(receiver) := epr
nextSeqNo(receiver) := n
outmsg := ⊥

else outmsg := ⊥
If the purse msgna which shall receive money is not authentic, the receiver

purse has not enough money or the transition fails due to internal reasons (a
flag fail? is used for this purpose just as on the abstract level), then the purse sim-
ply produces an empty output message ⊥ and does nothing else. Otherwise the
purse stores the requested transfer in its pdAuth component, using its current
nextSeqNo number as one component and proceeds to the epr state (“expect-
ing request”). Thereby it becomes the from purse of the current transaction.
nextSeqNo is incremented to make it unavailable in further transactions. An
empty output message ⊥ is generated in the success case too that will be added
to the ether (see the full ASM rule below).

The action for a purse receiving a startTo message in idle state is similar except
that it goes into the epv state (“expecting value”) and becomes the to purse of
the transaction. Additionally it sends a request message to the from purse:

STARTTO#
let msgna = msg.name, value = msg.value,msgno = msg.nextSeqNo
in if authentic(msgna) ∧ receiver �= msgna ∧ ¬ fail?

then choose n with nextSeqNo(receiver) < n in
pdAuth(receiver) := mkpd(msgna,msgno, receiver,

nextSeqNo(receiver), value)
state(receiver) := epv seq
outmsg := req(pdAuth(receiver))
nextSeqNo(receiver) := n

else outmsg := ⊥
3 Receiver is always a purse receiving a message. This can be a from purse sending

money as well as a to purse receiving money and should not be confused with the
latter.
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The request message req(pdAuth(receiver)) contains the payment details of the
current transaction. Although this is not modeled, the message is assumed to
be securely encrypted. Since an attacker can therefore never guess this message
before it is sent, it is assumed that the initial ether does not contain any request
message. When the from purse receives the request in state epr, it executes

REQ#
if msg = req(pdAuth(receiver)) ∧ ¬ fail?
then balance(receiver) := balance(receiver)− pdAuth(receiver).value

state(receiver) := epa
outmsg := val(pdAuth(receiver))

else outmsg := ⊥
The message is checked to be consistent with the current transaction stored in

pdAuth and if this is the case the money is sent with an encrypted value message
val(pdAuth(receiver)). The state changes to epa (“expecting acknowledge”). On
receiving the value the to purse does

VAL#
if msg = val(pdAuth(receiver)) ∧ ¬ fail?
then balance(receiver) := balance(receiver) + pdAuth(receiver).value

state(receiver) := idle
outmsg := ack(pdAuth(receiver))

else outmsg := ⊥
It adds the money to its balance, sends an encrypted acknowledge message

back and finishes the transaction by going back to state idle. When this acknowl-
edge message is received, the from purse finishes similarly:

ACK#
if msg = ack(pdAuth(receiver)) ∧ ¬ fail?
then state(receiver) := idle

outmsg := ⊥
else outmsg := ⊥

To put the steps together it finally remains to define the full ASM rule BOP#4

which executes all the steps above:

BOP#
choose msg, receiver, fail? with msg ∈ ether ∧ authentic(receiver) in

if isStartTo(msg) ∧ state(receiver) = idle then STARTTO#
else if isStartFrom(msg) ∧ state(receiver) = idle then STARTFROM#
else if isreq(msg) ∧ state(receiver) = epr then REQ#
else if isval(msg) ∧ state(receiver) = epv then VAL#
else if isack(msg) ∧ state(receiver) = epa then ACK#
else ABORT#
seq ether := ether ++ outmsg

The ASM rule chooses an authentic receiver for some message msg from ether.
Like in the abstract ASM the fail? flag indicates failure due to internal reasons. At

4 BOP# is called BSTEP# in the web presentation.
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the end of the rule the produced message outmsg is added to the set ether of avail-
able messages. Therefore our ASM corresponds to the “between” level as defined
in [SCJ00]. For the concrete level the ether is assumed to lose messages randomly
(due to an attacker or technical reasons like power failure). Therefore the ASM
rule COP# that models the concrete level replaces ether := ether ++ outmsg in
BOP# with LOSEMSG# where:

LOSEMSG#
choose ether′ with ether′ ⊆ ether ++ outmsg in ether := ether′

If a purse is sent an illegal message ⊥ or a message for which it is not in the
correct state, the current transaction is aborted by

ABORT#
choose n with nextSeqNo(receiver) ≤ n in

LOGIFNEEDED#
state(receiver) := idle
nextSeqNo(receiver) := n
outmsg := ⊥

LOGIFNEEDED#
if state(receiver) = epa ∨ state(receiver) = epv
then exLog(receiver) := exLog(receiver) ++ pdAuth(receiver)

This action logs if money is lost due to aborting a transaction. The idea is
that the lost money of the abstract level can be recovered by comparing the two
logs of the from and to purses involved. Logging takes place if either the purse
is a to purse in the critical state epv or a from purse in critical state epa.

This completes the description of the concrete level. Although the ASM is
much simpler than the full Z specification (no promotion was used, none of the
Z schemas in [SCJ00] that describe which variables are not allowed to change in
operations are necessary, STARTFROM# is not prefixed with ABORT#, since
the ASM can do this step separately by choosing ⊥ from ether, etc.) it still
captures the essence of the refinement as we will see in Section 5.

3 Verification of Backward Simulation and Invariance for
the ASMs

The ASMs of the previous section were not intended to be a 1:1 representation
of the original Z operations. Rather they were intended as a concise description
of the essential refinement problem contained in the case study. To check this
we tried to prove the main theorems of the Mondex case study for these ASMs,
namely

– The concrete ASM preserves the invariant BINV, that is used to restrict the
“concrete” state to the “between” state ([SCJ00], sections 28-29).

– The concrete ASM satisfies the correctness condition of backward refinement
using a backward simulation ABINV ([SCJ00], sections 14-20).
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This section reports on the results. The first thing we had to do is to extract
the properties of the invariants from the Z specification. We found that they are
distributed in 3 places in [SCJ00]: The property of payment details that requires
pd.from �= pd.to for every relevant pd used (section 4.3.2), the properties of purses
P-1 to P-4 (section 4.6) and the properties B-1 to B-16 of the intermediate state
that define an invariant for the concrete state (section 5.3).

Collecting these properties and the required definitions of AuxWorld (section
5.2) gives a suitable definition of BINV: full details can be found in the technical
report [SGHR06] and in specification BINV in project Mondex [KIV].

There is one interesting modification: we had to strengthen properties P-3 and
P-4. We found that although the proofs of [SCJ00] are very detailed they still
contain minor flaws. The problems were detected when the proof for invariance
theorem BINV failed. This theorem is written using Dynamic Logic [HKT00]
and proved in KIV using sequent calculus:

BINV(cs) 
 〈|BOP#(; cs)|〉 BINV(cs)


 is the sequent arrow (semantics: the conjunction of antecedent formulas be-
fore the sequent arrow implies the disjunction of succedent formulas after the
sequent arrow). cs is the vector of variables that denote the concrete state, i.e.
cs = balance, state, nextSeqNo, pdAuth, ether. 〈|BOP#(; cs)|〉 BINV(cs) states that
all runs of BOP# terminate in a state where BINV holds again.

The first proof for the invariance theorem used the original properties P-3
and P-4. Specification BINV-orig on [KIV] contains a failed proof attempt.
Its first open premise is one of the subgoals for proving invariance for the
VAL# rule. The case can be traced back to the original Mondex paper. The
problem is in section 29.4 in the proof of B-10 where it must be proved that
toInEpv ∨ toLogged ⇒ req ∧ ¬ ack for every payment details pd. Now the prob-
lem is as follows: the implication can be proved for pdAuth(receiver), where
receiver is the (to) purse receiving the val message (to which it responds with an
ack message). But this is not sufficient: if it would be possible that receiver
is different from some na := pdAuth(receiver).to but has state(na) = epv and
pdAuth(na) = pdAuth(receiver), then for this na the implication would be vio-
lated. The solution to this problem is obvious: add pdAuth(receiver).to = receiver
when state(receiver) = epv to P-3.

A similar problem also exists for state(receiver) = epa (property P-4) where
pdAuth(receiver).from = receiver has to be known (second open goal in the proof).
Finally, we had to add the fact that every val(pd) message in the ether has
authentic(pd.from). Like property authentic(pd.to) (B-1) is needed to make the
application of partial function ConAuthPurse to pd.to defined in B-2, this prop-
erty is needed in order to have a determined value for ConAuthPurse pd.from in
B-3 (the proof of BINV in BINV-orig already has this property added).

We also added the requirement that pdAuth(receiver).to resp. .from must be
authentic to P-3 and P-4. In early proof attempts this seemed necessary since
these lacked the authentic clauses in the definition of the predicates toInEpr,
toInEpv and toInEpa. After adding such clauses this addition to P-3 and P-4
may be redundant.
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With these additions the invariant proof was successful. The standard heuris-
tics and automation features of KIV (simplifier rules and problem specific pat-
terns to guide the proof search as described in [RSSB98]) were sufficient for the
proof. None of the complex lemma structure of [SCJ00] was necessary, although
in some situations where it was not clear why our proof got stuck, it was helpful
to cross-check details with the original proofs.

After this proof we verified the backward simulation condition:

ABINV(as′, cs′),BINV(cs), 〈BOP#(cs)〉 cs = cs′

 ∃ as.ABINV(as, cs) ∧ (〈AOP#(as)〉 as = as′ ∨ as = as′)

ABINV(as, cs) is the backward simulation. The definition is basically identical
to the simulation relation defined in [SCJ00].

The meaning of 〈BOP#(cs)〉 cs = cs′ is that BOP# called with cs terminates
and yields cs′. This is equivalent to BOP(cs, cs′). The proof obligation for ASM
refinement allows a 1:1 diagram, where the concrete rule BOP# refines an ab-
stract operation AOP# as well as a 0:1 diagram, where the concrete operation
refines skip (second disjunct).

The proof for the simulation condition has 655 proof steps and 197 inter-
actions. Compared to the invariance proof, which has 447 proof steps with 71
interactions, it is somewhat harder to achieve a high degree of automation due
to the more complex quantifier structure of ABINV compared to BINV.

The proofs can be found in project Mondex in the web presentation [KIV].
Specification BINV contains the proof for invariance (theorem BINV ), spec-
ification Mondex-ASM-refine contains the proof for the simulation condition
(theorem correctness).

4 Specifying the Data Refinement Theory

The data refinement theory underlying the Mondex case study is defined in
[CSW02] in 3 steps: first, the general data refinement theory of [HHS86] is given.
Second the contract embedding [WD96] of partial relations is defined and cor-
responding proof rules for forward and backward simulation are derived. Third
the embedding of input and output into the state is discussed.

We have formalised the first two parts of the theory already for [Sch05]. The
corresponding algebraic specifications in KIV are available in the project named
DataRef on the Web [KIV]. The third part is formalised in theory Z-refinement.

The central specification construct used in these projects (apart from stan-
dard constructs like enrichment, union, actualisation and renaming as present
in all algebraic specification languages with lose semantics, e.g. CASL [CoF04])
is specification instantiation. Instantiating a subspecification PSPEC (the pa-
rameter) of a generic specification GSPEC with an actual specification ASPEC
using a mapping σ (a morphism, that allows to instantiate sorts resp. operations
with tuples of types resp. arbitrary expressions) requires to prove the axioms of
σ(PSPEC) over ASPEC. The resulting specification is σ(GSPEC), with all theo-
rems of ASPEC available as lemmas. Instantiating specifications is used to prove
that forward and backward simulation imply refinement correctness and to prove
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that the contract approach instantiates the original approach [HHS86] for total
relations (sections 3 and 4 in [CSW02]).

While the specifications and proofs in project DataRef mimic the ones of
chapter 2 and 3 of [CSW02], those in Z-refinement differ from the ones in chapter
4. We found, that the embedding used is not correct: input and output sequences
are embedded into the initialisation and finalisation relation using an empty[X,Y]
relation (e.g. empty[GO,CO] in section 4.4.1 to embed output in initialisation).
This relation is defined in Appendix A.4 as the relation that comprises only
a pair of empty sequences. This is not a total relation, and leads to a partial
initialisation relation. The correct definition should relate every sequence to the
empty sequence (e.g. for empty[GO,CO] the global output GO of the initial global
state is discarded, so that the initial concrete state has empty output CO) just
as it has been done in the closely related approach of [DB01].

The correction results in an additional proof obligation (from the finalisation
proof) for refinement correctness: every concrete input must be related to some
abstract input via relation ιb: Our web presentation calls this relation IT using
the notation of theorem 10.5.2 in [DB01], which also requires totality. Adding the
proof obligation it can be proved that backward simulation implies refinement
correctness.

In the Mondex case study the proof obligations are applied restricting the
state space of the concrete level to those states for which an invariant holds:
this implies that all refinement proof obligations can assume the invariant for
every concrete state. While this is adequate for the total operations of Mondex,
it seems there is a problem when using invariants to restrict the state space for
the general case of partial operations. More details on this can be found in the
technical report [SGHR06].

Nevertheless it is possible to use invariants without restricting the state space,
but a backward simulation theorem using invariants cannot be derived as an in-
stance of the contract approach. Therefore we proved the following theorem
directly by instantiating the original approach of [HHS86]. The theorem is given
here for the approach without IO in a slightly simplified form with total ini-
tialisation and finalisation relations. The theorem with IO can be derived from
this theorem with a similar proof as in [CSW02] (but with the corrected empty
relation). It is given in the technical report [SGHR06]. The proof obligations can
also be found as axioms without and with IO in the theories conbackward-INV
in project DataRef and IOconbackward-INV in project Z-refinement.

Theorem 1. (Backward Simulation using Invariants)
Given an abstract data type ADT = (AINIT,AIN,AOP,AFIN,AOUT) with total
AINIT ⊆ GS× AS, AOPi ⊆ AS× AS, total AFIN ⊆ AS× GS, a similar data type
CDT = (CINIT,CIN,COP,CFIN,COUT) which uses states from CS instead of
AS, a backward simulation T ⊆ CS× AS and two invariants AINV ⊆ AS and
CINV ⊆ CS, then the refinement is correct using the contract approach provided
the following proof obligations hold:

– CINIT ⊆ CINV,AINIT ⊆ AINV (initially invariants)
– ran(AINV � AOP) ⊆ AINV, ran(CINV � COP) ⊆ CINV (invariance)
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– (CINIT � CINV) o
9 T ⊆ AINIT (initialisation)

– (CINV � CFIN) ⊆ T o
9 (AINV � AFIN) (finalisation)

– dom(COPi)−� CINV ⊆ dom((T � AINV) −� dom(AOPi)) (applicability)
– dom(T−� dom(AOPi))−� (COPi o

9 T) ⊆ T o
9 (AINV � AOPi) (correctness)

Instead of the usual embedding of the contract approach
◦
T= T ∪ {⊥} × AS⊥

the proof uses
◦
T= (T � AINV) ∪ {CS⊥ \ CINV} × AS⊥. The idea is that those

concrete states that do not satisfy the invariant behave like the undefined ⊥
state and therefore get mapped to every abstract state. The proof proceeds as
usual by eliminating ⊥ from the resulting proof obligations.

5 Verification of the Data Refinement

Our specification faithfully replicates the data types and operations of the origi-
nal Mondex refinement. The operations are defined in the specifications Mondex-
AOP and Mondex-COP. The only difference to the original Mondex refinement
is that we used ASM rules as an auxiliary means to specify operations:

OP(cs, cs′) ↔ 〈OP#(cs)〉 cs = cs′

This equivalence defines the relation OP(cs, cs′) to hold if and only if ASM
rule OP# started with cs can compute cs′ as one possible result. Because of
the relational semantics of programs, ASM rules adequately represent opera-
tion schemas: schema composition becomes sequential composition of programs.
For example the composition ABORT o

9 STARTFROM ∨ IGNORE is represented
as 〈ABORT#; STARTFROM# or IGNORE#〉 where or is the nondeterministic
choice between two programs. Compared to using operations on relations di-
rectly, using auxiliary ASM rules allows to execute programs symbolically (see
[RSSB98]), which improves proof automation.

Apart from the auxiliary use of operational definitions instead of pure re-
lations the specification mimics the structure of the Z specifications faithfully:
STARTFROM# is now prefixed with ABORT#, input is read from a list of in-
puts, disjunctions with IGNORE# operations that skip have been added etc.

The use of auxiliary operational definitions has the effect that the main
proof obligations for data refinement, “Correctness” and “Concrete invariant
preserved”, have proofs which are nearly identical to the ones we did for ASM
refinement (see the proofs of theorems correctness and cinv-ok in specification
Mondex-refine in project Mondex on the web [KIV]). The only important dif-
ferences are that instead of one proof for the full ASM rule we now have several
proof obligations for the individual operations corresponding to cases in the ASM
proof (lemmas ABORT-ACINV, REQ-ACINV etc. for correctness, ABORT-
CINV, REQ-CINV etc. for invariance) and that the lemmas for ABORT# and
IGNORE# are used several times, since several operations now refer to it.

We have decided to merge the two refinements of the Mondex case study into
one, so each operation calls LOSEMSG# at the end, just as described for the
ASM at the end of section 2.
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This means that our concrete invariant cannot be BINV since the properties
of the ether which have been specified with a predicate etherok(ether, . . .), that
is part of the definition of BINV, do not hold for an ether where messages have
been dropped. Instead we replace the old definition of etherok with

newetherok(ether, . . .) ↔ ∃ fullether. ether ⊆ fullether ∧ etherok(fullether, . . .)

The new predicate5 claims the existence of fullether, where no messages have
been dropped, such that fullether has the properties specified in the old etherok
predicate. fullether does not change during LOSEMSG#, otherwise it is modified
just like ether. The new definition of etherok is used in the definition of the new
invariant CINV for the concrete level. The backward simulation ABINV is left
unchanged. It is just renamed to ACINV.

Summarizing, there is a little extra work required to cope with the redundancy
of operations and the lossy ether, but essentially proofs are done by “copy-paste”
from the ASM proofs.

Summarizing, the effort to do the full case study was as follows:

– 1 week was needed to get familiar with the case study and to set up the
initial ASMs (Section 2).

– 1 week was needed to prove the essential proof obligations “correctness” and
“invariance” for the ASM refinement as shown in (Section 3).

– 1 week was needed to specify the Mondex refinement theory of [CSW02] and
to generalise the proof obligations to cope with invariants (Section 4).

– Finally, 1 week was necessary to prove the data refinement and to polish the
theories for the web presentation (this section).

Of course the four weeks needed for verification are not comparable to effort for
the original case study, which had to develop the formal specifications, refinement
notions and proofs from scratch: in private mail, Jim Woodcock sent us an
estimation of 1.5 pages of specification/proof per day, which results in at least
10 person months of effort.

The task we solved here is the mechanisation of an already existing proof.
This time was of course significantly reduced by having a (nearly) correct simu-
lation, since usually most of the time is needed to find invariants and simulation
relations incrementally. On the other hand, sticking to ASM refinement would
have shortened the verification time. The main data refinement proofs for the
Mondex refinement consist of 1839 proof steps with 372 interactions.

The effort required can be compared to the effort required for refinement
proofs from another application domain which we did at around the same time
as the original Mondex case study: verification of a compiler that compiles Prolog
to code of the Warren abstract machine ([SA97], [SA98], [Sch99], [Sch01]). This
case study required 9 refinements, and the statistical data ([Sch99], Chapter 19)
show that proving each refinement needed on average about the same number
of proof steps in KIV as the Mondex case study.

5 The web presentation [KIV] uses the modified etherok definition given in specification
Mondex-CINV, not a new predicate.
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The ratio of interactions to proof steps is somewhat better in the Prolog
case study, since automation of refinement proofs increases over time: investing
time to improve automation by adding rewrite rules becomes more important
when similar steps are necessary in several refinements and when developing
simulation relations iteratively. Summarizing our proof effort shows that the
Mondex case study is a medium-sized case study and a good benchmark for
interactive theorem provers.

6 A Security Model for Mondex Purses

Although the Mondex case study was the basis of an ITSEC E6 certification
([CB99]), the formal model abstracts away an important part of the security of
the application. As the cryptographic protocols used to realize the value transfer
were and are still, to our knowledge, undisclosed ([CCW96]) the formal model
assumes the existence of unforgeable messages for requesting, transferring and
acknowledging the transfer of a value. To complete the analysis of the application
a model based on a theory of messages with abstract representations of the
used cryptographic mechanisms should be specified and used to proof that the
‘dangerous’ messages actually cannot be forged.

The Mondex application is prepared to use different cryptographic algorithms
in the value transfer protocol. It is generally assumed that DES and RSA were
used to authenticate the value transfer ([CB99]). It is not too difficult to come up
with a cryptographic protocol that ensures that its messages have the properties
that are required for the abstract messages req, val and ack. Using DES as cryp-
tographic algorithm a shared secret key is used for authentication of messages
([BGJY98]). A possible protocol written in a commonly used standard notation
for cryptographic protocols is:

1. to → from : {REQ,pdAuth(to)}KS

2. from → to : {VAL,pdAuth(from)}KS

3. to → from : {ACK,pdAuth(to)}KS

In this protocol KS : key denotes a secret key shared between all valid Mondex
cards. REQ, VAL and ACK are pairwise distinct constants used to distinguish
the three message types.

Using RSA makes things somewhat more complicated since individual key
pairs and digital certificates should then be used. To ensure security for the next
years keys with at least 1024 Bit length must be used. Given this key size the
public key and the associated certificate of a Mondex card and the payload of
the protocol messages cannot be transferred to the smart card in one step, due
to restrictions of the communication interface of smart cards. Therefore some of
the steps that are atomic on the concrete level of Mondex would have to be split
up into several steps on the implementation level. This further complicates the
refinement.

Assuming the DES-based protocol, the challenge to be solved is to verify the
security of the Mondex application with this real cryptographic protocol instead
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of the special messages postulated as unforgeable in the Mondex case study in
Z. Possible approaches generally used in the verification of cryptographic proto-
cols are model-checking ([Low96], [BMV03]) or interactive verification ([Pau98]).
Paulson’s inductive approach has proven to be especially powerful by tackling
complex industrial protocols ([Pau01]). We plan to use our ASM-based model for
cryptographic protocols ([HGRS05]) for verification. Particularly interesting is
the question whether the protocol with cryptographic operations can be proven
to be a refinement of the concrete protocol of the original Mondex case study.
We think such a refinement is possible, and the Mondex case study shows an
elegant way to separate functional correctness and security into two refinements.

7 Conclusion and Further Work

We have specified and formally verified the full communication protocol of the
Mondex case study with the KIV system. We have slightly improved the protocol
to use one idle instead of two eaFrom and eaTo states. We have improved the
theory of backward simulation in the contract approach to include invariants for
the data types. Using the improved theory, the correctness proof for Mondex
could be done as one refinement instead of two. We think that the additional
effort to do this was rather small compared to the effort needed to write down
the proofs in [SCJ00] at nearly calculus level. Despite this great detail we were
still able to find two small flaws: one in the underlying data refinement theory,
where a proof obligation was missing and one in the invariant, where we had to
add a totality property. Therefore we feel justified to recommend doing machine
proofs as a means to increase confidence in the results.

As a second contribution we gave an alternative, concise specification of the
refinement problem using ASMs. The fact that the main proofs are nearly iden-
tical to those for the original refinement indicates, that the ASMs are a good
starting point to further improve the invariant and the verification technique.

One idea for further work is therefore to take the ideas of [HGRS05] to do
a proper ASM refinement proof (that probably would use generalised forward
simulation [Sch01] instead of backward simulation).

Another idea contained in the Mondex case study that we will try to address
is that functional correctness and a security protocol as proposed Section 6 may
be verified independently as two separate refinements.

Acknowledgement. We like to thank Prof. Börger for pointing out the Mondex
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Abstract. In the medical domain, there is a tendency to standardize
health care by providing medical guidelines as summary of the best
evidence concerning a particular topic. Based on the assumption that
guidelines are similar to software, we try to carry over techniques from
software engineering to guideline development. In this paper, we show
how to apply formal methods, namely interactive verification to improve
the quality of guidelines. As an example, we have worked on a guide-
line from the American Academy of Pediatrics for the management of
jaundice in newborns. Contributions of this paper are as follows: (I) a
formalized model of a nontrivial example guideline, (II) an approach to
verify properties of medical guidelines interactively, and (III) verification
of a first example property.1

1 Introduction

There is a tendency in the medical domain to standardize health care. This
is because the amount of medical studies conducted per year has long passed a
point, where every doctor can keep track of all results and also judge their quality.
To ease the workload, the instrument of guidelines has been devised. Guidelines
represent a summary of the best evidence concerning the interventions to manage
a particular clinical condition. Guideline developers take over the cumbersome
work of literature search and the evaluation of the quality of the relevant studies.
All this data is then compiled into a document, usually of 50 to 150 pages, where
medical staff can access the relevant recommendations in a fast, efficient way.
This makes guidelines very important documents, as hundreds to thousands of
physicians may act upon them, treating several thousands of patients according
to these guidelines. An error within such a guideline may cause great harm and
therefore, the quality of the guideline itself must be assured.

A first step to improve the quality of guidelines has been to introduce the
AGREE instrument2, which is an informal review, mainly concerned with the
1 This work has been partially funded by the European Commission’s IST program,

under contract number IST-FP6-508794 Protocure II.
2 http://www.agreecollaboration.org
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guideline development process. However, the quality of the content is less in the
focus. Guidelines are written as natural language text and may therefore contain
ambiguities in the formulation, ambiguities in the description of the treatment
process or even wrong information, wrongly transferred into the document. The
quality of the content of guidelines is the scope of a European research project
called Protocure3.

Plan
ASBRU KIV Repre−

sentation
Informal
Protocol

Properties Intentions,
Effects, ...

Temporal
Logic

Formal
Semantics

translationmodelling

satisfies?

modelling
translation

falsification verification

Fig. 1. Formalization and verification of medical guidelines

The Protocure project aims to assist the guideline development process by
providing tools and techniques to evaluate not the process but the contents of a
guideline during its complex development process. Based on the assumption that
guidelines are similar to software, we try to carry over techniques from software
engineering to guideline development. Our approach is to formalize guidelines
and to verify properties (see Fig. 1). Guidelines are modeled in Asbru [1,2], which
is a planning language especially designed for the medical domain. The modeling
process already improves the quality of the guideline [3]. With formal verification,
more errors can be revealed. For this, we have defined a formal semantics of Asbru
in [4] and have translated Asbru to the SMV model checker [5]. In this paper,
we take a different approach and focus on interactive verification of Asbru. As
an example, we have worked on a guideline from the American Academy of
Pediatrics for the management of jaundice in newborns.

Contributions of this paper are as follows: (I) a formal Asbru model of a non-
trivial example guideline, (II) an approach to verify properties of medical guide-
lines interactively, and (III) verification of a first example property. In Sect. 2,
we give an overview of the Asbru language, Sect. 3 introduces the medical guide-
line. Support for Asbru in the interactive theorem prover KIV [6] is described in
Sect. 4, and the example property is verified in Sect. 5. Section 6 gives related
work and Sect. 7 concludes.

2 Introduction to Asbru

Asbru is a hierarchical planning language. Basis of the Asbru semantics is the
concept of plans with a defined plan state model visualized in Figure 2. All
transitions within this state-chart are guarded, where the guards SC, RA and E
represent external signals, which are sent to the plan by its respective super-plan.
Evaluation of the other guards are dependent on the so called Asbru conditions.
These are mappings from medical relevant data to boolean values. Details of the
mappings are dependent on the individual Asbru plan.
3 http://www.protocure.org
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Inactive

S : satisfied(setup) and Activated(parent)

RS : not satisfiable(setup) or Terminated(parent)

RF :  not satisfiable(filter) or Terminated(parent)

Su : satisfied(suspend)

Re : satisfied(resume)

C : satisfied(complete)

A : satisfied(abort) or Terminated(parent)

F : satisfied(filter) and Activated(parent)
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Fig. 2. Asbru semantics

Behavior of Asbru plans during their execution phase is dependent on their
plan type. A plan can be of type sequential, meaning that the plan will start
all of its sub-plans sequentially in the given order. If the plan type is anyorder,
plans are still executed sequentially but the order of the execution of the sub-
plans is arbitrary. It is also possible to start multiple sub-plans at a time. For
this, Asbru provides the parallel and unordered plan types, where parallel-
arranged sub-plans are synchronized, the unordered-controlled sub-plans are not.
Furthermore, special plan types are defined for the request of medical data,
calculations or deterministic choices.

2.1 State

For a graphical representation of an abstracted view of the data flow, see
Figure 3. An Asbru system, consisting of Asbru plans and an environment, can
be seen as a plan based implementation of a medical decision support system.
The system bases its decisions upon data being provided by medical staff. This
data is provided in a data structure called Patient Data PD for the system. In
the Asbru implementation, the provider of medical data – the medical staff –
is called the monitoring unit. Data may be abstracted from numerical values
to symbolic values. As all data types in Asbru are discrete, data can be trans-
formed to the smallest occuring unit in the case study, thus eliminating the need
to annotate physical units.

AS

Asbru Guideline effects

P

AS T

PD P

EnvironmentSystem

prescription

monitoring

Fig. 3. Abstracted data flow within Asbru

The monitored data is processed according to the guideline represented as As-
bru plans, and the output of this processing is provided to the medical staff as an
abstracted description of the states of several Asbru plans, which are combined
into the variable Asbru state AS. Medical staff, receiving this data, interprets it
to come up with a set of treatments T to be administered to the patient P.
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The condition of the patient changes in the environment. This transformation
is described by effects. Treatments applied to the patient may restrict the
otherwise indeterministic patient behavior. Effects are applied to the patients
condition and the result of this application is then handed over to the monitoring
unit. The monitoring unit compiles this data according to the decision of the
medical staff. Therefore, there may be a discrepancy between the real condition
of the patient and the known subset of it.

2.2 Plan State Model

The plan state model is depicted in Figure 2. A detailed description of a Struc-
tured Operational Semantics is given in [4]. For example, a plan, currently
considered has the options of either advancing its state to possible or to
change its state to rejected. This choice is dependent on the guards F and
RF, where the F guard is satisfied, if and only if the filter condition of the plan
is satisfied and the super-plan is still active. The RF guard is satisfied, if the
super-plan is terminated or the filter condition is no longer satisfiable.

Six conditions define the transitions of an Asbru plan through the plan state
model: filter, setup, suspend, reactivate, abort and complete conditions.
Termination and suspension behavior is also affected by the states of sub- and
super-plans.

2.3 Time-Annotated Conditions

Conditions are first order formulas ϕmapping a state to a truth value. Conditions
can be time-annotated. A time-annotated condition is written as follows

ϕ [ess, lss ][efs, lfs ][minDu, maxDu] ref

where ess is the earliest starting shift, lss the latest starting shift, efs the earliest
finishing shift, lfs the latest finishing shift, and [minDu, maxDu] the duration
interval. The starting interval is defined as [ess + ref, lss + ref ]. The finishing
interval is defined accordingly. Any value but the reference point may be omitted
and is then written as ‘ ’. As a reference point, an absolute time point can be
given as well as enter(planState, name) and leave(planState, name) to refer to
the time when plan name enters or leaves state planState. Also, with *now*, we
refer to the time of evaluation.

Time annotations represent sets of intervals ranging over time. An interval
is member of a time annotation if and only if its starting point is member of
the starting interval, its finishing point is member of the finishing interval and
its duration is member of the duration interval. A time-annotated condition
evaluates to true, if and only if there is an interval I which is element of the
time annotation and for which the condition is true at all times. Furthermore,
if an earliest starting shift or a maximum duration is given, the condition must
be initially false, more precise, in the time point prior to the starting point of
I the condition must evaluate to false. Similarly, if a latest starting shift or a
maximum duration is given, the condition must finally evaluate to false.
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2.4 Intention

Asbru intentions model the aims of a plan. They are formulated in terms of tem-
poral patterns making reference to plans and/or state variables that should be
maintained, achieved or avoided, during or after the execution of a particular plan.
In this sense, they can be regarded as proof obligations for Asbru. Intentions are
written down similar to conditions. Intentions can also be time-annotated.

3 Example Medical Guideline

3.1 Jaundice Guideline

Jaundice (or hyperbilirubinemia) is a common disease in newborn babies. Under
certain circumstances, elevated bilirubin levels may have detrimental neurologi-
cal effects. In many cases jaundice disappears without treatment but sometimes
needs phototherapy to reduce the levels of total serum bilirubin (TSB), which
indicates the presence and severity of jaundice. In a few cases, however, jaundice
is a sign of a severe disease.

The jaundice guideline of the American Association of Pediatrics (AAP) [7] is
intended for the management of the disease in healthy term newborn babies. The
main reason for choosing this guideline was that it is considered a high-quality
one: as a matter of fact, the AAP jaundice guideline has been included in the
repository of the National Guideline Clearinghouse4 until it was replaced by a
more recent update.

This particular guideline is a 10 pages document. It consists of an evaluation
(or diagnosis) part and a treatment part, to be performed in sequence. During
the application of the guideline, as soon as the possibility of a more serious
disease is uncovered, the recommendation is to exit without any further action.
The rationale behind this is that the guideline is exclusively intended for the
management of jaundice in otherwise healthy newborns.

3.2 Jaundice Guideline in Asbru

Like the AAP guideline, the Asbru version has as main components a diagnostics
part and a treatment part. It is made up of about 40 plans and has a length of 16
pages in an intermediate Asbru notation. Figure 4 shows part of the Asbru model
for the jaundice guideline with an emphasis on treatment. The links represent the
decomposition of plans into steps or sub-plans, and the plan type is represented
by different kinds of arrows. Besides, the waiting strategy is indicated either with
bold font keywords (e.g. one or all) or with bold font plan names (e.g. the “Ob-
servation” plan is a compulsory part of the plan group marked “*” in Figure 4).

The “Check-for-...” plans model monitoring of TSB level and check-ups at
specific time intervals. The most important entry point of the guideline is the
plan “Diagnostics-and-treatment-hyperbilirubinemia”. It is divided into a diag-
nostics sub-plan and a treatment one, to be executed sequentially. Next we will
focus on the latter.
4 http://www.guideline.gov/
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The treatment phase consists of two parallel parts, namely the actual treat-
ments and a cyclical plan asking for the input of TSB values and updating the
infants age every 12 to 24 hours. Regarding the treatments (label (**) in Fig. 4),
either the regular ones (“Regular-treatments”) or a transfusion (“Exchange-
transfusion”) can take place depending on the bilirubin level.

one

Diagnostics−and−Treatment−Check−for−jaundice−
after−2−weeksrapid−TSB−increase

Check−for− Check−for−jaundice−
after−3−weeks

Hyperbilirubinemia

cyclical unordered

any−order
sequentially
parallelLegend: ask age−child

ask TSB−value
one

(**)

Hyperbilirubinemia
Treatment−

Hyperbilirubinemia
Diagnostics−ask

age−child
ask

term−child
...

Feeding−
alternatives

all
(*)

Phototherapy−
intensive

Phototherapy−
normal−prescription normal−recommendation

Phototherapy− Observation

Regular−
treatments transfusion

Exchange−

hyperbilirubinemia

Fig. 4. Overview of the jaundice model in Asbru, with details of the treatment part

The “Regular-treatments” plan contains the proper treatment procedures.
It consists of two parts to be performed in parallel (unordered): the study of
feeding alternatives and the different therapies (see label (*)). The plans in
group (*) can be tried in any order, one at a time. The intentions of “Regular-
treatments” plan are both avoiding toxic bilirubin levels and attaining normal (or
observation) ones at the end. The plan completes when the feeding alternatives
and the therapies complete (waiting strategy all). The latter in turn depends on
the completion of observation (compulsory plan in bold).

3.3 Plan “Phototherapy-Intensive”

As an illustration, we describe the plan “Phototherapy-intensive” together with
its conditions and intentions. The intermediate Asbru notation for the plan is
shown below:
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plan Phototherapy-intensive
intentions

maintain intermediate-state:
(and (TSB-decrease = yes) in ([4h, -] [-, 6h] [-, -] SELF)

(TSB-change ≥ 1) in ([4h, -] [-, 6h] [-, -] SELF))
conditions

filter-precondition:
(or (bilirubin = phototherapy-intensive) in NOW

normal-phototherapy-failure)
abort-condition:
(or (and (bilirubin �= phototherapy-intensive) in NOW

(not normal-phototherapy-failure))
intensive-phototherapy-failure:
(and (bilirubin = phototherapy-intensive) in NOW

(or (and (TSB-decrease = yes) in ([4h, -] [-, 6h] [-, -] SELF)
(TSB-change < 1) in ([4h, -] [-, 6h] [-, -] SELF))

(TSB-decrease = no) in ([4h, -] [-, -] [-, -] SELF))
) explanation ”Failure of intensive phototherapy.”

)
plan-body

Prescribe-intensive-phototherapy

The plan body simply contains an activation of a user-performed plan repre-
senting the clinician’s action, “Prescribe-intensive-phototherapy”. The most im-
portant elements of the above plan are its conditions and intentions. Among the
former we can distinguish the filter preconditions specifying the eligibility criteria
for the plan, and the abort conditions describing the situations in which it should
be interrupted. The label normal-phototherapy-failure is defined elsewhere
as (and (bilirubin = phototherapy-normal) in NOW (TSB-decrease = no) in NOW).
The abort conditions include not only the situation in which the bilirubin levels
change to a value not requiring intensive phototherapy (different from photother-
apy-intensive), but also the case of therapy failure – according to the guideline,
“Intensive phototherapy should produce a decline in the TSB level of 1 to 2 mg/dl
within 4 to 6 hours ...” and “...failure of intensive phototherapy to lower the TSB
level strongly suggests the presence of hemolytic disease or some other pathologic
process and warrants further investigation”.

An intention was specified by the modelers for the plan “Phototherapy-
intensive”. Since the guideline states that intensive phototherapy should produce
a decline in the bilirubin levels of 1 to 2 mg/dl in 4 to 6 hours, it has been consid-
ered that this therapy aims at lowering the TSB levels in such a degree within this
time range. This intention is intimately related to part of the abort conditions of
the plan. It is specified to abort if there is an insufficient or no decrease in the TSB
levels in the specified time range. In our verification case-study we have analyzed
this intention.

4 Integration of Asbru in KIV

KIV is an integrated development environment to develop systems using formal
methods. Systems are specified with algebraic specifications. System properties
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are verified by constructing proofs in an interactive theorem prover which is
based on higher order logic with special support for temporal logic. KIV has
been very useful for the development of sequential programs. Support for the de-
velopment of concurrent systems and especially Asbru has recently been added.

4.1 Temporal Logic in KIV

KIV offers support for future-time linear temporal logic. Reactive systems can
be described in KIV by means of state-charts or parallel programs; here we
use parallel programs. A state of a system is encoded in first-order logic. Static
variables v, which have the same values at each time point, are distinguished from
dynamic variables V. A specialty of KIV is the use of primed and double-primed
variables [8]: a primed variable V ′ represents the value of this variable after
a system transition, the double-primed variable V ′′ is interpreted as the value
after an environment transition. System and environment transitions alternate,
with V ′′ being equal to V in the successive state. Here, an Asbru guidelines
defines the system transition and the patient is interpreted as the environment.
The supported future-time temporal operators include � ϕ (“always ϕ”), � ϕ
(“eventually ϕ) and others.

4.2 Specification of Asbru

We have modeled the Asbru language in the interactive theorem prover KIV as
follows. The data types are defined with algebraic specifications, the dynamic
behavior, i.e. the plan state model of Asbru, is encoded in a parallel program.
An overview of the algebraic specifications is given in Figure 5.

Abstract−Asbru−Condition plan−com wait−forenvironment−aggregation

asbru−def

Asbru

Abstract−Time−Annotationpatient−data−historyvariablesCyclical−Time−Annotation

abstract−asbru−clock

plan−type Condition

asbru−state−history

plan−state

Fig. 5. Algebraic specifications defining the Asbru language

Asbru is based on a discrete micro/macro step semantics. Micro steps are
internal plan transitions. If the plan state is stable a macro step is executed and
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the systems interacts with the environment. A discrete Asbru clock AC with
micro and macro step counter is defined in abstract-asbru-clock. The definition
of time annotations in Abstract-Time-Annotation is based on Asbru clocks. The
specification defines a tuple containing the starting and finishing shifts, the dura-
tion and the reference point. The tuple represents a set of intervals. Conditions
are modeled as higher order predicates which are evaluated for a given state.
Non-trivial predicates satisfied and satisfiable in specification Condition define
the semantics of time annotated conditions. Abstract-Asbru-Condition extends
normal conditions by additional signals, necessary for advanced Asbru features
which are omitted here.

The patient data PD stores knowledge about the state of the patient. A
generic container is defined in patient-data-history and can be instantiated for
the concrete case study. The patient data history PDH maps time to patient
data. This history is important to evaluate time annotated conditions. An enu-
meration type plan-state defines the different plan states inactive, considered,
etc. An Asbru state AS maps plan names to plan states. A history of Asbru
states ASH is defined in asbru-state-history. The different plan types such as
sequential, anyorder, unordered, and parallelare defined in plan-type. De-
scription of further features such as the wait-for construct defining optional and
mandatory sub plans (specification wait-for), and cyclical plan types (specifi-
cation Cyclical-Time-Annotation) are omitted here. Specifications environment-
aggregation and plan-com accumulate the environment signals.

considered#(sk, sk0 ; var AC, PDH, ASH, AS, . . . )
begin

if plan-not-filter(sk, AC, PDH, ASH, AS, . . . ) then
AS [sk ] := rejected
else if plan-filter(sk, AC, PDH, ASH, AS, . . . ) then

AS [sk ] := possible;
possible#(sk, sk0 ; AC, PDH, ASH, AS, . . . )

else
AS [sk ] := considered;
considered#(sk, sk0 ; AC, PDH, ASH, AS, . . . )

end

Fig. 6. Dynamic behavior of Asbru

The dynamic behavior is encoded as a parallel program. The different Asbru
plans of a plan hierarchy are executed synchronously. A single plan follows the
plan state model of Figure 2. The procedure considered# of Fig. 6 implements
the transitions originating from state considered. Similar procedures inactive#,
possible# exist for the other transitions. With this close match between plan
state model and implementation, errors in the latter can be spotted easily.

4.3 Translation of Intentions

Intentions are translated to a temporal formula with two boolean variables SET
(Start Event Trigger) and EET (End Event Trigger). Initially, the variables are
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set to false. Once the interval is entered, during which the intention must be sat-
isfied, SET is set to true. EET signals the end of the interval. An intermediate-
state maintain intention can be translated as follows [9]:

� (SET ∧ ¬ EET → PDH [AC ][’TSB-decrease’].val
∧ PDH [AC ][’TSB-change’].val > 1)

In our verification example, we need to reference the time point, where plan
“Phototherapy-intensive” (abb. ‘pti’) gets activated, which can be assessed
with the predicate time-enter-state(...). Adding four or six hours to that time
point gives us the times, where SET and EET have to be set. This setting
is done by a TL formula, describing the environment transition of SET and
EET. The desired behavior during the now defined timing period is a constant
high decrease of bilirubin in the blood. For increased readability the predicates
SET-pred and EET-pred can be used, where

SET-pred(ASH,AC,SET)
↔ if time-enter-state(ASH, ’pti’, activated,AC) + 4 = AC

then SET ′′ else SET ′′ ↔ SET ′

and EET-pred is defined analogously.

5 Interactive Verification of Asbru

Formal verification of the indicator for the jaundice guideline is rather complex,
because of the nontrivial semantics of time annotations. In Section 5.1, we define
the proof obligation which is to be verified and in the following sections give an
overview of our proof and the errors which were discovered.

5.1 Proof Obligation

The proof obligation falls into four different parts. The current system configu-
ration, the system description, the environment assumption, and the property to
verify. Plan Phototherapy-intensive (which is abbreviated with ’pti’) is initially
inactive, and the consider signal has been sent. Procedure inactive# defines
the dynamic behavior of the Asbru plan in state inactive (see Sect. 4.2).

In the environment assumption, we ensure that the environment leaves the
local system variable AS [’pti’] unchanged. Furthermore, either a micro step
is executed and the patient data history PDH does not change, or a macro
step is executed and the patient state changes arbitrarily. A macro step is only
possible, if the system is stable, i.e. variable Tick ′ is true. The property is already
described in Section 4.3.

5.2 Proof Structure

In principle, verification of concurrent systems in KIV is based on symbolic
execution with induction [8,10]. The Asbru guideline is executed step by step.
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/* current system configuration */
AS [’pti’] = inactive,PC [’pti’].consider, ¬ SET, ¬ EET,
time-enter-state(ASH, ’pti’, activated,AC ) + num(4) < AC, . . .
/* system description */
[inactive#(’pti’, ’rt’;AC,PDH,ASH,AS, . . .)],
/* environment assumption */� ( AS ′′[’pti’] = AS ′[’pti’] ∧ . . .

∧ ( micro(AC ′′,AC ′) ∧ PDH ′′[AC ′′] = PDH [AC ]
∨ Tick ′ ∧ macro(AC ′′,AC ′)))

/* definition of flags SET and EET */� (SET-pred(ASH,AC,SET) ∧ EET-pred(ASH,AC,EET)),
� /* property */� (SET ∧ ¬ EET → PDH [AC ][’TSB-decrease’].val

∧ PDH [AC ][’TSB-change’].val > 1)

Fig. 7. Sequent to verify

With the verification of an always property, after performing a TL step, it is
necessary to verify a FOL proof obligation and afterwards continue TL execution.
Symbolic execution may not terminate, because the guideline may contain loops.
For executing loops, induction is necessary.

In order to verify the intention, a proof for the correctness of the sequent of
Fig. 7 must be constructed. The execution, in principle, follows the abstracted
proof tree of Figure 8. The proof tree presented is drawn bottom up. The lowest
node in the proof tree is the initial node, marked “1” in Figure 8.

In the initial state, the plan “Phototherapy-intensive” (abb. ’pti’) is in
inactive state, as is the sub-plan “Prescribe-intensive-phototherapy” (abb.
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’pip’). This is annotated in Fig. 8 as I, I. After advancing one TL step, the
plan is considered. After each TL step, the possibility has to be considered,
that the super-plan of ’pti’ is terminated. This will result in the ’pti’ plan
to terminate as well. An example can be seen with node 2 in Figure 8. Status of
the plans there is abbreviated to Ab, I.

We continue to progress until plan ’pti’ reaches the activated state (see
node 3 in Fig. 8). The transition of ’pti’ from ready to activated marks a
reference time. The function time-enter-state(ASH, ‘pti’, activated, AC) is used
to determine that time. This is necessary, as this reference time is used as a ref-
erence point for time annotations in the abort condition as well as the intention.
Also, a procedure representing ’pip’ is started.

Further progression along the time line leads to an activation of the ’pip’
plan, to be seen in node 4 in Figure 8. After ’pip’ is activated, there is the
possibility of a successful termination of ’pip’. It is not possible for ’pip’ to
abort because of its abort condition.

Advancing further along the time line, a point is reached, where 4 hours have
passed since the activation of ’pti’ (see node 5 in Fig. 8). From this point on for
the next 2 hours, it has to be verified, that a large enough decrease of bilirubin
in the blood of the newborn is measured or that the ’pti’ plan aborts. This
additional proof obligation is represented by node 6 in Figure 8.

Assuming this proof obligation is possible to verify, it is necessary to advance 2
hours further along the time line in the last open premise and close the remaining
proof obligations with induction.

5.3 First Error

Proof proceeds as explained in Sect. 5.2 to node 6. There it has to be verified,
that the intention is satisfied or the ’pti’ plan aborts. However, neither is
happening.

abort-condition of pti:
(or (and (bilirubin �= phototherapy-intensive) in NOW

(not (and (bilirubin = phototherapy-normal) in NOW
(TSB-decrease = no) in NOW ))

(and (bilirubin = phototherapy-intensive) in NOW
(or (and (TSB-decrease = yes) in ([4h, -] [-, 6h] [-, -] SELF)

(TSB-change < 1) in ([4h, -] [-, 6h] [-, -] SELF))
(TSB-decrease = no) in ([4h, -] [-, -] [-, -] SELF))))

If the bilirubin level is not phototherapy-intensive, only the first half of the
abort condition can become true. Therefore, with the TSB on a level different
than phototherapy-intensive, the plan may only abort, if the bilirubin is not on
level phototherapy-normal or some decrease in TSB is measured.

The automatically generated proof obligation is now to verify, that TSB level
is unequal to phototherapy-normal or that there is some decrease of bilirubin
measured now. If either did hold, the abort condition would have triggered,
resulting in an abortion of the ’pti’ plan which would in consequence satisfy
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the intention. Verification of this obligation is not feasible, as no side formulas
imply either the decrease or the bilirubin blood level. The culprit here is the
negation of

(and (bilirubin = phototherapy-normal) in NOW
(TSB-decrease = no) in NOW )

Without this negation, the plan would react according to the intuition, aborting,
once the bilirubin is on level phototherapy-normal and no decrease is measured.
However, simply discarding the negation would lead to the next problem. If a
minor decrease is measured, the plan still would not abort, but also the intention
would not be satisfied.

corrected abort-condition of pti:
(or (and (bilirubin �= phototherapy-intensive) in NOW

(and (bilirubin = phototherapy-normal) in NOW
(or (TSB-decrease = no) in NOW

(TSB-change < 1) in NOW )))
(and (bilirubin = phototherapy-intensive) in NOW

(or (and (TSB-decrease = yes) in ([4h, -] [-, 6h] [-, -] SELF)
(TSB-change < 1) in ([4h, -] [-, 6h] [-, -] SELF))

(TSB-decrease = no) in ([4h, -] [-, -] [-, -] SELF))))

5.4 Second Error

After modifying the abort condition, the proof has to be reconstructed. Fortu-
nately, most of the original proof can be replayed and the degree of automation is
about 95%. The second proof attempt fails at node 6, where again it is necessary
to verify that either plan ’pti’ is aborted or the intention is satisfied.

The failed proof attempt can be analyzed to discover a principle problem with
time annotations. The original time annotation in the abort condition reads

[4h, ][ ,6h][ , ] enter(activated, ‘pti’)

As the latest finishing shift is given, the time-annotated condition must be finally
false (see Sect. 2.3). In order to determine whether the abort condition holds, we
have to wait until the condition is falsified. If, after four hours there is a decrease,
but the change is not large enough, the abort condition does not necessarily
trigger. This violates the intention.

In our example, we must neither give an earliest starting shift nor a latest
finishing shift. The corrected time annotation reads:

[ ,6h][4h, ][ , ] enter(activated, ‘pti’)

5.5 Final Verification

With this new time annotation and the changed abort condition, the proof is
replayed once more. Again, an automation grade between 95 and 99% is achieved.
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It can now be shown in the proof obligation in node 5 in Fig. 8, that a violation
of the intention may not occur without the plan being aborted. Using temporal
logic induction the proof can be closed.

All in all, the proof had to be replayed twice and both times the abort con-
dition had to be corrected. Thereafter the proof obligation can be verified. The
complete proof consists of more than 600 proof steps. The symbolic execution is
done almost automatically apart from the generalizations. Most of the manual
work has to be done in the first order proof parts.

It would now be necessary to take the verification results and communicate
them back to the guideline developers and Asbru modelers to assess the impact
of the flaws found as well as the proposed solution.

6 Related Work

In addition to Asbru, a number of languages have been devised for the represen-
tation of medical guidelines (see [11] for a comparison of the most outstanding
ones). Many of these languages are not formal enough, e.g. they often incorpo-
rate many free-text elements without a clear semantics. Exceptions to this are
PROforma [12] and Asbru. The formal semantics defined for Asbru makes for-
mal verification of Asbru guidelines possible. This is, to our knowledge, a rather
novel approach in the area of guideline representation languages.

Besides KIV, there are a number of powerful theorem provers, e.g. Isabelle [13],
STeP [14], and others, which can also be considered for the verification of medical
guidelines. We have focused on KIV, because this theorem prover offers the intu-
itive strategy of symbolic execution with induction to verify temporal properties
of concurrent systems.

While interactive verification is convenient for validating the semantics of
Asbru and for reasoning about complex details such as time annotations, it is
promising to provide automatic methods to effectively apply formal methods in
practice. For this, a number of tools can be considered. In [5], we have used the
SMV model checker [15] to verify properties of medical guidelines. Alternatives
are SPIN [16], Kronos [17], etc. Especially the latter is an alternative to SMV for
verifying time annotations. Dealing with time annotations usually implies the
necessity for histories ranging over infinite data. As we expect the effort to find
abstractions to be somewhat equal to the effort for interactive verification, we
concentrate on the latter.

7 Conclusion

Our overall experiences with the jaundice case study suggest that the quality of
medical guidelines could be improved by carrying over standard techniques from
software engineering. As a matter of fact, we have identified a small number of
errors in the formulation of a single plan of a particular Asbru hierarchy. This is
a significant finding, given the degree of complexity of guideline languages. Not
less important, we have shown how to apply formal methods to a non-standard
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application field. The procedure consists of modelling the guideline in Asbru
and then verifying properties with an interactive theorem prover. In [5], we also
considered model checking of guidelines.

The verification example has shown that symbolic execution is an intuitive
strategy to verify guidelines interactively and offers a high degree of automation.
Support for the reuse of proofs is essential, because in practice errors are found,
the model is changed and proofs have to be reconstructed frequently.

For model checking Asbru guidelines it has been necessary to abstract from
time annotations. Therefore, only part of the errors described in Sect. 5 have
been found in [5]. Errors concerning the use of time annotations still requires
interactive verification. Furthermore, we have found interactive verification very
useful to validate the semantics of Asbru.

We have only considered a small sub part of the overall guideline. The selected
part has been nontrivial because of time-annotated conditions and the complex
semantics involved. The challenge remains to tackle the complete guideline with
interactive verification. For this, we are currently working on a modular strategy
based on the well known assumption guarantee approach. It would be interesting
to also apply other approaches to the verification of medical guidelines. For this,
the jaundice guideline could serve as an interesting case study. Other languages
besides Asbru should also be considered.
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Abstract. We present the formalization of regulations intended to en-
sure airport security in the framework of civil aviation. In particular, we
describe the formal models of two standards, one at the international
level and the other at the European level. These models are expressed
using the Focal environment, which is also briefly presented. Focal is an
object-oriented specification and proof system, where we can write pro-
grams together with properties which can be proved semi-automatically.
We show how Focal is appropriate for building a clean hierarchical specifi-
cation for our case study using, in particular, the object-oriented features
to refine the international level into the European level and parameteri-
zation to modularize the development.

1 Introduction

The security of civil aviation is governed by a series of international standards
and recommended practices that detail the responsibilities of the various stake-
holders (states, operators, agents, etc). These documents are intended to give
the specifications of procedures and artifacts which implement security in air-
ports, aircraft and air traffic control. A key element to enforce security is the
conformance of these procedures and artifacts to the specifications. However,
it is also essential to ensure the consistency and completeness of the specifica-
tions. Standards and recommended practices are natural language documents
(generally written in English) and their size may range from a few dozen to
several hundred pages. Natural language has the advantage of being easily un-
derstood by a large number of stake-holders, but practice has also shown that
it can be interpreted in several inconsistent ways by various readers. More-
over, it is very difficult to process natural language documents automatically
in the search for inconsistencies. When a document has several hundred pages,
it is very difficult to ensure that the content of a particular paragraph is not
contradicted by some others which may be several dozen pages from the first
one.

This paper aims to present the formal models of two standards related to air-
port security in order to study their consistency: the first one is the international
standard Annex 17 [7] (to the Doc 7300/8) produced by the International Civil
Aviation Organization (ICAO), an agency of the United Nations; the second one
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is the European standard Doc 2320 [2] (a public version of the Doc 30, which has
a restricted access status) produced by the European Civil Aviation Conference
(ECAC) and which is supposed to refine the first one at the European level. More
precisely, from these models, we can expect:

1. to detect anomalies such as inconsistencies, incompleteness and redundancies
or to provide evidence of their absence;

2. to clarify ambiguities and misunderstandings resulting from the use of infor-
mal definitions expressed in natural language;

3. to identify hidden assumptions, which may lead to shortcomings when addi-
tional explanations are required (e.g. in airport security programmes);

4. to make possible the rigorous assessment of satisfaction for a concrete regu-
lation implementation and w.r.t. the requirements.

This formalization was completed in the framework of the EDEMOI1 [8]
project, which aims to integrate and apply several requirements engineering and
formal methods techniques to analyze regulation standards in the domain of air-
port security. The methodology of this project may be considered as original in
the sense that it tries to apply techniques, usually reserved to critical software, to
the domain of regulations (in which no implementation is expected). The project
used a two-step approach. In the first step, standards described in natural lan-
guage were analyzed in order to extract security properties and to elaborate a
conceptual model of the underlying system [5]. The second step, which this work
is part of, consists in building a formal model and to analyze/verify the model
by different kinds of formal tools. In this paper, we describe two formal models
of the two standards considered above, which have been carried out using the
Focal [12] environment, as well as some results that have been analyzed from
these models.

Another motivation of this paper is to present the Focal [12] (previously Foc)
environment, developed by the Focal team, and to show how this tool is ap-
propriate to model this kind of application. The idea is to assess and validate
the design features as well as the reasoning support mechanism offered by the
Focal specification and proof system. In our case study, amongst others, we
essentially use the features of inheritance and parameterization. Inheritance al-
lows us to get a neat notion of refinement making incremental specifications
possible; in particular, the refinement of the international level by the Euro-
pean level can be expressed naturally. Parameterization provides us with a form
of polymorphism so that we can factorize parts of our development and ob-
tain a very modular specification. Finally, regarding the reasoning support, the
first-order automated theorem-prover of Focal, called Zenon, bring us an ef-
fective help by automatically discharging most of the proofs required by the
specification.

The paper is organized as follows: first, we give a brief description of the Focal
language with its main structures and features; next, we present our case study,
1 The EDEMOI project is supported by the French National "Action Concertée Inci-

tative Sécurité Informatique".
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i.e. the several standards regulating security in airports and in particular, those
we chose to model; finally, we describe the global formalization made in Focal,
as well as the properties that could be analyzed and verified.

2 The Focal Environment

2.1 What Is Focal?

Focal [12], initiated by T. Hardin with R. Rioboo and S. Boulmé, is a language in
which it is possible to build applications step by step, going from abstract spec-
ifications, called species, to concrete implementations, called collections. These
different structures are combined using inheritance and parameterization, in-
spired by object-oriented programming; moreover, each of these structures is
equipped with a carrier set, providing a typical algebraic specification flavor.
Moreover, in this language, there is a neat separation between the activities of
programming and proving. A compiler was developed by V. Prevosto for this
language, able to produce Ocaml [11] code for execution, Coq [10] code2 for cer-
tification, but also code for documentation (generated by means of structured
comments). More recently, D. Doligez provided a first-order automated theorem
prover, called Zenon, which helps the user to complete his/her proofs in Focal
through a declarative-like proof language. This automated theorem prover can
produce pure Coq proofs, which are reinserted in the Coq specifications generated
by the Focal compiler and fully verified by Coq.

2.2 Specification: Species

The first major notion of the Focal language is the structure of species, which
corresponds to the highest level of abstraction in a specification. A species can
be roughly seen as a list of attributes and there are three kinds of attributes:

– the carrier type, called representation, which is the type of the entities that
are manipulated by the functions of the species; representations can be either
abstract or concrete;

– the functions, which denote the operations allowed on the entities; the func-
tions can be either definitions (when a body is provided) or declarations
(when only a type is given);

– the properties, which must be verified by any further implementation of
the species; the properties can be either simply properties (when only the
proposition is given) or theorems (when a proof is also provided).

2 Here, Coq is only used as a proof checker, and not to extract, from provided proofs
and using its Curry-Howard isomorphism capability, Ocaml programs, which are
directly generated from Focal specifications.
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More concretely, the general syntax of a species is the following:

species <name> =

rep [= <type>]; (* abstract/concrete
representation *)

sig <name> in <type>; (* declaration *)
let <name> = <body>; (* definition *)

property <name> : <prop>; (* property *)
theorem <name> : <prop> (* theorem *)
proof : <proof>;

end

where<name> is simply a given name,<type> a type expression (mainly typing
of core-ML without polymorphism but with inductive types), <body> a func-
tion body (mainly core-ML with conditional, pattern-matching and recursion),
<prop> a (first-order) proposition and <proof> a proof (expressed in a declar-
ative style and given to Zenon). In the type language, the specific expression
self refers to the type of the representation and may be used everywhere except
when defining a concrete representation.

As said previously, species can be combined using (multiple) inheritance,
which works as expected. It is possible to define functions that were previously
only declared or to prove properties which had no provided proof. It is also pos-
sible to redefine functions previously defined or to reprove properties already
proved. However, the representation cannot be redefined and functions as well
as properties must keep their respective types and propositions all along the
inheritance path. Another way of combining species is to use parameterization.
Species can be parameterized either by other species or by entities from species.
If the parameter is a species, the parameterized species only has access to the
interface of this species, i.e. only its abstract representation, its declarations and
its properties. These two features complete the previous syntax definition as
follows:

species <name> (<name> is <name>, <name> in <name>, . . .)
inherits <name>, <name> (<pars>), . . . = . . .

end

where <pars> is a list of <name> and denotes the names which are used as
parameters. When the parameter is a species, the keyword is is, when it is an
entity of a species, the keyword is in.

To better understand this notion of species, let us give a small example:

Example 1 (Finite stacks). To formalize finite stacks, an abstract way is to spec-
ify stacks (possibly infinite) first, and to refine them as finite stacks afterwards.
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The specification of stacks might be the following: c

species stack (typ is setoid) inherits setoid =

sig empty in self ;
sig push in typ −> self −> self ;
sig pop in self −> self ;
sig last in self −> typ;
let is empty (s) = !equal (s, !empty);

property ie empty : !is empty (!empty);
property ie push : all e in typ, all s in self,

not (!is empty (!push (e, s))); . . .

end

where setoid is a predefined species representing a non-empty set with an equality
(in the first line, the parameter and the inheritance from setoid show respectively
that we want to be able to compare two items of a stack, but also two stacks),
the "!" notation is equivalent to the common dot notation of message sending
in object-oriented programming (self is the default species when there is no
receiver species indicated; e.g. !empty is for self !empty).

Next, before specifying finite stacks, we can be more modular and formalize
the notion of finiteness separately as follows:

species is finite (max in int) inherits basic object =

sig size in self −> int;
property size max : all s in self, #int leq (!size (s), max);

end

where basic object is a predefined species supposed to be the root of every Focal
hierarchy, int the predefined type of integers and "#int " the prefix of operations
over the type int. Here, we can remark that the species is parameterized by an
entity of a species and not by a species.

Finally, we can formalize finite stacks using a multiple inheritance from the
species stack and is finite:

species finite stack (typ is setoid, max in int)
inherits stack (typ), is finite (max) =

let is full (s) = #int eq (!size (s), max);

property size empty : #int eq (!size (!empty), 0);
property size push : all e in typ, all s in self, not (!is full (s)) −>

#int eq (!size (!push (e, s)), #int plus (!size (s), 1)); . . .

end
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2.3 Implementation: Collection

The other main notion of the Focal language is the structure of collection, which
corresponds to the implementation of a specification. A collection implements a
species in such a way that every attribute becomes concrete: the representation
must be concrete, functions must be defined and properties must be proved. If
the implemented species is parameterized, the collection must also provide imple-
mentations for these parameters: either a collection if the parameter is a species
or a given entity if the parameter denotes an entity of a species. Moreover, a
collection is seen (by the other species and collections) through its correspond-
ing interface; in particular, the representation is an abstract data type and only
the definitions of the collection are able to manipulate the entities of this type.
Finally, a collection is a terminal item and cannot be extended or refined by
inheritance. The syntax of a collection is the following:

collection <name> implements <name> (<pars>) = . . . end

We will not detail examples of collections here since our formalization (see
Section 4) does not make use of them. Actually, the airport security regulations
considered in this paper are rather abstract and do not expect any implementa-
tion. Regarding our previous example of finite stacks, a corresponding collection
will have to provide a concrete representation (using lists for example), defini-
tions for only declared functions (empty, push, pop, last) and proofs for prop-
erties (ie empty, ie push, etc). For complete examples of collections, the reader
can refer to the standard library of Focal (see Section 2.5).

2.4 Certification: Proving with Zenon

The certification of a Focal specification is ensured by the possibility of proving
properties. To do so, a first-order automated theorem prover, called Zenon and
based on the tableau method, helps us to complete the proofs. Basically, there
are two ways of providing proofs to Zenon: the first one is to give all the prop-
erties (proved or not) and definitions needed by Zenon to build a proof with its
procedure; the second one is to give additional auxiliary lemmas to help Zenon
to find a proof. In the first option, Zenon must be strong enough to find a proof
with only the provided properties and definitions; the second option must be
considered when Zenon needs to be helped a little more or when the user likes
to present his/her proof in a more readable form. In the first option, proofs are
described as follows:

theorem <name> : <prop>
proof : by <props> def <defs>;

where <props> is a list of properties and <defs> a list of definitions.
The proof language of the second option is inspired by a proposition by

L. Lamport [6], which is based on a practical and hierarchical structuring of
proofs using number labels for proof depth. We do not describe this language
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here but some examples of use can be found in the formalization of our case
study (see Section 4.4 to get the development).

Let us describe a small proof in our example of finite stacks:

Example 2 (Finite stacks). In the species stack, we can notice that with the
definition of is empty, Property ie empty can already be proved in the following
way:

theorem ie empty : !is empty (!empty)
proof : by !equal reflexive def !is empty;

where equal reflexive is the property of reflexivity for equality, which is inherited
from the species setoid.

This proof uses the definition of is empty, which means that any redefinition
of is empty in any further inheritance invalidates this proof (which has to be
completed again using the new definition). Thus, w.r.t. usual object-oriented
programming, redefinitions may have some additional effects since they directly
influence the proofs in which they are involved.

2.5 Further Information

For additional information regarding Focal, the reader can refer to [3], as well
as to the Focal Web site: http://focal.inria.fr/, which contains the Focal
distribution (compiler, Zenon and other tools), the reference manual, a tutorial,
some FAQs and also some other references regarding, in particular, Focal’s formal
semantics (e.g. see S. Boulmé and S. Fechter’s PhD theses).

3 Case Study: Airport Security Regulations

The primary goal of the international standards and recommended practices
regulating airport security is to safeguard civil aviation against acts of unlawful
interference. These normative documents detail the roles and responsibilities of
the various stake-holders and pinpoint a set of security measures (as well as the
ways and means to implement them) that each airport serving civil aviation
has to comply with. In addition, the entire regulatory system is organized in a
hierarchical way, where each level has its own set of regulatory documents that
are drafted and maintained by different bodies. At the international level, An-
nex 17 [7] of the International Civil Aviation Organization (ICAO) lays down the
general principles and recommended practices to be adopted by each member
state. It is refined at the European level by the Doc 2320 [2] of the European
Civil Aviation Conference (ECAC), where the standard is made more detailed
and more precise. At the national level, each member state has to establish and
implement a national civil aviation security programme in compliance with inter-
national standards and national laws. Finally, at the airport level, the national
and international standards are implemented by an airport security programme.

All these documents are written in natural language and due to their volumi-
nous size, it is difficult to manually assess the consistency of the entire regulatory
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system. Moreover, informal definitions tend to be inaccurate and may be inter-
preted in various inconsistent ways by different readers. Consequently, it may
happen that two inspectors visiting the same airport at the same time reach
contradictory conclusions about its conformity. However, these documents have
the merit of being rigorously structured. Ensuring their consistency and com-
pleteness while eliminating any ambiguity or misunderstanding is a significant
step towards the reinforcement of airport security.

3.1 Scope Delimitation

After a deep study of the above-mentioned documents and several consultations
with the ICAO and ECAC, we decided to take as a starting point the preventive
security measures described in Chapter 4 of Annex 17. Chapter 4 begins by
stating the primary goal to be fulfilled by each member state, which is:

4.1 Each Contracting State shall establish measures to prevent weapons,
explosives or any other dangerous devices, articles or substances, which
may be used to commit an act of unlawful interference, the carriage or
bearing of which is not authorized, from being introduced, by any means
whatsoever, on board an aircraft engaged in international civil aviation.

Basically, this means that acts of unlawful interference can be avoided by
preventing unauthorized dangerous objects from being introduced on board air-
craft3. To be able to achieve this goal, the member states have to implement a set
of preventive security measures, which are classified in Chapter 4 according to
six specific situations that may potentially lead to the introduction of dangerous
objects on board. These are namely:

– persons accessing restricted security areas and airside areas (A17, 4.2);
– taxiing and parked aircraft (A17, 4.3);
– ordinary passengers and their cabin baggage (A17, 4.4);
– hold baggage checked-in or taken in custody of airline operators (A17, 4.5);
– cargo, mail, etc, intended for carriage on commercial flights (A17, 4.6);
– special categories of passengers like armed personnel or potentially disruptive

passengers that have to travel on commercial flights (A17, 4.7).

At the lower levels of the regulatory hierarchy, the security measures are re-
fined and detailed in such a way as to preserve the decomposition presented
above. This structure allowed us to easily identify the relation between the dif-
ferent levels of refinement. Due to the restricted access nature of some of the
regulatory documents, the formalization presented in Section 4 only considers
Chapter 4 of Annex 17 and some of the refinements proposed by the European
Doc 2320. Moreover, for simplification reasons, we do not cover the security
measures 4.3 and 4.6.
3 Note that the interpretation given to the quoted paragraph may appear wrong to

some readers. In fact, Paragraph 4.1 is ambiguous as it can be interpreted in two
different ways (see Section 4.4 for more details).
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3.2 Modeling Challenges

Modeling the regulations governing airport security is a real world problem and
is therefore a good exercise to identify the limits of the inherent features of the
Focal environment. Moreover, the ultimate objective of such an application is
not to produce certified code but rather to provide an automated support for
the analysis of the regulatory documents. For this case study, the formalization
needs to address the following modeling challenges:

1. the model has to impose a structure that facilitates the traceability and
maintainability of the normative documents. Moreover, through this struc-
ture, it should be possible to easily identify the impact of a particular security
measure on the entire regulatory system;

2. the model must make the distinction between the security measures and
the ways and means of implementing them. Most of the security measures
are fairly general and correspond to reachable objectives. However, their
implementation may differ from one airport to another due to national laws
and local specificities;

3. for each level of the regulatory hierarchy, the model must determine (through
the use of automated reasoning support tools) whether or not the funda-
mental security properties can be derived from the set of prescribed security
measures. This will help to identity hidden assumptions made during the
drafting process. In addition, the model has to provide evidence that the
security measures defined at refined levels are not less restrictive than those
at higher levels.

4 Formalization

4.1 Model Domain

In order to formalize the meaning of the preventive security measures properly,
we first need to identity the subjects they regulate, together with their respective
properties/attributes and the relationships between them. It is also essential to
determine the hierarchical organization of the identified subjects in order to
effectively factorize functions and properties during the formalization process.
This is done by determining the dependencies between the security measures,
w.r.t. the definitions of terms used in the corresponding normative document. For
example, let us consider the following security measure described in Chapter 4
of Annex 17:

4.4.1 Each Contracting State shall establish measures to ensure that orig-
inating passengers of commercial air transport operations and their cabin
baggage are screened prior to boarding an aircraft departing from a secu-
rity restricted area.

To be able to formalize this security measure, it is obvious that we will have
to define the subjects originating passenger, cabin baggage, aircraft and security
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restricted area, together with the relations between them. Moreover, we will need
to define appropriate attributes for the originating passenger subject to charac-
terize the state of being screened and of being on board. Finally, to complete
the formalization, we will have to specify the integrity constraints induced by
the regulation (e.g. screened passengers are either in security restricted areas or
on board aircraft). The hierarchies of subjects obtained after analyzing all the

uncleanedPerson

airsidePerson

staff

unescortedPerson

cabinPerson

cabinCrew pilot_in_command cabinPassenger

ordinaryPassenger

controlledPassenger

originatingPassenger transferPassenger

transitPassenger

armedPassenger obligedPassenger

Fig. 1. Hierarchy for airside persons in Annex 17

preventive security mea-
sures of Annex 17 are rep-
resented by a Focal model,
where each subject is a
species. For instance, the
Focal model for airside per-
sons is given in Figure 1
(where nodes are species
and arrows inheritance re-
lations s.t. A ← B means
species B inherits from A).

For possible extensions
during the refinement pro-
cess, the representation of
the species is left undefined

(abstract) and their functions are only declared. Moreover, since we are not con-
cerned with code generation, our formalization does not make use of collections.
For example, the following species corresponds to the specification of the cabin
person subject:

species cabinPerson (obj is object, obj set is basic set (obj),
do is dangerousObject, do set is basic set (do),
wp is weapon, wp set is basic set (wp), id is identity,
c luggage is cabinLuggage (obj, obj set, do, do set, wp, wp set),
cl set is basic lset (obj, obj set, do, do set, wp, wp set, c luggage))

inherits airsidePerson (obj, obj set, do, do set, wp, wp set, id) =

sig embarked in self −> bool;
sig get cabinLuggage in self −> cl set;

property invariant weapons : all w in wp, all s in self,
wp set!member (w, !get weapons (s)) −> not (wp!inaccessible (w));

end

The species cabinPerson specifies the common functions and properties for
the different types of persons who are eligible to travel on board an aircraft. In
order to specify the relations between cabin persons and the different items they
can have access to during flight time, the species cabinPerson is parameterized
with the species object, dangerousObject, weapon and cabinLuggage. The pa-
rameters obj set, do set, wp set and cl set describe the sets of the previously
identified items; they are introduced to express the fact that a cabin person can
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own more than one item at a time. Since most of these relations are already spec-
ified in the species airsidePerson, they are inherited automatically. The function
get cabinLuggage is only introduced to make accessible the set of cabin luggage
associated to a given instance of cabinPerson. Property invariant weapons is a
typical example of integrity constraints imposed by the regulation. It states that
when weapons are carried by cabin persons, they are by default considered to be
accessible during flight time.

4.2 Annex 17: Preventive Security Measures

As said in Section 3.2, the formal model needs to impose a certain structure that
will facilitate the traceability and maintainability of the normative documents.
To achieve this purpose, our model follows the structural decomposition pro-
posed in Chapter 4 of Annex 17 (using inheritance), while taking into account
the dependencies between the preventive security measures. In our model, since
most of the security measures correspond to reachable objectives, they are de-
fined as invariants and each airport security programme must provide procedures
which satisfy these invariants. However, when the security measures describe ac-
tions to be taken when safety properties are violated, a procedural approach is
adopted. The consistency and completeness of the regulation are achieved by
establishing that the fundamental security property, defined in Paragraph 4.1 of
Annex 17, is satisfied by all the security measures, while ensuring their homo-
geneity. The general structure of the Annex 17 model is represented in Figure 2.

a17property4_2

airsidePersons

ordinaryPassengers

a17property4_4

specialPassengers

baggage

a17property4_5

a17property4_7

a17property4_1

annex17

Fig. 2. Structure of Annex 17

The species airsidePersons,
ordinaryPassengers, spe-
cialPassengers and baggage
introduce the set domain
of the subjects presented
in Section 4.1 as well
as their relational con-
straints (e.g. two passen-
gers cannot have the same
luggage). The preventive
security measures are for-
malized in species a17prop-
erty4 2, a17property4 4,
a17property4 5, a17prop-
erty4 7 and their depen-

dencies are defined according to the hierarchical organization of the subjects they
regulate. The fundamental security property is defined in species a17property4 1.
It is at this level that the set of on board objects is defined. Finally, the theorems
establishing the consistency and completeness of the regulation are defined in
the species annex17.

Security Measures Related to Ordinary Passengers. As an example, we
can focus on Property 4.4 of Annex 17 related to security measures for ordinary
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passengers. This property is divided into four sub-properties and, for example,
we can describe how Property 4.4.1 (cited in Section 4.1) was formalized:

Example 3 (Property 4.4.1). Security measure 4.4.1 states that originating pas-
sengers and their cabin baggage should be screened prior to boarding an aircraft.
In species a17property4 4, this statement is formalized as follows:

property property 4 4 1 : all p in op, all s in self,
op set!member (p, !originatingPassengers (s)) −>
op!embarked (p) −> op!screened (p);

where p represents an originating passenger and s the current state of species
a17property4 4. It should be noted that the scope of the boolean function
screened extends to cabin baggage as well, since cabin baggage remains with
its owners throughout the boarding process. The fact of being a screened ordi-
nary passenger is defined in the species controlledPassengers (see Figure 1) as
follows:

property invariant screened : all s in self,
!screened (s) −> wp set!is empty (!get weapons (s)) and
wp set!is empty (cl set!get weapons (!get cabinLuggage (s))) and
all o in do, do set!member (o, !get dangerousObjects (s)) or

do set!member (o, cl set!get dangerousObjects
(!get cabinLuggage (s))) −> do!is authorized (o);

where s represents a controlledPassenger. Property invariant screened states that
if a passenger is screened, he/she does not have any weapons and if the passenger
does have a dangerous object (other than weapons), it is authorized. A similar
property also exists for Property 4.4.2 (which concerns transfer passengers) and
could be factorized via the parameterization mechanism of Focal.

From this property and the three others (4.4.2, 4.4.3 and 4.4.4), we can prove the
global property 4.4 that ordinary passengers admitted on board an aircraft do
not have any unauthorized dangerous objects. This intermediate lemma is used
afterwards when proving the consistency of the fundamental security property
(4.1) w.r.t. the preventive security measures.

Consistency of Annex 17. Once we completed the formalization for each of
the different categories of preventive security measures and derived the appro-
priate intermediate lemmas, we can consider Paragraph 4.1 (see Section 3.1) of
Annex 17. It is formalized as follows in species a17property4 1:

property property 4 1 : all a in ac, all s in self,
ac set!member (a, !departureAircraft (s)) −>
(all o in do, do set!member (o, !onboardDangerousObjects (a, s)) −>

do!is authorized (o)) and
(all o in wp, wp set!member (o, !onboardWeapons (a, s)) −>

wp!is authorized (o));
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where a represents an aircraft. This states that dangerous objects are admitted
on board a departing aircraft only if they are authorized. In addition, the set of
on board objects for each departing aircraft is defined according to the different
types of cabin persons (together with their cabin luggage) and according to
the different types of hold baggage loaded into the aircraft. This correlation is
necessary since it will allow us to establish the following consistency theorem:

theorem consistency : !property 4 2 −> !property 4 4 −>
!property 4 5 −> !property 4 7 −> !property 4 1

proof : by do set!union1, wp set!union1 def !property 4 2, !property 4 4,
!property 4 5, !property 4 7, !property 4 1;

where property 4 2, property 4 4, property 4 5 and property 4 7 corres-pond
to the intermediate lemmas defined for each category of preventive security mea-
sures. The purpose of Theorem consistency is to verify whether the fundamental
security property can be derived from the set of preventive security measures.
This allowed us to identify some hidden assumptions done during the drafting
process (see Section 4.4). However, this theorem does not guarantee the absence
of contradictions in the regulation. A way to tackle this problem is to try to
derive False from the set of security properties and to let Zenon work on it for a
while. If the proof succeeds then we have a contradiction, otherwise we can only
have a certain level of confidence.

4.3 Doc 2320: Some Refinements

The document structure of Doc 2320 follows the decomposition presented in
Chapter 4 of Annex 17. Refinement in Doc 2320 appears at two levels. At the
subject level, the refinement consists in enriching the characteristics of the ex-
isting subjects or in adding new subjects. At the security property level, the
security measures become more precise and sometimes more restrictive. The
verification of the consistency and completeness of Doc 2320 is performed in
the same way as for Annex 17 (see the modeling described in Section 4.2).

airsidePersons

a17property4_2

ordinaryPassengers

a17property4_4

specialPassengers

baggage

a17property4_5 a17property4_7

a17property4_1

annex17

d2320property2

d2320property4 d2320property5

d2320property4_1

doc2320

Fig. 3. Structure of Doc 2320

However, since Doc 2320
refines Annex 17, an ad-
ditional verification is
required to show that the
security measures that it
describes do not invalidate
the ones defined in An-
nex 17. Thus, in addition to
consistency proofs, another
kind of proofs appears, that
are refinement proofs. The
model structure obtained
for Doc 2320 is described
in Figure 3 (where the ex-
isting species coming from



Certifying Airport Security Regulations Using the Focal Environment 61

Annex 17 are distinguished with dashed nodes). As can be seen, the refinement
is performed in such a way as to preserve the dependencies between the secu-
rity measures. Moreover, it can be observed that unlike species a17property4 2,
a17property4 4 and a17property4 5, species a17property4 7 does not have a
Doc 2320 counterpart. This is because, in Doc 2320, no mention to special cat-
egories of passengers is made. We assume that in this case, the international
standard still prevails.

A Refinement Example. In Doc 2320, Property 4.4.1 of Annex 17 is refined
by Property 4.1.1, which states that originating passengers are either searched
by hand or screened prior to boarding an aircraft. In species d2320property4,
this statement is formulated as follows:

property d2320property 4 1 1 : all p in op, all s in self,
op set!member (p, !originatingPassengers (s)) −>
op!embarked (p) −> op!screened (p) or op!handSearched (p);

To prove that Property d2320property 4 1 1 does not invalidate Property
property 4 4 1, the following theorem is used:

theorem refinement : !d2320property 4 1 1 −> !property 4 4 1
proof : by op!invariant handSearched, op!invariant screened

def !d2320property 4 1 1, !property 4 4 1;

The above theorem is provable since in species controlledPassenger2320, which
is a refined version of species controlledPassenger, the boolean function
handSearched is characterized by the same properties than the boolean func-
tion screened (e.g. Property invariant screened).

4.4 Analyses and Results

An Example of Ambiguity. As seen in Section 3, Paragraph 4.1 of Annex 17
is very important as it states the primary goal of the preventive security measures
to be implemented by each member state. However, it appears to be ambiguous
since it can be interpreted in two different ways: either dangerous objects are
never authorized on board or they are admitted on board only if they are au-
thorized. According to the ICAO, the second interpretation is the correct one as
Paragraph 4.1 needs to be considered in the general context of the regulation to
clarify this ambiguity.

Hidden Assumptions. In trying to demonstrate that Paragraph 4.1 of An-
nex 17 is consistent w.r.t. the set of preventive security measures, we discovered,
for instance, the following hidden assumptions:

1. since disruptive passengers who are obliged to travel are generally escorted
by law enforcement officers, they are considered not to have any dangerous
objects in their possession;
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2. unlike other passengers, transit passengers are not subjected to any specific
security control but should be protected from unauthorized interference at
transit spots. This implies that they are considered to be secure and hence
do not have any unauthorized dangerous objects.

Development. The entire formalization takes about 10000 lines of Focal code,
with in particular, 150 species and 200 proofs. It took about 2 years to be
completed. The development is freely available (sending a mail to the authors)
and can be compiled with the latest version of Focal (0.3.1).

5 Conclusion

Summary. A way to improve security is to produce high quality standards.
The formal models of Annex 17 and Doc 2320 regulations, partially described in
this paper, tend to bring an effective solution in the specific framework of air-
port security. From these formalizations, some properties could be analyzed and
in particular, the notion of consistency. This paper also aims to emphasize the
use of the Focal language, which provides a strongly typed and object-oriented
formal development environment. The notions of inheritance and parameteriza-
tion allowed us to build the specifications in an incremental and modular way.
Moreover, the Zenon automated theorem prover (provided in Focal) discharged
most of the proof obligations automatically and appeared to be very appropriate
when dealing with abstract specifications (i.e. with no concrete representation).

Related Work. Currently, models of the same regulations, by D. Bert and
his team, are under development using B [1] in the framework of the EDE-
MOI project. In the near future, it could be interesting to compare the two
formal models (in Focal and B) rigorously in order to understand if and how the
specification language influences the model itself. It should be noted that the
same results (see Section 4.4) were obtained from this alternative formalization,
since some of these results were already analyzed before the formalization itself
(during the conception step). Very close to the EDEMOI project is the SAFEE
project [9], funded by the 6th Framework Programme of the European Union
(FP6) and which aims to use similar techniques for security but on board the
aircraft. Regarding similar specifications in Focal, we must keep in mind that the
compiler is rather recent (4/5 years at most) and efforts have been essentially
provided, by R. Rioboo, to build a Computer Algebra library, which is currently
the standard library of Focal. However, some more applicative formalizations
are under development like certified implementations of security policies [4] by
M. Jaume and C. Morisset.

Future Work. We plan to integrate a test suite into this formalization using an
automatic generation procedure (working from a Focal specification) and using
stubs for abstract functions (i.e. only declared). Amongst other things, this will
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allow us to imagine and build attack scenarios which, at least in this context,
appear to be quite interesting for official certification authorities. Such an auto-
matic procedure is currently work in progress, by C. Dubois and M. Carlier, but
is still limited (to universally quantified propositions) and needs to be extended
to be applied to our development. We also plan to produce UML documents
automatically generated from the Focal specifications and which is an effective
solution to interact with competent organizations (ICAO, ECAC). Such a tool
has been developed by J. F. Étienne but has to be completed to deal with all
the features of Focal. Regarding the Focal language itself, some future evolutions
might be appropriate, in particular, the notion of subtyping (there is a notion
of subspecies but it does not correspond to a relation of subtyping), but which
still needs to be specified in the case of properties. Also, it might be necessary
to integrate temporal features in order to model behavioral properties, since in
fact, our formalization, described in this paper, just shows a static view of the
specified regulations.
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Abstract. This paper presents an assertional-style verification of the
aircraft landing protocol of NASA’s SATS (Small Aircraft Transporta-
tion System) concept [1] using the I/O automata framework and the
PVS theorem prover. We reconstructed the mathematical model of the
landing protocol presented in [2] as an I/O automaton. In addition, we
translated the I/O automaton into a corresponding PVS specification,
and conducted a verification of the safety properties of the protocol using
the assertional proof technique and the PVS theorem prover.

1 Introduction

Safety critical systems have been the subject of intensive study of applications of
formal verification techniques. As a case study, we conduct an assertional-style
verification of one such safety critical system in this paper: the aircraft landing
protocol that is part of NASA’s SATS (Small Aircraft Transportation System)
concept of operation [1].

The SATS program aims to increase access to small and medium sized air-
ports. The situation is significantly different in these airports from large air-
ports, where separation assurance services are provided by the Air Traffic Control
(ATC). Due to the limited facilities and inferior infrastructure in such airports,
in the SATS concept of operations, a centralized air traffic management system
is automated as the Airport Management Module (AMM), and does a minimal
job to achieve the safe landing of the aircraft. It is the pilots’ responsibility to
determine the moment when their aircraft initiate the final approach initiation
to the ground. Pilots follow the procedures defined in the SATS concept of oper-
ation to control their aircraft in a designated area in the air space of the airport,
called the Self Controlled Area.

It is crucial to guarantee a safe separation of the aircraft in the Self Con-
trolled Area when each pilot follows the procedures of the SATS concept. For
this reason, a mathematical model of the landing and departure protocol of
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SATS is presented in [2]. The model is a finite-state transition system obtained
from a mathematical abstraction of the real system. In addition, in the paper,
some properties of the model that represent the safe separation of the aircraft
have been exhaustively checked using a model-checking technique. These include
properties such as a bound on the number of aircraft on a particular portion of
the airport (for example, no more than four aircraft are in the entire Self Con-
trolled Area; or there is at most one aircraft at a certain part of the airspace in
the airport).

Our objective in this paper is to carry out a proof of properties of the model
proposed in [2] using inductive proof techniques that have been used in computer
science literature, as opposed to an exhaustive state exploration used in [2]. We
used I/O automata framework [3] to reconstruct the model, and have rigorously
checked all proofs in this paper using the PVS mechanical theorem prover [4].1

I/O automata have been successfully used to model nondeterministic distributed
systems and to prove properties of them. Their treatment of nondeterminism is
suitable for the model in this paper in which the next possible step that the
model can take is nondeterministically defined.

There are three main contributions in this study. First, we present a recon-
structed mathematical model of the SATS landing protocol using the I/O au-
tomata framework. This model gives us a more standardized and comprehensive
description of the protocol than the model in [2]. Second, our inductive proof
brings more insight into the protocol. Though a proof of our style may cost more
than a state exploration method in terms of time and manpower, it often brings
us a clearer view of how the system works, and what kinds of properties are
crucial for guaranteeing the required behavior of the system. In this paper, we
define a notion of blocking of aircraft in Section 4.2, which captures an auxiliary
information of why the protocol works correctly. Third, this case study demon-
strates the feasibility of using a mechanical theorem prover to prove properties
of a moderately large and complex system in the context of the I/O automata
framework.

The paper is constructed as follows. In Section 2, we present a reconstructed
mathematical model of the SATS landing protocol, both the formal definition
of the actual I/O automaton and the informal explanation of how the system
works. In Section 3, we introduce the seven main properties that we will prove
in this paper. Section 4 is devoted to the proof of the main properties, some
of which have to be strengthened to make an inductive proof work. Finally, in
Section 5, we summarize the results in the paper and discuss future work.

2 Abstract Model

In this section, we present an I/O automaton model for SATS, based on the
model presented in [2]. In the model, the space of the airport is discretized, and
1 Complete I/O automata and PVS specification codes, and PVS proof scripts are

available at http://theory.csail.mit.edu/∼umeno/. The full version of this paper [5]
includes more detailed discussions on the model, the main properties, the auxiliary
lemmas, and their proof.
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is divided into several zones. These zones are represented as part of the state
components of the automata, and the model can be used to check if the desirable
upper bound on the number of aircraft in a specific zone is satisfied.

We will present a formal definition of the model as an I/O automaton in
Section 2.5.

2.1 Logical Zones

The space of the airport used for landings is logically divided into 13 zones (see
Figure 1). Each zone is modeled as a first-in first-out queue of aircraft. Only the
first aircraft of a zone can move to another zone, and when an aircraft moves
from one zone to another, it is removed from the head of the queue that it
leaves, and is added to the end of the queue that it joins. Some zones have a
symmetric structure with respect to the left side and the right side, for instance,
holding3(right) and holding3(left).2

holding3(right)

holding2(right)

holding3(left)

holding2(left)

base(right)base(left)

intermediate

final

runway

lez(left)lez(right)

maz(right) maz(left)

Fig. 1. 13 logical zones in SATS

Approach Area

Runway

Right Initiation Area Left Initiation Area

Fig. 2. Logical zones divided into four areas

For the sake of an easier understanding of the big picture of how each zone
is used, we group these 13 zones into the following four areas, depending on
how they are used in the system (see Figure 2). The left initiation area con-
sists of holding3(left) and holding2(left), which represent the zones to hold the
aircraft at 3000 feet and 2000 feet, respectively, and which are used for the ver-
tical approach initiation from the left side of the airport; lez(left) (lateral entry
zone), which is used for the lateral approach initiation from the left side; and
maz(left) (missed approach zone), which is used as the path that an aircraft that
has missed the approach goes through to initiate the approach operation again.
The right initiation area is a symmetric counterpart of the left initiation area,
and is analogously defined. The approach area consists of base(right), base(left),
intermediate, and final, which make a T-shaped area for the aircraft to land. The
runway consists of zone runway. We say that an aircraft is on the approach if it
is in the approach area. In addition, we often refer to the combined area of the
two initiation areas and the approach area (thus, it consists of all logical zones
except for runway) as the operation area. Actually, this area is the abstraction of

2 Note that this right and left are determined with respect to a pilot’s view; thus it is
the opposite to what we actually see in the picture (for instance, holding3(right) is
on the left side in the picture.).
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the Self Controlled Area that we mentioned in Section 1. In this paper, we focus
on the safety conditions in the operation area.

2.2 Aircraft

An aircraft is defined as a tuple that has two attributes: the mahf assignment,
which will be explained shortly, mahf of type Side (an enumeration of left and
right); and a unique ID, id, which is encoded as a natural number in the abstract
model.

Aircraft tuple [
mahf: Side, % Missed approach holding fix assignment.
id : ID ] % ID of the aircraft

2.3 Landing Sequence

When an aircraft enters the system, the system (AMM) assigns its leader aircraft,
or the aircraft it has to follow. This relation of a leader constructs a chain: the
first aircraft that enters the system does not have a leader, the second aircraft
that enters the system is assigned the first aircraft as the leader, the third one
is assigned the second one as the leader, and so on. A leader is an important
notion of the system since it is used as a part of the conditions to decide if an
aircraft can initiate the final approach to the ground. As we will examine closely
later, an aircraft cannot go to the approach area until its leader has gone there.
We will see formally defined conditions in Section 2.5.

In our abstract model, we encode this notion of the leader aircraft as an
explicit queue of aircraft, called the “landing sequence.” When an aircraft enters
the operation area, it is also added to the end of the landing sequence. We define
the leader of aircraft a in the landing sequence as the aircraft just in front of a in
the sequence. By this definition of the leader, this abstract sequence represents
the chain of the leader relation in reality discussed above. When an aircraft lands
or exits from the operation area, it is removed from the landing sequence.

The assignment of the leader for an aircraft does not change once it is assigned
if that aircraft lands successfully in the first try. However, an aircraft does not
always succeed in landing at the first attempt, that is, it may miss the approach.
In such a case, its leader is reassigned and it has to redo the landing process. We
will later look at the case when an aircraft misses the approach.

2.4 Paths of Aircraft

Here we present a high level picture of how an aircraft enters and moves in the
logical zones, initiates the approach to the ground, and lands on the runway.
All movements are represented as the transitions of the model. We refer to the
corresponding transitions’ names in parentheses when explaining the movements
of aircraft in the following. In Section 2.5, we will examine the details of the
important transitions.

An aircraft can enter the logical zones by entering either holding3 (Vertica-
lEntry) or lez (LateralEntry) of either side. An aircraft that has entered holding3
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descends to holding2 of the same side (HoldingPatternDiscend), and initiates the
approach to the ground from there (VerticalApproachInitiation). An aircraft that
has entered lez can go directly to the approach area if specific conditions are
met; otherwise, it first goes to holding2 (LateralApproachInitiation). Every air-
craft that initiates the approach first goes to the base zone of the same side
where it initiates the approach. Once aircraft enter base, they merge into in-
termediate (Merging), then proceed to final (FinalSegment) and land on runway
(Landing). This progression of the movement of aircraft is depicted in Figure 3.

Lateral Entry

Vertical Entry

Fig. 3. Paths of aircraft

If mahf is right If mahf is left

Fig. 4. Paths of aircraft that have missed
the approach

An aircraft may miss the approach to the ground at the final zone. In such a
case, it once again goes back to a zone where it can initiate the approach again,
and make the next try to land.

An aircraft has to determine the side of an initiation area to which it has to
go in case it misses the approach. For this purpose, the assignment of the side,
called the “mahf ( missed approach holding fix)” is given by the AMM to an
aircraft when it enters the system, based on a system variable nextmahf. The
variable nextmahf is of type Side, and is used by the AMM to keep track of the
last assignment of mahf to aircraft that have entered the system. The system
flips the value of nextmahf, either from left to right or vice versa, every time it
assigns the mahf to an aircraft. This produces an alternate assignment of the
left side and the right side to the aircraft in the landing sequence.

In the logical zones, a missed aircraft, with the reassignment as stated above,
first goes to maz of the side assigned as its mahf (MissedApproach), and from
there it goes back to either holding2 or holding3 of the side of maz where it leaves
(LowestAvailableAltitude). Whether it goes to holding2 or holding3 is determined
by the situation at the moment it leaves maz. These paths for aircraft that have
missed the approach are shown in Figure 4.

2.5 Transitions

Twelve transitions are defined in the model based on the original procedures in
SATS. Each one represents either a movement of an aircraft from one logical
zone to another, an entry of an aircraft into the logical zones, or a removal of
an aircraft from the logical zones.
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Some transitions have an attribute of Side because they can be performed
either from the right side or the left side of the airport. For example, Verti-
calApproachInitiation(right) represents the approach initiation of an aircraft from
holding2(right).

Each transition has its own precondition. A transition can occur only when
its precondition is satisfied. We say that a transition is enabled at a particular
state of the model if its precondition is satisfied in that state.

One interesting notion in the SATS concept that the precondition of some
transitions refers to is the potential number of aircraft. The potential number
of aircraft in the initiation area of side σ counts not only the actual number of
aircraft in that area, but also the number of potential aircraft that may possibly
come to the area σ if they miss the approach, that is, aircraft outside of that area
that are assigned σ as its mahf. The potential number of aircraft is expressed
by the function virtual as follows, where assigned(zone,side) is the function to
calculate the number of aircraft assigned side in zone.

virtual(z:zone_map,side:Side): nat =
length(z(holding3(side))) + length(z(holding2(side))) +
length(z(lez(side))) + length(z(maz(side))) +
assigned(z(holding3(opposite(side))),side) +
assigned(z(holding2(opposite(side))),side) +
assigned(z(lez(opposite(side))),side) +
assigned(z(maz(opposite(side))),side) +
assigned(z(base(right)),side)+assigned(z(base(left)),side)+
assigned(z(intermediate),side) + assigned(z(final),side)

To help a reader’s intuition toward why the protocol has the rules represented
by the preconditions of the transitions, here we briefly present some of the safety
properties of the model that we will prove.

We will prove upper bounds on the numbers of aircraft in the vertical and
lateral initiation areas (holding2, holding3, and lez): there is at most one aircraft
in each of these zones. Now a reader may easily understand, for instance, why it
is reasonable that the precondition of entry and descend transitions checks the
emptiness of the zone that an aircraft goes to.

On the other hand, a more complicated precondition is defined for other tran-
sitions: for example, some preconditions refer to the potential number of aircraft,
or whether the leader of the moving aircraft is in a specific area of the logical
zones. We have to make use of these more complicated preconditions in order
to prove the bound on the number of aircraft in some specific zone such as maz.
This complication comes from the fact that, the transition representing a missed
approach does not have a “guard” in a precondition that prevents the transition
from being performed. This is quite reasonable, considering the real system: an
aircraft cannot just assume some specific condition that prevents it from missing
the approach. For this reason, some of the main properties we will prove do not
immediately follow from the preconditions of the transitions, and thus we need
a more intelligent way to prove them.

We present an IOA code for the SATS aircraft landing protocol in the follow-
ing. It is actually described in the subset of the timed I/O automata specifica-
tion language [6]. It imports a vocabulary called SatsVocab, which appear in the
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extended paper [5]. The vocabulary defines types and auxiliary functions that
the automaton definition uses. In this paper, we give an informal description
of these types and functions. The functions in queue?(a,q) and on zone?(q,a)
are predicates that checks if aircraft a is in q. We just have two predicates to
differentiate zones and sequences, which are intrinsically same in our model.
We use on approach?(a) to check if aircraft a is on the approach, and use
on approach?(side) to check if there is an aircraft assigned side in the approach
area. The predicate on zones?(a) is to check if aircraft a is in the operation area.

Here, we examine some important transitions to prove the main properties.

VerticalEntry: A newly entering aircraft is assigned its mahf from the system.
As we explained before, the assignment is determined according to nextmahf (see
the definition of the function aircraft). Also, a unique ID is given to a new aircraft
when it enters the system. The uniqueness of its ID is guaranteed by the part of
the precondition that is universally quantified. The precondition also checks the
condition on the potential number of aircraft in the initiation area of the side
where the new aircraft enters (virtual(side)), as well as the emptiness of some
zones. In a real system, this information is given by the Airport Management
Module, which typically resides at the airport ground.

LateralEntry: It has a definition analogous to VerticalEntry. Note, however,
that the precondition checks if the value of virtual(side) is zero. It implies that,
in the state of the model that this transition is enabled, there is no aircraft in
that area, and also no aircraft assigned side as its mahf outside of the area.

VerticalApproachInitiation: An aircraft initiates the approach from holding2
by this transition. Note that the precondition checks if the moving aircraft is
either the first aircraft of the landing sequence (first in seq?(a)), or its leader
aircraft has already initiates the approach (that is, it is in the approach area:
on approach?(leader(a,landing seq))). This precondition is used as the “thresh-
old” that delays the final approach initiation to the ground until when the safe
separation of the aircraft in the system is guaranteed.

LateralApproachInitiation: The transition is different from VerticalApproa-
chInitiation, in that it is always enabled whenever lez is not empty. Nevertheless,
the aircraft can directly proceed to base only when specific conditions, which are
equivalent to the precondition of VerticalApproach- Initiation, are met. Otherwise,
the aircraft first moves to holding2.

MissedApproach: This transition is enabled whenever final is not empty. It
reflects that there is no “guard” that prevents an aircraft from missing the ap-
proach, as discussed before. A missed aircraft gets reassigned its mahf according
to nextmahf (see the definition of the function reassign), and is added to one
of the maz zones according to its mahf before the reassignment. In the landing
sequence, the aircraft is removed from the head of the sequence, and added to
the end of it with the reassignment. The variable nextmahf is flipped in this case
as well, so that the alternate assignment will be preserved even in case some
aircraft miss the approach.
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—————————————————————————————————–
automaton SATS

imports SatsVocab

signature
internal

VerticalEntry(ac:Aircraft, id:ID, side:Side),
LateralEntry(ac:Aircraft, id:ID, side:Side),
HoldingPatternDescend(ac:Aircraft,side:Side),
VerticalApproachInitiation(ac:Aircraft,side:Side),
LateralApproachInitiation(ac:Aircraft,side:Side),
Merging(ac:Aircraft,side:Side),
Exit(ac:Aircraft),
FinalSegment(ac:Aircraft),
Landing(ac:Aircraft),
Taxiing(ac:Aircraft),
MissedApproach(ac:Aircraft),
LowestAvailableAltitude(ac:Aircraft,side:Side)

states
zones : zone map, % mapping from a zone name to a zone
nextmahf : Side, % Next missed approach holding fix
landing seq : queue % landing sequence is defined as a queue
initially

zones = initialZones ∧
nextmahf = right ∧
landing seq = empty

let
%% access to the state components
holding3(side: Side) = zones[holding3(side)];
holding2(side: Side) = zones[holding2(side)];
lez(side: Side) = zones[lez(side)];
maz(side: Side) = zones[maz(side)];
base(side: Side) = zones[base(side)];
intermediate = zones[intermediate];
final = zones[final];
runway = zones[runway];

%% first aircraft in the landing sequence?
first in seq?(a:Aircraft) = (a = first(landing seq));

%% definig functions on a zone map as functions on a state
on approach?(a:Aircraft) = on approach?(zones, a);
on approach?(side:Side) = on approach?(zones,side);
actual(side:Side) = actual(zones,side);
virtual(side:Side) = virtual(zones,side);

%% new aircraft
aircraft(side:Side, id :ID) = [IF empty?(landing seq) THEN side ELSE nextmahf, id ];

%% reassign aircraft
reassign(a:Aircraft) = set mahf(a, IF empty?(landing seq) THEN a.mahf ElSE nextmahf);

%% the first aircraft of z from moves to z to in zones
move(z from, z to: z name, zones : zone map | z from =/ z to ∧ ¬ empty?(z from)) =

assign(assign(zones , z to, add(zones [z to], first(zones [z from]))),
z from, rest(zones [z from]))

%% new aircraft enters a zone
enter(z enter: z name, side:Side, id:ID, zones :zone map) =

assign(zones , z enter, add(zones[z enter], aircraft(side,id)));
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transitions

internal VerticalEntry(a, id, side)
pre virtual(side) < 2 ∧

¬on approach?(side) ∧
empty?(maz(side)) ∧
empty?(lez(side)) ∧
empty?(holding3(side)) ∧
a = aircraft(side,id) ∧
∀ac: Aircraft
((on zones?(ac) ∨

in queue?(ac, landing seq) ∨
on zone?(runway, ac)) ⇒ ac.id =/ id)

eff zones := enter(holding3(side),side,id,zones);
landing seq := add(landing seq, a);
nextmahf := opposite(a.mahf);

internal LateralEntry(a, id, side)
pre virtual(side) = 0 ∧

a = aircraft(side,id) ∧
∀ac: Aircraft
((on zones?(ac) ∨

in queue?(ac, landing seq) ∨
on zone?(runway, ac)) ⇒ ac.id =/ id)

eff zones := enter(lez(side),side,id,zones);
landing seq := add(landing seq,a);
nextmahf := opposite(a.mahf);

internal HoldingPatternDescend(a, side)
pre ¬(empty?(holding3(side))) ∧

a = first(holding3(side)) ∧
empty?(holding2(side))

eff zones:=
move(holding3(side),holding2(side),zones)

internal VerticalApproachInitiation(a, side)
pre ¬(empty?(holding2(side))) ∧

a = first(holding2(side)) ∧
length(base(opposite(side))) ≤ 1 ∧
(first in seq?(a) ∨

on approach?(leader(a,landing seq)))
eff zones :=

move(holding2(side),base(side),zones)

internal LateralApproachInitiation(a, side)
pre ¬(empty?(lez(side))) ∧

a = first(lez(side))
eff IF length(base(opposite(side))) ≤ 1 ∧

(first in seq?(a) ∨
on approach?(leader(a,landing seq)))

THEN
zones :=
move(lez(side),base(side),zones)

ELSE
zones :=
move(lez(side),holding2(side),zones)

FI

internal Merging(a, side)
pre ¬(empty?(base(side))) ∧

a = first(base(side)) ∧
(first in seq?(a) ∨
on zone?(intermediate,

leader(a,landing seq)) ∨
on zone?(final,leader(a,landing seq)))

eff zones := move(base(side),intermediate,zones)

internal Exit(a)
pre ¬(empty?(intermediate)) ∧

¬(empty?(landing seq)) ∧
a = first(intermediate) ∧
first in seq?(a)

eff zones:=
assign(zones,intermediate,rest(intermediate));
landing seq := rest(landing seq)

internal FinalSegment(a)
pre ¬(empty?(intermediate)) ∧

a = first(intermediate)
eff zones := move(intermediate, final, zones)

internal Landing(a)
pre ¬(empty?(final)) ∧

¬(empty?(landing seq)) ∧
a = first(final) ∧
empty?(runway)

eff zones := move(final,runway,zones);
landing seq := rest(landing seq);

internal Taxiing(a)
pre ¬(empty?(runway)) ∧

a = first(runway)
eff zones:= assign(zones, runway, rest(runway));

internal MissedApproach(a)
pre ¬(empty?(final)) ∧

¬(empty?(landing seq)) ∧
a = first(final)

eff zones:= assign(zones, final, rest(final));
zones:= assign(zones, maz(a.mahf),

add(maz(a.mahf),reassign(a)));
landing seq :=

add(rest(landing seq),reassign(a));
nextmahf := opposite(reassign(a).mahf);

internal LowestAvailableAltitude(a, side)
pre ¬(empty?(maz(side))) ∧

a = first(maz(side))
eff IF empty?(holding3(side)) ∧

empty?(holding2(side))
THEN

zones :=
move(maz(side),holding2(side),zones)

ELSE
IF empty?(holding3(side)) THEN

zones :=
move(maz(side),holding3(side),zones)

ELSE
zones :=
move(maz(side),holding3(side),
move(holding3(side),holding2(side),
zones))

FI
FI

——————————————————————————————————
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3 The Main Properties

In this section, we present the main properties that represents the safe separation
of aircraft. There are seven properties taken from the original paper [2]. In PVS,
each property is expressed as a predicate over the states, and is declared as an
invariant as follows:

Invariant_#: LEMMA ( FORALL (s:states): reachable(s) => Inv#(s));
where Inv# is the predicate that expresses the property, and # is replaced by the
actual number of the property. In the following, we describe the seven proper-
ties, along with the corresponding predicates in PVS. The predicate reachable(s)
checks if s is a reachable state of the system.

Property 1: The total number of aircraft in the operation area (represented by
arrival op; a formal definition is in [5]) is at most four.

Inv1(s:states):bool = arrival_op(s) <= 4

Property 2: The total number of aircraft in each initiation area is at most two.
Inv2(s:states):bool = FORALL (side:Side): actual(s,side) <= 2

Property 3: The number of aircraft in each vertical holding fix (holding2 and
holding3 of each side) is at most one.

Inv3(s:states):bool = FORALL (side:Side):
length(holding3(side,s)) <= 1 AND length(holding2(side,s)) <= 1

Property 4: The number of aircraft on a missed approach zone (maz(right) and
maz(left), respectively) is at most two.

Inv4(s:states):bool = FORALL (side:Side): length(maz(side,s)) <= 2

Property 5: The number of aircraft on a lateral entry zone (lez(right) and
lez(left), respectively) is at most one.

Inv5(s:states):bool = FORALL (side:Side): length(lez(side,s)) <= 1

Property 6: If a lateral entry zone of side σ (lez(σ)) is not empty, holding2(σ),
holding3(σ), and maz(σ) are all empty.

Inv6(s:states):bool = FORALL (side:Side):
NOT(empty?(lez(side,s))) IMPLIES empty?(holding2(side,s)) AND

empty?(holding3(side,s)) AND
empty?(maz(side,s))

Property 7: The total number of aircraft assigned to one side as their mahf in
the operation area (represented by assigned2fix; a formal definition is in [5]) is
at most two.

Inv7(s:states):bool = FORALL (side:Side): assigned2fix(s,side)<=2

4 Proof of the Properties

Almost all properties are proved by induction over steps of the abstract model
(the length of the sequence of transitions the model ever takes), some of which
need to be strengthened to make an inductive proof work.

It turns out that some properties depend on other properties, and thus we
have to prove them in such an order that a proof of each property just depends
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on the properties that have been proved. Because of this, the order of the proof
in this section does not exactly match the numbering of the properties.3

4.1 Properties Part 1: Properties That Can Be Proved Without a
Strengthening

In this subsection, we prove the properties that can be proved straightforwardly
by induction without strengthening them (Properties 1, 7, and 5).

Theorem 1. (Property 1) For any reachable state of the abstract model, the
number of aircraft in the operation area is at most four.

Proof. By induction. The base case is easy to prove.
[Induction step]: From the induction hypothesis, the number of aircraft in the

operation area is at most four in the pre state. Two transitions, VerticalEntry
and LateralEntry, add an aircraft to the operation area.

First, consider the case that VerticalEntry(side) is performed. If the number
of aircraft in the area is strictly less than four in the pre state, the condition
holds since the transition just adds one aircraft to the area. Now suppose the
number of aircraft in the area is exactly four in the pre state. From the fact that
the assignments of the mahf alternate in the landing sequence, it follows that
there are exactly two aircraft assigned to each side. It implies that the value of
virtual(side) is at least two in the pre state considering that, from the definition of
virtual, the value is always more than or equal to the number of aircraft assigned
σ. This contradicts virtual(side)¡2 from the precondition.

In the case that LateralEntry(side) is performed, we can prove the condition
analogously to the case of VerticalEntry(side) using the fact that the transition
checks if the value of virtual(side) is zero.

Theorem 2. (Property 7) For any reachable state of the abstract model and a
side σ, the number of aircraft on the operation area assigned σ as their mahf is
at most two.

Proof. From theorem 1 (Property 1), the number of aircraft in the operation
area is at most four. Since the aircraft get alternate assignments, the number of
assignments to one side is at most two.

Theorem 3. (Property 5) For any reachable state of the abstract model and a
side σ, the number of aircraft on lez(σ) zone is at most one.

Proof. By induction. We prove it for an arbitrary side σ. The base case is easy.
[Induction step]: From the induction hypothesis, the number of aircraft in

lez(σ) is at most one. The only transition that increases the number of aircraft
in the zone is LateralEntry(σ). From the precondition of it, the value of virtual(σ)
is zero. It implies that there is no aircraft in lez(σ) before the transition. Thus
the bound holds after the transition.
3 Since we did not know what the order of the proof should be when we defined these

properties in PVS, we just listed the properties in the order as appear in this paper.
Though we could have re-numbered the properties so that it matches up the order of
the proof, in order to maintain the consistency with the code in PVS, we numbered
them in the same order as the code.
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4.2 Blocking of Aircraft

In order to prove the rest of the properties, we have to strengthen them using a
notion of blocking of aircraft introduced in this subsection. To see an example of
why an inductive proof of the properties does not work without a strengthening,
let us consider Property 2. As we mentioned in Section 2.5, there is no “guard”
to prevent an aircraft from missing the approach (MissedApproach is enabled
whenever the final zone is not empty). Thus if there are already two aircraft in
the right initiation area, for example, and there is an aircraft assigned right in
final, the bound would be violated by the MissedApproach transition.

One might consider strengthening the condition using the potential number of
aircraft introduced in Section 2, instead of using the actual number of aircraft.
Since the potential number is always greater than or equal to the actual number,
we could prove the property by proving the bound on the potential number.
However, this approach would not work, since the potential number can exceed
two in some reachable states, as depicted in Figure 5. In the state depicted in
the figure, the potential number of aircraft in the right initiation area is three.

Even if the potential number of aircraft exceeds two, the above scenario would
not jeopardize Property 2. The potentially problematic scenario is that c initiates
and misses the approach after the situation in the figure. However, this scenario
would not happen because aircraft c has the leader aircraft b. From this fact and
the rule of the approach initiation, the leader b has to leave the right initiation
area before c initiates the approach. In other words, the approach initiation of
aircraft c is “blocked” until b initiates the approach. This example leads to a
notion of blocking of aircraft. That is, if all aircraft in the left side are either
assigned left, or are preceded by some other aircraft b in the landing sequence,
no aircraft assigned right can initiate the approach from the left side until the
blocking aircraft b initiates the approach.

landing sequence :

c is assigned right
as its mahf

Right Initiation Area Left Initiation Area

b

The trajectory of aircraft c
if it misses the approach

The potential number of aircraft in 
the right initiation area is:
2 (actual number of aircraft: a; b)  +
1 (the number of potential aircraft: c)   
                                                      =   3

a

b c

a c

Fig. 5. The potential number of aircraft
on the right initiation area is more than
two

Right Initiation Area

The trajectory of aircraft a1 in the case that it
initiates the approach  from the left initiation
area, and then misses the approach

b

The mahf of a1

is assigned to left

a2 is preceded by b
in the landing sequence

Blocked by b w.r.t. the right side

a1

a2

Left Initiation Area

Fig. 6. The left initiation area is blocked
by the first aircraft of lez(right)

The formal definition of blocking of aircraft in PVS is as follows, where pre-
cedes?(a,b,q) checks if aircraft a precedes aircraft b in sequence q, and on?(side,a,s)
checks if aircraft a is in the initiation area of side in state s.



76 S. Umeno and N. Lynch

The first predicate represents the blocking condition between two aircraft (a
is blocked by b), and the second predicate represents the blocking condition that
implies all aircraft assigned side in the initiation area of the opposite side of side
cannot initiate the approach until the blocking aircraft b initiates the approach.
See Fig. 6 for an example of the blocked initiation area.

blocked_by?(a,b:Aircraft, side:Side, s:states):bool =
mahf(a) = opposite(side) OR
precedes?(b, a, landing_seq(s))

blocked_opposite_side?(b:Aircraft, side:Side, s:states):bool =
Forall (a:Aircraft):

on?(opposite(side),a,s) IMPLIES blocked_by?(a,b,side,s)

4.3 Properties Part 2: Strengthening Property 6

In this subsection, we strengthen Property 6 using the blocking condition defined
in the previous subsection. We also presents a proof sketch of the strengthened
property.

Consider proving Property 6 by induction for an arbitrary side σ. We have to
ensure that there is no aircraft assigned σ in the approach area, since otherwise,
one missed approach would violate the condition. Now in turn, to prove this
condition, we have to guarantee that no aircraft assigned σ will initiate the
approach when lez(sigma) is not empty. Thus we need a blocking condition to
hold in order to prevent such an approach initiation from the opposite side of σ.
From the above discussion, we strengthen Property 6 as follows.

Lem1(s:states):bool = FORALL (side:Side):
NOT (empty?(lez(side,s))) IMPLIES

empty?(holding2(side,s)) AND empty?(holding3(side,s)) AND
empty?(maz(side,s)) AND
NOT on_approach?(s,side) AND
blocked_opposite_side?(first(lez(side,s)),side,s)

Lemma 4. (Strengthened Property 6) For any reachable state of the abstract
model, the strengthened Property 6 holds.

Lemma_1: LEMMA ( FORALL (s:states): reachable(s) => Lem1(s));

Proof. By induction. We prove it for an arbitrary side σ. The base case is easy.
[Induction step]: In the case of LateralEntry(σ): It adds a new aircraft to lez(σ).
The precondition of the transition ensures that virtual(σ)=0. It implies that
there is no aircraft in either holding3(σ), holding2(σ), or maz(σ), and there is no
aircraft assigned σ outside of the initiation area of side σ. The condition follows
from these facts.

In the case of VerticalEntry(σ): The precondition checks if lez(σ) is empty.
Thus the transition is disabled when lez(σ) is not empty.

In the case of MissedAppraoch(σ): From the induction hypothesis, all aircraft
in the approach area are assigned opposite(σ). Thus the missed aircraft goes to
maz(opposite(σ)), and hence maz(σ) is not affected by the transition.

In the case of VerticalApproachInitiation(opposite(σ)): The initiation area of
opposite(σ) is blocked in the pre state. It follows that the aircraft that initiates
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the approach must be assigned opposite(σ), since otherwise it violates the order
of the approach initiation. Thus NOT on approach? is preserved.

The rest of the cases are easy to prove, using some auxiliary lemmas that
state that the blocking condition is preserved by some specific transitions. (See
[5] for more details).

4.4 Properties Part 3: The Key Lemma, and the Remaining
Properties

In this section, we present a key lemma to prove the rest of the main properties.
The lemma has the longest and most complex statement, and the proof of it is
also complicated because of the substantial number of case analyses and discus-
sions on the blocking condition. It consists of nine conditions, where two of them
are from main properties, Properties 3 and 4, and the remaining seven conditions
construct case analyses of the blocking situation. The formal description of the
lemma appears in the next page.

The condition on each of these cases has a form analogous to the strengthened
Property 6 proved in the previous subsection. Indeed, they are from the same
philosophy: Consider proving Property 3 – the number of aircraft in one maz
zone is at most two – by induction. Analogous to Property 6, when there are
already two aircraft in maz(σ) for side σ, we have to guarantee that there is no
aircraft assigned σ in the approach area, since otherwise one missed approach
would violate the bound. Now, to ensure the above fact, we need a blocking
condition for the initiation area of the opposite side of σ. The conditions from
this discussion are represented in Case 1 of the lemma.

In the strengthened Property 6, we only have to consider one situation, as
opposed to the multiple (seven) cases in this lemma. This is because the number
of aircraft in lez increases just by LateralEnty, and this transition has a strict
examination of the safe separation in its precondition: the potential number of
aircraft in the side of entry must be zero. As we saw in the proof sketch of the
strengthened Property 6, this precondition directly implies the required blocking
condition.

In contrast, the number of aircraft in maz increases by MissedApproach, and as
we have stated, this transition has no “guard” in its precondition to examine the
current situation. It implies that we need an analogous blocking condition to hold
in the pre state before MissedApproach is preformed. For this purpose, we need
Case 2, which has a form analogous to Case 1, but represents the situation just
before the number of aircraft in maz gets two by MissedApproach. Analogously,
we need more cases to support Case 2, and then new cases to supports those
cases, and so on. This iteration of finding cases ends when we reach a point
where where we can guarantee the blocking condition in one case from another
case that has been discovered, or from other properties that have been proved.

Following the above strategy, we constructed the seven cases, all of which
depend on each other: we need some of the seven cases or two properties as an
induction hypothesis to prove every single case. This is why the seven cases and
two properties are defined as one lemma, and are proved together at the same
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time. Note that the blocking aircraft differs depending on the cases. That is,
different cases uses the blocking aircraft in different positions. This represents
the fact that the blocking aircraft can move by the transition, and thus we have
to match up the blocking aircraft between the pre and post state.

%% case 1: two aircraft are in maz
Lem2_case1(s:states,side:Side):bool =

length(maz(side,s))=2 IMPLIES
empty?(holding2(side,s)) AND empty?(holding3(side,s)) AND
NOT on_approach?(s,side) AND
LET a1 = first(maz(side,s)) IN %% first aircraft in maz
LET a2 = first(rest(maz(side,s))) IN %% second aircraft in maz
LET a = IF mahf(a1) = side THEN a2 ELSE a1 ENDIF IN
blocked_opposite_side?(a,side,s)

%% case 2: one aircraft is in maz and some aircraft assigned ’side’ are on approach.
Lem2_case2(s:states,side:Side):bool =

length(maz(side,s))=1 AND on_approach?(s,side) IMPLIES
assigned_approach(s,side) <= 1 AND
LET a1 = first(maz(side,s)) IN
blocked_opposite_side?(a1,side,s)

%% case 3: one aircraft is in maz and some aircraft are in holding2/3
Lem2_case3(s:states,side:Side):bool =

length(maz(side,s))=1 AND
(NOT (empty?(holding2(side,s))) OR NOT (empty?(holding3(side,s))))

IMPLIES
length(holding2(side,s)) + length(holding3(side,s)) <= 1 AND

NOT on_approach?(s,side) AND
LET a1 = IF NOT (empty?(holding2(side,s)))

THEN first(holding2(side,s))
ELSE first(holding3(side,s)) ENDIF IN

LET a2 = first(maz(side,s)) IN
LET a = IF mahf(a1) = side THEN a2 ELSE a1 ENDIF IN
blocked_opposite_side?(a,side,s)

%% case 4: some aircraft assigned ’side’ are on approach, and
%% some aircraft are in hoding2/3.
Lem2_case4(s:states,side:Side):bool =

(NOT (empty?(holding2(side,s))) OR NOT (empty?(holding3(side,s)))) AND
on_approach?(s,side)

IMPLIES
length(holding2(side,s)) + length(holding3(side,s)) <= 1 AND
empty?(maz(side,s)) AND
assigned_approach(s,side) <= 1 AND
LET a1 = IF NOT (empty?(holding2(side,s)))

THEN first(holding2(side,s))
ELSE first(holding3(side,s)) ENDIF IN

blocked_opposite_side?(a1,side,s)
%% case 5: both holding2 and holding3 are not empty.
Lem2_case5(s:states,side:Side):bool =

(NOT (empty?(holding2(side,s))) AND NOT (empty?(holding3(side,s)))) IMPLIES
empty?(maz(side,s)) AND
NOT on_approach?(s,side) AND
LET a1 = first(holding2(side,s)) IN
LET a2 = first(holding3(side,s)) IN
LET a = IF mahf(a1) = side THEN a2 ELSE a1 ENDIF IN
blocked_opposite_side?(a,side,s)

%% case 6: there is an aircraft that is assigned ’side’ and is not blocked
%% in the opposite side, and some aircraft are in h2/h3
Lem2_case6(s:states,side:Side):bool =

LET a1 = IF NOT (empty?(holding2(side,s)))
THEN first(holding2(side,s))
ELSE first(holding3(side,s)) ENDIF IN

(NOT (empty?(holding2(side,s))) OR NOT (empty?(holding3(side,s)))) AND
ac_ready_to_approach?(side,s)

IMPLIES
length(holding2(side,s)) + length(holding3(side,s)) <= 1 AND
empty?(maz(side,s)) AND
NOT on_approach?(s,side) AND
blocked_except_for_one?(a1,side,s)

%% case 7: there is an aircraft that is assigned ’side’ and is not blocked
%% in the opposite side, and one aircraft is in maz
Lem2_case7(s:states,side:Side):bool =

LET a1 = first(maz(side,s)) IN
length(maz(side,s))=1 AND
ac_ready_to_approach?(side,s)

IMPLIES
blocked_except_for_one?(a1,side,s)

%% Lemma 2: combination of seven cases, and invariants 3 and 4.
Lem2(s:states):bool =

FORALL (side:Side):
Inv3(s) AND Inv4(s) AND Lem2_case1(s,side) AND
Lem2_case2(s,side) AND Lem2_case3(s,side) AND Lem2_case4(s,side) AND
Lem2_case5(s,side) AND Lem2_case6(s,side) AND Lem2_case7(s,side)

We use new auxiliary predicates blocked except for one? and ac ready to app-
roach?. We do not have a space to present a definition, but it appears in [5].
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Lemma 5. (The key lemma) For any reachable state of the abstract model, the
lemma introduced in this subsection holds.

The complete proof appears in [5]. Due to the substantial amount of the case
analyses, the length of the proof becomes as long as ten pages. We followed a
way analogous to the proof of Lemma 4. As opposed to Lemma 4, however, we
have to be careful about matching the blocking aircraft as stated before.
Now we prove Property 2 using Lemma 5.

Theorem 6. (Property 2) For any reachable state of the abstract model and
side σ, the number of aircraft in one initiation area is at most two.

Proof. Suppose there are more than two aircraft in one initiation area. For any
possible position of these aircraft, it violates either Property 3, 4, 5, or 6, or
Case 1 or 3 of Lemma 5. This is a contradiction.

5 Conclusions and Future Work

In this paper, we first reconstructed the mathematical model of an aircraft land-
ing protocol presented in [2], using the I/O automata framework. Though the
protocol is complex, the IOA code we gave has a manageable form. Using the re-
constructed model, we verified some safe separation properties of aircraft in the
Self Controlled Area. All proofs of the properties have been rigorously checked
using PVS. We found that using a mechanical prover is very helpful in managing
a large proof for a moderately complex system such as ours.

The model in the paper is a discrete model in that the airspace and every
movement of the aircraft are discretized. Using this model, we can verify the
safe separation of aircraft in terms of the bound on the number of aircraft in
a specific discretized area. However, to examine properties that involve more
realistic dynamics of aircraft, such as the spacing between aircraft, we need a
more precise modeling of the aircraft kinematics and the geometry of the airport.
A continuous model, such as the one presented in [7], is suitable to deal with
such properties. We are constructing a continuous model that more realistically
reflects the dynamics of the aircraft than the model in [7]. We will also explore
if the results in this work can carry over to the new model using a refinement.
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Abstract. Building on the theory of interface automata by de Alfaro
and Henzinger we design an interface language for Lynch’s I/O automata,
a popular formalism used in the development of distributed asynchronous
systems, not addressed by previous interface research. We introduce an
explicit separation of assumptions from guarantees not yet seen in other
behavioral interface theories. Moreover we derive the composition oper-
ator systematically and formally, guaranteeing that the resulting com-
positions are always the weakest in the sense of assumptions, and the
strongest in the sense of guarantees. We also present a method for solv-
ing systems of relativized behavioral inequalities as used in our setup and
draw a formal correspondence between our work and interface automata.

1 Introduction

A suitably expressive interface language lies at the very center of any component-
oriented development framework. Interfaces are abstractions of components,
carrying all essential information necessary to establish cross-component com-
patibility. Instead of reasoning about components directly, one typically ex-
amines compatibility of their interfaces, while the adherence of a particular
implementation to its interface is tested separately. This, not only allows for
independent development of components, but also by introducing composition-
ality helps to combat the state space explosion problem in various automatic
analyses.

Type annotations, type checking, and type inference have traditionally been
used to decide compatibility of components soundly with respect to memory
safety. However, static type correctness in this traditional sense fails to guar-
antee more elaborate properties, like correctness of communication, or deadlock
freeness. This observation has inspired a long line of research on behavioral type
systems and behavioral interface languages suitable for specification of highly
trusted computer systems (see [1,2,3,4] and references therein for examples).

We follow de Alfaro and Henzinger [5,6] in studying an automata based inter-
face language, or interface automata. Unlike them however, we explicitly sepa-
rate, in the interface description, the assumptions that a component may make

� Partly supported by Center for Embedded Software Systems (CISS) in Aalborg.
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Fig. 2. TryTwice = (EnvTryTwice ,SpecTryTwice)

about its use from the guarantees that it needs to commit to. Assumptions de-
scribe the possible behaviors of the component’s external environment, while
guarantees describe the possible behaviors of the component itself.

Each interface in our theory consists of two I/O automata. The first, called
the environment, represents assumptions. The second, called the specification,
describes guarantees. Figure 1 shows an interface for a Client component con-
sisting of the automata EnvClient and SpecClient . The arrows incoming to or
outgoing from the box surrounding each of the automata visualize their static
types, or signatures. The environment EnvClient specifies that even though the
static type does allow a fail action, the emission of this action is disallowed for
all compliant execution environments. The only legal input is send. One can still
use the Client component in a context that syntactically permits fail, but the
behavior of the Client is only guaranteed in environments that do not fail.

Alfaro and Henzinger model assumptions about the use of a component by
the interface’s inabilities to receive inputs. The output transitions of the very
same interface automaton describe its guarantees. Since we separate the two, we
alleviate the need for blocking. Our automata are input enabled—accepting any
input from their signature in every state. In order to avoid clutter we usually do
not draw loop transitions, which correspond to ignoring an input. There is one
such implicit transition 1 send?−−−−→1 in EnvClient and three in SpecClient .

Two interfaces can be combined into a composite interface, describing a new
set of assumptions and guarantees. Interface TryTwice, presented in Fig. 2 can
be composed with Client . The two components do not form a closed system, but
are intended for use together with a further unspecified LinkLayer component.

Composition of interfaces is a central construction in any interface theory. One
of our contributions is that the composition is derived systematically: we formally
state requirements for it in the form of a system of inequalities, and derive a



84 K.G. Larsen, U. Nyman, and A. Wąsowski

ack

ack trnsmt

nack ack

trnsmt nack trnsmt trnsmt

EnvComp1

trnsmt ack nack

ack

ack

trnsmt nack trnsmt nack

SpecComp1

trnsmt ack nack

Fig. 3. (EnvTryTwice ,SpecTryTwice)|(EnvClient ,SpecClient ) = Comp1

ok

acksend trnsmt

send ok fail

trnsmt ack nack

ack
nack

ack
trnsmt trnsmt

trnsmt ack nack

Fig. 4. (a) The environment EnvNoNack and (b) the environment EnvComp2

result of the composition as a maximal solution of this system. Consequently
properties of the composition hold by construction.

Figure 3 shows the interface resulting from composing Client and TryTwice .
Later we shall explain how it has been computed. Now observe that any com-
ponent legally interacting with this new interface may not send a nack twice
in response to the transmt request—a simple consequence of the fact that this
would make TryTwice respond with a fail to Client, violating the assumptions of
the latter. The additional state T manifests the fact that the computed environ-
ment expresses the weakest assumptions. It allows receiving arbitrary behavior
after a second transmt in a row, because any compliant implementation would
never send it, and thus would never be affected by the subsequent behaviour.

An advantage of separating assumptions from guarantees is that one of the
automata can be changed without affecting the other. Thus the same guarantees
can be used for multiple interfaces. In [7] we have argued that this is useful for
modeling software product lines: a family of component variants may be specified
using a single specification (guarantee) and multiple environmental restrictions
(assumptions). An advanced compiler may use the assumptions to derive special-
ized versions of the component from the same source code. Let us illustrate this
with an example. Figure 4a gives an alternative environment EnvNoNack for the
SpecTryTwice specification. This environment disallows the sending of a nack as
a response to a trnsmt request. Any implementation of TryTwice is also an im-
plementation of (EnvNoNack ,SpecTryTwice). If it is only used in EnvNoNack , then
it could be automatically specialized to these specific circumstances. The error
handling code could be removed as it is not needed in such a context. The com-
position Comp2 = (EnvNoNack ,SpecTryTwice)|(EnvClient ,SpecClient) has exactly
the same specification part as the Comp1 composition. The resulting environ-
ment EnvComp2 (Fig. 4b) disallows the generation of the nack input even though
the static type permits this.



Interface Input/Output Automata 85

As we have also argued in [7] the separation supports a simple declarative style
of modeling assumptions: simple properties can be modeled as standalone au-
tomata and combined using the process algebraic operators of sum and product,
corresponding to disjunction and conjunction of properties respectively.

An interesting theoretical side effect of our exposition, is an informal corre-
spondence drawn between blocking and non-blocking interface theories. A single
blocking interface automaton of [5] expresses both the assumptions of a compo-
nent and its commitments. When a blocking interface automaton is unable to ac-
cept an input, it effectively assumes that any compatible environment will never
provide it. In the theory for non-blocking systems the interfaces are composed of
two non-blocking automata, and the same effect is achieved by explicitly using
one of the automata for describing the permissible behavior of the surroundings.

The paper develops as follows. Section 2 defines I/O automata and interfaces.
Section 3 discusses refinement of interfaces. The most central section, Section 4,
is devoted to composition, while a more technical section, Section 5, is devoted
to systems of inequalities used in section 4 and is a contribution in itself. But
reading it is not essential for appreciating our interface theory. Section 6 draws
a correspondence between interface automata and our interfaces, while section 7
discusses other related work. We conclude in section 8. A particularly interested
reader can find the proofs of all our claims in an upcoming BRICS report.

2 I/O Automata and Their Interfaces

Definition 1. An I/O automaton S=(statesS , startS , inS , outS , intS , stepsS) is
a 6-tuple, where statesS is a set of states, startS ∈ statesS is an initial state,
inS is a set of input actions, outS a set of output actions, and intS is a set
of internal actions. All of the action sets are mutually disjoint. We abbreviate
extS = inS ∪outS and actS = extS ∪ intS . Then stepsS ⊆ statesS×actS× statesS

is the set of transitions. I/O automata are input enabled: for every state s and
any action i ∈ inS there exists a state s′ and a transition (s, i, s′) ∈ stepsS .

We write q a−→S q
′ if (q, a, q′) ∈ stepsS . We often explicitly suffix external actions

with direction of communication writing q a!−−→S q
′ if a ∈ outS , and q a?−−→S q

′ if
a ∈ inS . Notice that the labels a! and a? still denote exactly the same action, and
we can drop the suffixes whenever the direction of communication is irrelevant.
We write q a�−−→, meaning that there is no q′ such that q a−→q′.

Definition 2. An execution of an I/O-automaton S starting in a state q0 is a
finite sequence of labels q0, a0, q

1, a1, q
2, a2, . . . , q

n−1, an−1, q
n such that all qi’s

are members of statesS, all ai’s are members of actS and for every k = 0 . . . n−1
it is the case that qk ak−−→S q

k+1. A trace σ of S is an execution ψ of S starting
in the initial state, with all the states and internal actions deleted: σ = ψ � extS,
where ψ � X denotes a sequence created from ψ by removing symbols that are
not in set X. The set of all traces of automaton S is denoted TrS.

Two I/O-automata S1 and S2 are syntactically composable if their input and
output sets do not overlap and their internal actions are not shared: inS1∩inS2 =
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outS1 ∩outS2 = intS1 ∩actS2 = actS1 ∩ intS2 = ∅. Two syntactically composable
automata S1 = (statesS1 , startS1 , inS1 , outS1 , intS1 , stepsS1

) and S2 = (statesS2 ,
startS2 , inS2 , outS2 , intS2 , stepsS2

) can be composed into a single product automa-
ton S = S1|S2, where S=(statesS , startS , inS , outS , intS , stepsS) and statesS =
statesS1 × statesS2 , startS = (startS1 , startS2), inS = inS1 ∪ inS2 \ outS1 \ outS2 ,
outS =outS1 ∪ outS2 \ inS1 \ inS2 , intS = intS1 ∪ intS2 ∪ (extS1∩extS2), and stepsS

are defined by the following rules:

if q1 a−→S1 q
′
1 and a∈actS1 \actS2 then (q1, q2) a−→S1|S2(q

′
1, q2)

if q2 a−→S2 q
′
2 and a∈actS2 \actS1 then (q1, q2) a−→S1|S2(q1, q

′
2)

if q1 a−→S1 q
′
1 and q2 a−→S2 q

′
2 then (q1, q2) a−→S1|S2(q

′
1, q

′
2)

In practice unreachable states may be removed from the product, without af-
fecting the results presented below.

Our composition (same as in [6]) differs from the standard I/O automata com-
position in that it applies hiding immediately. It is equivalent with the standard
composition as long as each action is only shared by at most two components.

We define an interface model to be a pair (E,S) of I/O automata:

Definition 3. A pair of I/O automata (E,S) is an interface if E|S is a closed
system, i.e. inE =outS and outE = inS.

The environment automaton E drives the specification automaton S. Any imple-
mentation I of S must conform to S as long as it is receiving input that conforms
to E. The behavior of I on sequences of inputs that cannot be provided by E is
not constrained. We formalize this using relativized refinement:

Definition 4. An I/O automaton I implements an interface (E,S), written
E |= I � S, iff outI = outS and inI = inS and TrE ∩ TrI ⊆ TrS.

3 Refinement of Interfaces

We establish a hierarchy on interfaces in order to quantify their generality.

Definition 5. Let (E1, S1) and (E2, S2) be two interfaces with the same signa-
tures. We will say that (E1, S1) is a stronger interface than (E2, S2), written
(E1, S1) � (E2, S2), if (E1, S1) has less implementations than (E2, S2), so for
any I/O automaton I: E1 |= I � S1 implies E2 |= I � S2.

The refinement of interfaces can be seen as a subtyping relation in a behavioral
type system for components. In such an interpretation we would say that (E1, S1)
is a subtype of (E2, S2). We propose several simple sound characterizations of
the above refinement that are useful in making proofs:

Theorem 1. Let (E1, S1), (E2, S2) be interfaces with identical signatures. Then

1. TrE1∩TrS1 = TrE2∩TrS2 implies (E1, S1) � (E2, S2) and (E2, S2) � (E1, S1)
2. TrE2⊆TrE1 ∧ TrS1⊆TrS2 implies (E1, S1) � (E2, S2)
3. TrE1 \ TrS1 ⊇ TrE2 \ TrS2 implies (E1, S1) � (E2, S2)



Interface Input/Output Automata 87

The above characterizations are convenient in establishing subtyping relations
among interfaces in many concrete cases. However none of them are complete.
The refinement of interfaces can be characterized in a sound and complete man-
ner using a notion of tests that resembles failure traces of Hoare [8], but deter-
minized, relativized with respect to the environment, and suffix closed.

Definition 6. The set of conformance tests of interface (E,S) is defined as:

test(E,S) = {σ · a |σ∈ TrE ∩ TrS , σ · a∈ TrE \ TrS} · ext∗E ,

where X∗ denotes the set of all finite sequences over alphabet X.

Theorem 2. Let (E1, S1) and (E2, S2) be two interfaces with identical signa-
tures. Then test(E1,S1) ⊇ test(E2,S2) iff (E1, S1) � (E2, S2).

Without spelling out the details, we remark that a finite automaton, such that
test(E,S) is its accepted language, can be computed in quadratic time, and can
be used for testing containment in applications of the above theorem.

4 Interface Compositions

We would like to abstract compositions of components by compositions of their
interfaces. For any two compatible interfaces (E1, S1) and (E2, S2) we should be
able to derive an interface of their composition (E,S), the one that is imple-
mented flawlessly by any two implementations of (E1, S1) and (E2, S2).

Two interfaces are syntactically composable if the I/O automata comprising
them are pointwise syntactically composable. This guarantees that any compo-
nents I1 and I2 implementing syntactically composable interfaces (E1, S1) and
(E2, S2), are also syntactically composable. The question that we want to ad-
dress is the dynamic compatibility of I1 and I2: can I1 violate the environmental
assumptions expressed in E2? Can I2 violate the assumptions in E1?

We may be tempted to say that the composite interface is the composition
of the interface parts: (E,S) = (E1|E2, S1|S2). This construction, however, is
unsound. It is possible to find two compliant implementations that, when com-
posed together, violate (E,S). In order to arrive at a sound and complete notion
of composition, we will state the requirements for the composite interface, and
then derive the construction from them. The three requirements are: independent
implementability [6], mutal deadlock freeness, and associativity.

Independent implementability means that (E,S) is such, that the implemen-
tations of (E1, S1) and (E2, S2) can be developed independently of each other,
and their composition will implement the composition of their interfaces:

For all I1, I2. E1 |= I1 � S1 and E2 |= I2 � S2 implies E |= I1|I2 � S . (1)

Mutual deadlock freeness means that any two correct implementations, when
composed and embedded in an environment that obeys the assumptions of E,
will not violate each other’s assumptions:
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For all I1, I2.E1 |= I1 � S1 and E2 |= I2 � S2

implies I1 |= E|I2 � E1 and I2 |= E|I1 � E2 . (2)

You may find it useful to refer to the flowgraph on Fig. 5a, while studying the
above rule. Observe that in the composed system I1 is indeed the environment
in which E|I2 operates. The composition E|I2 is also the environment for I1 and
it is supposed not to violate any of the assumptions expressed in E1.

Finally, associativity means that in whatever order compositions are applied,
they give rise to equivalent interfaces:

((E1, S1) | (E2, S2)) | (E3, S3) � (E1, S1) | ((E2, S2) | (E3, S3))
(E1, S1) | ((E2, S2) | (E3, S3)) � ((E1, S1) | (E2, S2)) | (E3, S3) . (3)

A disadvantage of the above requirements is that they are not constructive.
They rely on quantification over all implementations, which makes them useless
for computing the composition. Fortunately the quantification can be eliminated.
The following theorem reduces the property of mutual deadlock freeness of all
implementations to mutual deadlock freeness of the interfaces being composed:

Theorem 3. Any environment E fulfills the requirement (2) iff it fulfills the
following condition:

S1 |= E|S2 � E1 and S2 |= E|S1 � E2 . (4)

The above reduction is very fortunate, as (4) also implies independent imple-
mentability with the choice of the guarantees component to be S1|S2:

Theorem 4. Let (E1, S1) and (E2, S2) be syntactically composable interfaces,
and E be an environment I/O automaton satisfying property (4). Then for all I1
and I2 such that E1 |= I1 � S1 and E2 |= I2 � S2 we have E |= I1|I2 � S1|S2.

Consequently if we were able to find an environment E satisfying (4), then
the interface (E,S1|S2) would satisfy mutual deadlock freeness and independent
implementability—a good candidate for the composition of environments. How-
ever, the environment satisfying (4) may not always exist. This is the case, if S1
unconditionally, independently of E’s behavior, violates the assumptions of S2
expressed in E2. In this case (E1, S1) and (E2, S2) are said to be incompatible.

Definition 7. Interfaces (E1, S1), (E2, S2) are incompatible if there exists no
I/O automaton E such that: S1 |= E|S2 � E1 and S2 |= E|S1 � E2.

Figure 5b shows an interface AlwaysFail , which has a signature compatible with
the signature of Client . Nevertheless the dynamic types of Client and AlwaysFail

are incompatible in that they share only one nonempty trace, consisting of one
step, and this trace ends in a deadlock.

In fact there typically exist many pairs (E,S) that satisfy all our require-
ments. For example an interface (M,U), consisting of a mute environment M
never producing any outputs and a universal system specification U generating
all possible traces, would satisfy the composition requirements of any two com-
patible interfaces. The interface (M,U) allows any implementation—it says that
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I1 I2

E

E2E1

send

fail

EnvAlwaysFail

send ok fail

send

fail

SpecAlwaysFail

send ok fail

Fig. 5. (a) Flowgraph for a composition of (E1, S1) and (E2, S2). (b) AlwaysFail .

its implementations will behave in an arbitrary fashion (U), not allowing any
external stimulation (M). Clearly, as a component interface, (M,U) is useless.

We should ensure that our composition operator produces the interface that
carries over all the information available from its components. It must have the
smallest possible set of implementations, while still satisfying all our require-
ments. Similarly, it must maximize the set of components compatible with it (as
opposed to the set of components implementing it). We shall call this optimal
interface the most general. Intuitively to achieve this optimality we need an en-
vironment E satisfying the requirements such that it is maximal with respect to
trace inclusion. By increasing the set TrE we make it easier for components to
be compatible with our interface. Similarly we make it harder to implement the
composite interface, as increasing the set of traces of E decreases the assump-
tions that an implementation can make. The following theorem says that such a
maximal E always exists for compatible interfaces:

Theorem 5. Let (E1, S1) and (E2, S2) be two syntactically composable inter-
faces. If there exists an I/O automaton E enjoying property (4) then there also
exists a maximal such environment with respect to trace inclusion.

Theorem 6. The composition operator mapping interfaces (E1, S1) and (E2, S2)
to (E,S1|S2), where E is the maximal solution of (4), is associative.

Theorems 5–6 together with our earlier observations suggest that the interface
(E,S1|S2), where E is this maximal solution of equations (4), is even more likely
to be the most general interface that we are searching for. A maximal solution of
(4) can be found algorithmically for finite state interfaces. Section 5 describes a
method that can be used for this purpose.

As increasing the environment E makes the interfaces more general, so does
decreasing the specification S (within the limits set by the requirements). For
any particular selection of E satisfying (1), no S can be smaller (relative to E)
than S1|S2, because S1 and S2 themselves are valid implementations. So S1|S2
is the smallest possible specification of the composite interface with respect to
any particular choice of E. This observation can be generalized to a claim that
(E,S1|S2) is the most general interface possible:

Theorem 7. Let (E1, S1), (E2, S2) be interfaces. Let E be the maximal solution
to (4) and let (E′, S′) satisfy independent implementability and mutual deadlock
freeness. If (E′, S′) is compatible with (E′′, S′′) then also (E,S1|S2) is compatible
with (E′′, S′′).
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Having concluded that (E,S1|S2), where E is a maximal solution of (4), is well
defined and the most general, we can use it as a definition of the composition
operator. We will denote this composite interface by (E1, S1)|(E2, S2).

Furthermore our composition of interfaces is complete in the following sense

Theorem 8. For compatible interfaces (E1, S1), (E2, S2) and any (E′, S′) sat-
isfying independent implementability and mutual deadlock freeness:

(E1, S1)|(E2, S2) � (E′, S′) .

We remark that our composition would not be complete if we only required
independent implementability. It seems likely from the work presented in [9]
that it is indeed impossible, for our setting, to be complete in the above sense
using only independent implementability. Similarly we would not be complete if
we only required mutual deadlock freeness, simply because it does not restrict
the S component, which can then be taken to be mute, likely yielding a smaller
interface than ours. Still our composition is sound and complete with respect
to both requirements combined. Requirements (2) and (3) have been introduced
solely for their inherent usefulness. Their interplay guaranteeing soundness and
completeness is a pleasant side effect.

Definition 8. Let (E1, S1), (E2, S2) be syntactically composable interfaces. Their
composition, denoted (E1, S1)|(E2, S2), is an interface (E,S1|S2), where E has
the same signature as E1|E2, and is a maximal solution of (4).

The operator of Def. 8 is associative, supports independent implementability and
mutual deadlock freeness, and produces the most general interfaces.

5 Solving Behavioral Inequalities

Computing compositions of interfaces requires a method for finding solutions
of systems of relativized linear inequalities. In particular we are interested in
systems of inequalities of the following form:

C(E) :

⎧⎪⎨⎪⎩
P1 |= E|S1 � F1

...
Pm |= E|Sm � Fm

(5)

where {Pi}i=1..m, {Si}i=1..m and {Fi}i=1..m are states of the three I/O automata
P , S and F and E is a single unknown automaton. We are interested in finding
a greatest such E with respect to �, or in reporting incompatibility between
components, if no solutions exist. Since in (4) various components of inequalities
come from separate automata, in order to apply the method below we need to
construct three automata P , S and F as the disjoint unions of the automata that
appear in the given place of the constraints in (4). We introduce three convenient
mapping functions in, out and ext which from a state of the two automata F and
S return respectively the set of input, output or external actions of the automata
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that this state originates from in the disjoint union computation. We will use
them in the algorithm below to recover some of the signature information lost
by making the disjoint union.

For simplicity of exposition we shall also assume that all I/O automata in-
volved in the systems are deterministic. Otherwise they can be determinized
without loss of information, as long as our refinement criterion is based on lan-
guage inclusion. This assumption is not inherent to the method, though.

We should now state a property similar to Theorem 5, but formulated for
systems of inequalities in general. We expand it to any number of constraints
and do not require that all the I/O automata come from the same interfaces.

Theorem 9. Let C(E) be a finite system of relativized inequalities:

C(E) :

⎧⎪⎨⎪⎩
P1 |= E|S1 � F1

...
Pm |= E|Sm � Fm

If C(E) has a solution (an I/O automaton satisfying all the constraints), then
C(E) also has a greatest solution with respect to trace set inclusion.

We begin with constructing a modal transition system [10] corresponding to
C(E), and then choose a maximal solution from its states and transitions. From
our perspective modal transition systems are automata with two transition re-
lations −→may and −→must.

Definition 9. A modal transition system is a quadruple S = (Q,A,−→may,

−→must), where Q is a set of systems of constraints (states), A is a set of actions,
−→may ⊆ Q×A×Q is the may transition relation, and −→must ⊆ Q×A×Q is
the must transition relation, −→must ⊆ −→may.

Systems of relativized inequalities can be seen as sets of constraint triples
{(P1, S1, F1), . . . , (Pm, Sm, Fm)} over the solutionE. The constraints evolve when
any of their components, including the unknown E, takes an action. This evo-
lution comprises not only state changes of the I/O automata, but also removing
and introducing constraints. Legal actions of the unknown component E in any
of its states are dependent on the states of the constraints—on what all the Pi’s,
Si’s and all the Fi’s can do. This is why we label states of our modal transition
systems with systems of inequalities (sets of constraints). All the steps that are
allowed by the constraints, but are not strictly required (like a possibility to
produce an output) should give rise to may transitions in the modal transition
system. While all the steps that are strictly required (like input actions enforced
by input-enabledness) give rise to corresponding must transitions.

Formally three I/O automata P, S, F induce a modal transition system E =
(Q,A0,−→may,−→must), where elements of Q are sets of constraints over states
of P , S and F, enriched with a distinct primitive constraint False denoting an
empty set of solutions. The initial state A0 is equal to the set {(P1, S1, F1), . . . ,
(Pm, Sm, Fm)} of initial constraints, and the transition relations are defined ac-
cording to the following rules:
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E a!−−→mayE
′ if and only if both of the following rules are satisfied:

For all (P, S, F ) ∈ E such that a ∈ outE \ inS

If ∃F ′. F a!−−→F ′ and ∃P ′. P a−→P ′ then (P ′, S, F ′) ∈ E′

Else if ∃P ′.P a?−−→P ′ and F a!�−−→ then False ∈ E′

For all (P, S, F ) ∈ E and all S′ such that a∈outE ∩ inS

If S a?−−→S′ also (P, S′, F ) ∈ E′

E a?−−→mustE
′ and E a?−−→mayE

′ iff both of the following rules are satisfied:

For all (P, S, F ) ∈ E and all F ′ such that a ∈ inE \ outS
If F a?−−→F ′ and P a!−−→P ′ then (P ′, S, F ′) ∈ E′

For all (P, S, F ) ∈ E such that a ∈ inE ∩ outS
If S a!−−→S′ then (P, S′, F ) ∈ E′

Each state E ∈ Q of E is minimal such that it satisfies the above transition rules
and the following closure rules:

For all (P, S, F ) ∈ E and a ∈ extS ∩ extF

If ∃S′. S a−→S′ and ∃F ′. F a−→F ′ and ∃P ′. P a−→P ′

then also (P ′, S′, F ′) ∈ E.
For all (P, S, F ) ∈ E and a ∈ extS ∩ extF

If S a!−−→S′ and F a!�−−→ and ∃P ′. P a?−−→P ′ then False ∈ E.

The two may rules discuss E making an output transition concerning an
external output, or an internal communication with S respectively. The must
rules state that E needs to accept all the inputs from the outside and from S
respectively. Finally the closure rules allow S to advance without any interference
with E on its own external actions. Whenever there is a possibility of violation
of the relativized trace inclusion, we add false to the target state of E, hinting
that E should not be allowed to make that step.

Definition 10. The state consistency relation S over a modal transition system
E = (Q,A,−→may,−→must) is the maximal subset of Q such that if E ∈ S then
False /∈ E and whenever E a−→mustE

′ then E′ ∈ S.

Definition 11. A consistent set of transitions T of a modal transition system
E = (Q,A,−→may,−→must) with respect to consistency relation S is a maximal
subset of −→may, where whenever (s, a, s′) ∈ T then s ∈ S and s′ ∈ S.

Theorem 10. Let C(E) be a system of inequalities as required above, and E =
(Q,A,−→may,−→must) be the modal transition system induced by C. Then the
maximal solution of C(E) is an I/O automaton E such that its set of states
statesE is a maximal consistency relation over E,

startE ={(F1, S1), ..., (Fm, Sm)},

inE =
m⋃

i=1

(inFi \ inSi) ∪
m⋃

i=1

(outSi \ outFi)

outE =
m⋃

i=1

(outFi \ outSi) ∪
m⋃

i=1

(inSi \ inFi),
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Fig. 6. The resulting modal transition system for the computation of EnvComp1

and its set of transitions stepE is a maximal consistent set of transitions of E
with respect to statesE . If the maximal state consistency relation of E is empty
then C has no solutions.

The set S can be found by a simple maximal fixpoint computation. In practice
the consistency of the initial state may be decided in a local fashion without
constructing the entire modal transition system.

Figure 6 shows the consistent part of the modal transition system induced by
(EnvTryTwice ,SpecTryTwice)|(EnvClient ,SpecClient ). It can then be minimized in
order to obtain EnvComp1 , shown in Fig. 3. Similarly SpecComp1 from Fig. 3 has
been obtained by minimizing SpecTryTwice |SpecClient .

6 Interface Automata

The relation of our theory to interface automata [5,6] requires special attention,
as we address several issues of that work; most importantly the representation
of assumptions and guarantees within a single automaton. We clearly separate
assumptions from guarantees, and the pairs of assumptions and guarantees can
be constructed independently. In [6] Alfaro and Henzinger discuss static As-
sume/Guarantee interfaces featuring a similar split, however they do not persue
the idea to the dynamic case.

In a larger perspective our work can be seen as a study of building interface
theories as such: starting with a selection of the building blocks, going through
requirements analysis, deriving the composition operator, and studying its gen-
erality. Let us review this process briefly. We begin with selecting important
ingredients such as a component model, an interface model, an implementation
relation and a refinement relation. The particular choice of input-enabled sys-
tems and (relativized) trace inclusion is not crucial for our developments. In fact
we believe that a similar theory can be built using (relativized) simulation, or for
timed automata. We choose I/O automata and trace inclusion because they are
very different from Alfaro and Henzinger’s interface automata, so we inciden-
tally provide a component theory for a different community—the I/O automata
community. At the same time our choice challenges some opinions expressed in
[5,6] that building such a theory, especially supporting contravariant refinement,
is impossible using language inclusion criteria or in a non-blocking setting.
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Furthermore we show how the composition operator can be derived from re-
quirements (by analysis, reduction and automated solving), while Alfaro and
Henzinger introduce this operator in a rather ad hoc manner. After having de-
rived our operator we discuss its generality, and conclude that it is indeed the
most general operator possible, meeting our requirements with respect to trace
inclusion, with respect to the � refinement, and with respect to compatibility
with other components. We conjecture that the operator of our predecessors is
also the most general in their setting, however they never make that claim.

Let us now draw a formal correspondance between the two interface theories.

Definition 12 (after [6]). An interface automaton is a six-tuple S = (statesS ,
startS , inS , outS , intS , stepsS), where statesS is a finite set of states, startS ∈
statesS is an initial state, inS, outS, and intS are three pairwise disjoint sets of
input, output, and internal actions respectively, and stepsS ⊆ statesS × actS ×
statesS is an input-deterministic transition relation, with actS = inS∪outS∪intS.

Notice that the transition relation of interface automata may be non input-
enabled. Syntactic composability of interface automata is governed by the same
rule as the composability of I/O automata, defined on p. 85. The composed
interface is computed by taking a product of the two automata, and removing
from it all incompatible states. A state of the product is an error state if one of its
components can produce a shared output, that the other is unable to receive. A
state of the product is incompatible if it can reach an error state by an execution
over internally controllable transitions (transitions labeled with actions from:
intS1|S2 ∪ outS1|S2).

Definition 13. Two syntactically composable interface automata S1 and S2 are
compatible iff removing all incompatible states from their product leaves an in-
terface automaton with a non-empty set of reachable states.

The function unzip defined below translates an interface automaton to an I/O
automaton interface. If A is an interface automaton then unzipA := (E,S),
where statesS = statesE = statesA ∪ {T }, startS = startE = startA, inS =
outE = inA, outS = inE = outA, intS = intE = intA. The transition relations of
E and S are created from the transition relation of A by making it input-enabled
on the respective input sets:

stepsE = stepsA ∪ {(s, a, T )|s ∈ statesA, a ∈ inE , s
a�−−→A}

stepsS = stepsA ∪ {(s, a, T )|s ∈ statesA, a ∈ inS , s
a�−−→A}

Theorem 11. If A1 and A2 are two compatible interface automata, then unzipA1

and unzipA2 are compatible I/O automata interfaces.

The zip function is a reverse of unzip: it translates an I/O automata interface
into a single interface automaton, by computing the product of the two parts
using the classic algorithm [11, chpt. 4.2] from automata theory: zip(E,S) := A,
where statesA = statesE × statesS , startA = (startE , startS), inA = inS , outA =
outS , intA = intS ∪ intE , and stepsA = {((s, e), a, (s′, e′))|s a−→s′ and e a−→e′}.
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Theorem 12. If (E1, S1), (E2, S2) are compatible deterministic I/O automata
interfaces, then zip(E1,S1), zip(E2,S2) are compatible interface automata.

The fact that our compatibility only implies compatibility in the interface au-
tomata sense for unzippings of deterministic interfaces is not surprising. It is
actually expected, due to the very different nature of the refinement relations
used in the two theories: trace inclusion and alternating simulation [12].

Alfaro and Henzinger choose alternating simulation to support contravariant
treatment of inputs and outputs. We stress that input-enabledness and rela-
tivized trace inclusion already guarantee contravariant treatment of behaviors
in a very similar spirit. Still our theory somewhat strictly requires that im-
plementations of an interface have precisely the same sort as their interfaces,
so it is technically not possible to substitute a richer component in place of a
simpler one, if they are the same on shared functionality. We stress that this
deficiency is not inherent, while it simplifies the presentation. Contravariant sig-
nature extensions can be easily realized with relativized trace inclusion in the
input-enabled setting. Instead of requiring inI = inS and outI = outS in Def. 3,
insist on inS ⊆ inI and outI ⊆ outS . In fact the only significant change required
in later developments is the addition of a side condition to the independent
implementability rule:

∀I1, I2.E1 |= I1 � S1 and E2 |= I2 � S2 and
inI1 ∩ outS2 ⊆ inS1 and inI2 ∩ outS1 ⊆ inS2 implies E |= I1|I2 � S . (6)

This is the very same side condition that Alfaro and Henzinger add to indepen-
dent implementability in order to support contravariant signature extensions. It
ensures that even though the implementation allows additional inputs, it will
only be used as described in this interface. The other components will not com-
municate with it on these additional inputs.

7 Other Related Work

Our work relates directly to the original version of interface automata [5,6],
which was later extended with time and resource information in [13] and [14].
To strengthen the case, we have used some examples from [6] adapting them
to our framework, and aligned the terminology with [5,6] as much as possible.
Another approach to compatibility for blocking-services is taken by Rajamani
and Rehof in [2] targeting compatibility of web services. We work in the input-
enabled asynchronous setting of I/O-automata [15], which is semantically closer
to implementations of embedded systems. To the best of our knowledge similar
properties have not been studied in the I/O automata community yet.

The notion of relativized refinement and equivalence, or more precisely sim-
ulation and bisimulation, is due to Larsen [16,17]. It was so far applied in the
setting of protocol verification [18], automatic testing [19] and modeling software
product lines [7]. Here we adapt it to a language inclusion based refinement.

The general method of solving systems of behavioral equations using disjunc-
tive modal transition systems and bisimulation as a requirement was published
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in [20]. The method presented in section 5 is an adaptation of this earlier work to
an input-enabled setting and language-inclusion based refinement. The original
method does not assume determinism of processes in the system of constraints.

The preliminary version of this paper [21] featured a stronger definition of
mutual deadlock freeness: E|S1 � E2 and E|S2 � E1. Being stronger, this
formulation also implies independent-implementability, but it rules out many
useful compositions as incompatible. The relativized version proposed here (2) is
weaker, but still strong enough to imply independent implementability. As we have
seen in the previous section, it behaves reasonably allowing roughly the same
kind of compatible interfaces as interface automata. The present paper, com-
pletely rewritten, reworks the theory with this new characterization, adding
associativity, refinement of interfaces, a new method for solving systems of in-
equalities, contravariant signature extension, and the correspondence to interface
automata.

8 Conclusion

We have proposed an interface theory for distributed networks of asynchronous
components modeled as I/O automata. The characteristic feature of our inter-
faces is an explicit separation of assumptions from guarantees. Apart from the
usual engineering advantages offered by such a separation of concerns, it also
allows modeling of families of interfaces implemented by software product lines.

We demonstrated that it is possible to build a reasonably behaved interface
theory in an input-enabled setting, with language inclusion as refinement. We
emphasize that our derivation of interface composition is systematic: we state
requirements for composition and reduce the problem to finding a solution of a
corresponding system of behavioral inequalities. We also discuss the generality
of the constructed interface, concluding that it exhibits the weakest assumptions
and the strongest guarantees that are possible with our requirements. Finally
we describe a method for solving systems of inequalities arising in our setup and
draw a formal correspondence between the present work and interface automata.
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Abstract. Constructing comprehensive operational models of intended
system behaviour is a complex and costly task. Consequently, practi-
tioners adopt techniques that support partial behaviour decription such
as scenario-based specifications, and focus on elaborating these descrip-
tions iteratively. In previous work, we show how this process can be
formally supported by Modal Transition Systems (MTSs), observational
refinement, and model merging. In this paper, we study a number of
properties of merging MTSs and give insights on the implications these
results have on engineering and reasoning about behaviour models. We
illustrate the utility of our results on a case study.

1 Introduction

Although state-based behaviour modelling and analysis has been shown to be
successful in uncovering subtle design errors, adoption by practitioners has been
slow. Partly, this is due to the difficulty of constructing behavioural models – this
task requires considerable expertise in modelling notations that developers often
lack. In addition, and perhaps more importantly, the benefits of model analysis
appear after comprehensive behavioural models have been built: classical state-
based modelling approaches are generally not suited for providing early feedback,
when system descriptions are still partial.

The problem is that state-based models, e.g., labelled transition systems
(LTSs) [16], are assumed to be complete descriptions of the system behaviour
up to some level of abstraction, i.e., the state machine is assumed to completely
describe the system behaviour with respect to a fixed alphabet of actions. This
completeness assumption is limiting, particularly if state-based modeling is to
be adopted in iterative development processes [2], processes that adopt use-case
and scenario-based specifications (e.g., [6]), or that are viewpoint-oriented [12].

In such development contexts, a more appropriate type of state-based model
is one in which currently unknown aspects of behavior are explicitly modelled,
distinguishing between positive, negative and unknown behaviours. Positive be-
haviours are those the system is expected to exhibit; negative behaviours are those
the system is expected to never exhibit; unknown behaviours could become pos-
itive or negative, but the choice has not yet been made. State-based models that
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distinguish between these kinds of behaviour are referred to as partial behavioural
models. A number of such models exist and promising results on their use to sup-
port incremental modelling and viewpoint analysis has been reported (e.g. Par-
tial Labelled Transition Systems (PLTSs) [28], Modal Transition Systems (MTSs)
[20,27], Mixed Transition Systems [8] and multi-valued Kripke structures [5]).

Our work focuses on MTSs. These models have been studied in depth (e.g.
[20,15]) and are equipped with a notion of refinement that captures the idea
of elaboration of a partial description into a more comprehensive one, in which
some knowledge about the unknown behaviour of the system has been gained
and modeled as either positive or negative behavior.

A logical extension to the notion of refinement is that of model merging —
a process that allows integration of what is known about the behaviour of a
system as modelled by different MTSs. Model merging supports putting together
partial behavioural descriptions of the same system but given from two different
perspectives, possibly by different stakeholders with different viewpoints [12],
describing different, yet overlapping, aspects of the same system.

In our previous work [27], we introduce the notion of merging and argue that
the core concept underlying model merging is that of common observational
refinement. Note that composition of behavioural models is not a novel idea (e.g.
[23]); however, focus has been on parallel composition which describes how two
different components work together. In the context of model elaboration, we
are interested in composing two partial descriptions of the same component to
obtain a more elaborate version of both original partial descriptions.

In this paper, we aim to provide the necessary support for using merge in
practice by answering several fundamental questions: When can two systems be
merged? When is merge unique (i.e., when can the merging process be auto-
mated)? What kinds of properties are preserved in a merge? How can complex
models be merged?

The rest of this paper is organized as follows. After reviewing the background
material in Section 2, we provide, in Section 3, conditions for existence and
uniquness of merge. We study algebraic properties of merging in Section 4, both
for the case when a unique merge exists and for the case when it yields one
of several possible merges, and apply results of this paper to a case study in
Section 5. We conclude with a discussion, summary, and directions for future
research in Section 6. Proofs of the results in this paper are available in [3].

2 Background

In this section, we briefly review definitions of MTSs, define a 3-valued counter-
part to weak μ-calculus, review definitions of merge, and fix the notation. For
detailed explanations and discussion, refer to [27,3].

2.1 Transition Systems

We use the standard notion of labelled transition systems (LTS) and their ex-
tensions, modal transition systems (MTSs), which capture partial behavior.
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Definition 1. Let States be a universal set of states, Act be a universal set
of observable action labels, and Actτ = Act ∪ {τ}. An LTS is a tuple P =
(S,L,Δ, s0), where S ⊆ States is a finite set of states, L ⊆ Actτ is a set of
labels, Δ ⊆ (S × L × S) is a transition relation, and s0 ∈ S is the initial state.
We use αP = L \ {τ} to denote the communicating alphabet (vocabulary) of P .

Definition 2. An MTS M is a structure (S,L,Δr, Δp, s0), where Δr ⊆ Δp,
(S,L,Δr, s0) is an LTS representing required transitions of the system and
(S,L,Δp, s0) is an LTS representing its possible (but not necessarily required)
transitions. We use αM = L \ {τ} to denote the communicating alphabet of M .

Given an MTS M = (S, L, Δr, Δp, s0), M has a required transition on 	

(denoted M �−→r M
′) if M ′ = (S, L, Δr, Δp, s′0) and (s0, 	, s′0) ∈ Δr. Similarly,

M has a maybe transition on 	 (M �−→m M ′) if (s0, 	, s′0) ∈ Δp −Δr. M �−→p

M ′ means (s0, 	, s′0) ∈ Δp. For an MTS M , Mn denotes changing the initial
state to n. For γ ∈ {r, p}, we write M ε=⇒γ M ′ to denote M( τ−→γ)∗M ′, and
M

ε=⇒m M ′ to denoteM( ε=⇒p)(
τ−→m)( ε=⇒p)M ′, i.e., there is at least one maybe

transition on τ . For 	 �= τ and γ ∈ {r, p}, we write M
�=⇒γ M ′ to denote

M( ε=⇒γ)( �−→γ)( ε=⇒γ)M ′, andM �=⇒m M ′ to denote M( ε=⇒m)( �−→p)(
ε=⇒p)M ′

or M( ε=⇒p)(
�−→m)( ε=⇒p)M ′, i.e., the maybe transition precedes or is on 	 along

the path from M to M ′. For 	 ∈ Actτ , let 	̂ = 	 if 	 �= τ and 	̂ = ε if 	 = τ .
For γ ∈ {r,m, p} and 	 ∈ Actτ , we often write s �−→γ s

′ to mean Ms
�−→γ Ms′

and similarly for =⇒γ . Transitions on the thick arrow =⇒γ are referred to as
observable transitions.

Figure 3 depicts two MTS models,A and B. The initial state of an MTS is
labeled 0, unless stated otherwise, and maybe transitions are denoted with a
question mark following the label, and transitions on sets are short for a single
transition on every element of the set. Note that all transitions in model B are
required transitions, and is thus an LTS as well.

We capture the notion of elaboration of a partial description into a more
comprehensive one using observational refinement :

Definition 3. N is an observational refinement of M , written M �o N , if
αM = αN and (M,N) is contained in some refinement relation R ⊆ ℘× ℘ for
which the following holds for all 	 ∈ Actτ :

1. (M
�−→r M ′) =⇒ (∃N ′ · N

�̂
=⇒r N ′ ∧ (M ′, N ′) ∈ R)

2. (N
�−→p N ′) =⇒ (∃M ′ · M

�̂
=⇒p M ′ ∧ (M ′, N ′) ∈ R)

For example, A �o B (see Figure 3) because B preserves the required behaviour
of A, and A can simulate the possible behaviour of B.

In this paper, we use refinement to mean observational refinement, unless
otherwise stated. Two models are observationally equivalent (≡o) if they refine
each other. We denote by M@X the result of restricting αM to X , i.e., replacing
actions in Act\X with τ and reducing αM to X .
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TD M
�−→rM′

M‖N
�−→rM′‖N

� �∈αN MT M
�−→mM′, N

�−→rN′

M‖N
�−→mM′‖N′

� �=τ MD M
�−→mM′

M‖N
�−→mM′‖N

� �∈αN

TT M
�−→rM′, N

�−→rN′

M‖N
�−→rM′‖N′

� �=τ MM M
�−→mM′, N

�−→mN′

M‖N
�−→mM′‖N′

� �=τ

Fig. 1. Rules for parallel composition

Definition 4. Let M and N be MTSs where M = (SM , LM , Δr
M , Δp

M , s0M )
and N = (SN , LN , Δr

N , Δp
N , s0N ). Then parallel composition (‖) is a sym-

metric operator such that M‖N is an MTS (SM × SN , LM ∪ LN , Δr, Δp,
(s0M , s0N )), where Δr and Δp are the smallest relations that satisfy the rules
given in Figure 1.

2.2 The Logic Lw
μ

While shown in [15] to characterize strong refinement, the 3-valued counterpart
to μ-calculus (Lμ) [17] is not well-suited for describing the observable behaviour
of an MTS and does not characterize observational refinement, because it makes
no distinction between an observable action and τ . Instead, we define a 3-valued
extension of weak μ-calculus (Lw

μ ), which does make such a distinction. The 2-
valued version of this logic has been shown to be a useful logic for expressing
properties of LTSs in [26].

3-valued Lw
μ enables a formula to evaluate to t (true), f (false), or ⊥ (maybe).

For a set of fixed point variables Var, a ∈ Actτ and Z ∈ Var , an Lw
μ formula φ

has the grammar φ � t | f | ⊥ | Z | ¬φ | φ ∧ φ | φ ∨ φ | 〈a〉oφ | [a]oφ | μZ.φ | νZ.φ,
where 〈a〉o and [a]o are the next operators with intended meanings “exists a
next state reachable via an observable transition on a” and “for all next states
reachable via an observable transition on a”, respectively. We write φ(Z) to
denote a formula that might contain free occurrences of the variable Z. μ and ν
represent the least and greatest fixed points, respectively.

Let φ be a formula in Lw
μ ,M = (SM , LM ,Δr

M ,Δp
M , s0) be an MTS, and e1, e2 :

Var → P(SM ) be environments mapping fixed point variables to sets of states.
[[φ]]e1

([[φ]]⊥e2
) denotes the set of states inM where φ is true (false). The set of states

where φ is maybe is then SM\([[φ]]e1
∪ [[φ]]⊥e2

) (i.e., φ is not true or false).

Definition 5. (3-valued Semantics of Lw
μ ) For an MTS M , a formula φ in Lw

μ ,
and environments e1 and e2, [[φ]]e1

⊆ SM and [[φ]]⊥e2
⊆ SM are defined as shown

in Figure 2, where a ∈ Actε, and ei[Z → S] is the same environment as ei except
it maps Z to S.

φ1 ∨ φ2, [a]oφ and νZ.φ(Z) are defined through negation: φ1 ∨ φ2 = ¬φ1 ∧ ¬φ2,
[a]oφ = ¬〈a〉o¬φ, and νZ.φ(Z) = ¬μZ.φ(¬Z). The value of φ in M is its value
in the initial state. We omit the environments from [[φ]] and [[φ]]⊥ to mean that
e1 and e2 map every Z in Var to ∅ and SM , respectively.

For example, the property 〈a〉ot (which expresses the ability to perform an
observable transition on a) evaluates to true in both A and B in Figure 3, even
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[[t]]�e1 � SM [[ϕ ∧ ψ]]�e1 � [[ϕ]]�e1 ∩ [[ψ]]�e1

[[t]]⊥e2 � ∅ [[ϕ ∧ ψ]]⊥e2 � [[ϕ]]⊥e2 ∪ [[ψ]]⊥e2

[[⊥]]�e1 � ∅ [[〈a〉oφ]]�e1 � {s ∈ SM | ∃s′ ∈ SM · (s a
=⇒r s′ ∧ s′ ∈ [[φ]]�e1)}

[[Z]]�e1 � e1(Z) [[〈a〉oφ]]⊥e2 � {s ∈ SM | ∀s′ ∈ SM · (s a
=⇒p s′ ⇒ s′ ∈ [[φ]]⊥e2 )}

[[Z]]⊥e2 � e2(Z) [[μZ.φ(Z)]]�e1 � ∩{S ⊆ SM | [[φ]]�e1 [Z→S] ⊆ S}
[[¬φ]]�e1 � [[φ]]⊥e2 [[μZ.φ(Z)]]⊥e2 � ∩{S ⊆ SM | [[φ]]⊥e2 [Z→S] ⊆ S}

Fig. 2. 3-valued semantics of Lw
μ

though the transition on a in B is preceded by a τ . Additionally, the property
[a]o〈b〉ot evaluates to maybe in A because A0

a−→r A1 is the only transition on
a from the initial state and A1

b−→m A1 is the only transition on b from A1.
The logic Lw

μ characterizes observational refinement. In the 3-valued world,
this means that an MTS M is refined by an MTS N if and only if all true and
false Lw

μ properties in M are preserved in N .

Theorem 1. If M and N are MTSs with αM = αN , then:
M �o N ⇔ ∀φ ∈ Lw

μ ·(s0M ∈ [[φ]] ⇒ s0N ∈ [[φ]])∧(s0M ∈ [[φ]]⊥ ⇒ s0N ∈ [[φ]]⊥)

Finally, if M is an LTS, the semantics in Definition 5 reduces to the standard
2-valued semantics in [26].

2.3 Merging Models

The intuition behind merge is to find a more precise system by combining what
is known from two partial descriptions of that system. This is a process aimed
at finding a common observational refinement, and may require human inter-
vention [27]. We review this process below.

Definition 6. An MTS P is a common refinement (CR) of MTSs M and N if
αP ⊇ (αM ∪ αN), M �o P@αM and N �o P@αN .

We denote the set of CRs of models M and N by CR(M,N). Two MTSs, M
and N , are consistent iff CR(M,N) �= ∅. For example, models G and H over

A: 0 1
a

b? B: 0 1 2
τ a

b C: 0 1
c D: 0 1

c? E : 0 1 2
c? a

F : 0 G: 0 1 2
b c H: 0 1

b I: 0 1 2
c a

b J : 0 1 2
d a

b

K: 0 1 2
c b L: 0 1 2

b c? M: 0 1
a N : 1 0 2

a a

{b?, d} {b?, c}

O: 1 0 2
a a

{c?, d} {b, c?}
P : 1 0 2

a a

d {b, c}
Q: 1 0 2

a a

b? {b?, c}
R: 1 0 2

a a

c? {b, c?}

S : 1 0 2
a a

{b, c}
T : 1 0 2

a a

b c

Fig. 3. Example MTSs
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the vocabulary {b, c} in Figure 3 are inconsistent because H proscribes the
observable trace bc, whereas G requires it.

In [27], it is argued that the merged model should not introduce unnecessary
behaviours, and is therefore based on finding a minimal common refinement :

Definition 7. An MTS P is a minimal common refinement (MCR) of MTSs
M and N if P ∈ CR(M,N), αP = αM ∪ αN , and there is no MTS Q �≡o P
such that Q ∈ CR(M,N) and Q@αP �o P .

Let MCR(M,N) be the set of all MCRs of M and N . The merge of two con-
sistent MTSs M and N , written M +N , is one of the models in MCR(M,N).
Therefore, by Theorem 1, merge preserves all true and false Lw

μ properties. Ad-
ditionally, if there are several MCRs (see Section 3), merging involves a choice
of the most appropriate one, which requires human intervention [27].

3 Existence and Uniqueness of Merge

In this section, we give practical conditions for existence and uniqueness of merge.
If the latter condition is satisfied, the merge process can be fully automated.

Existence. Since merge is based on observational refinement, by Theorem 1,
consistent systems over the same vocabulary should agree on all concrete be-
haviours, i.e., there should be no Lw

μ property that is true in one system and
false in the other (a distinguishing property).

Theorem 2. If M and N are MTSs with αM = αN , then:
CR(M,N) �= ∅ ⇔ (�φ ∈ Lw

μ · s0M ∈ [[φ]] ∧ s0N ∈ [[φ]]⊥)

Distinguishing properties can be used as a form of feedback when two systems
are inconsistent. For example, the property 〈b〉o〈c〉ot is true in G and false in H,
and G and H are inconsistent.

Models with different vocabularies must be first restricted to the shared vo-
cabulary, but a property that distinguishes between the restricted versions of two
inconsistent systems does not always exist (i.e., inconsistencies may be caused
by non-shared actions). For example, I and J (see Figure 3) with c �∈ αJ and
d �∈ αI are inconsistent because I requires that b’s are only proscribed after a c,
whereas J requires that b’s are only proscribed after a d. However, I@(αI ∩ αJ )
= J@(αI ∩ αJ ), and therefore no property distinguishes them by Theorem 2.
Sufficient conditions for such properties to exist, and algorithms to check con-
sistency and to construct distinguishing properties are given in [3]. Intuitively,
the conditions require that following a non-shared action in one system (e.g., c
in I) does not lead to a state that is inconsistent with the other system that has
not changed state (e.g., I1 is inconsistent with J0). This makes sense because
the non-shared action is unobservable to the other system.

Uniqueness. When |MCR(M,N)| = 1 (up to observational equivalence), the
unique merge is called the least common refinement (LCR), denoted LCRM,N .
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One way that multiple incomparable MCRs may exist is if there are several
ways of merging behaviours that correspond to non-deterministic choices. For
example, consider models Q and R in Figure 3 with vocabulary {a, b, c}. Both Q
andR have two non-equivalent successors on a from the initial state, i.e., Q a−→r

Q1 and Q a−→r Q2 such that Q1 �≡o Q2, and similarly for R. However, both of
Q1 and Q2 are consistent withR1 andR2. In particular, S is inMCR(Q,R) and
corresponds to merging Q1 with R1, and Q2 with R2, whereas T corresponds to
merging Q1 with R2, and Q2 with R1. Since S �≡o T , LCRQ,R does not exist.
Sufficient conditions that restrict the existence of such choices, e.g., requiring
that choices similar to those available with Q1, Q2,R1, andR2 lead to equivalent
behaviours, have been given in [3] and are omitted here due to space limitations.
The conditions are consequences of the modelling notation: non-deterministic
choice could be abstracting different aspects of the system, and hence, choices
could be composed in different ways, leading to multiple MCRs.

4 Algebraic Properties of Merge

In practice, merging is likely to be used in combination with refinement and
parallel composition (for one such example, refer to Section 5). Therefore, it is
essential to study algebraic properties of merge to guarantee that the overall pro-
cess yields sensible results. For example, does the order in which various partial
models are merged matter? Is it the same to merge two models and elaborate
the result through refinement than to elaborate the models independently and
then merge them? In this section, we aim to answer such questions. Specifically,
we show that while the existence of multiple non-equivalent MCRs does not
guarantee many of the properties that hold for the LCR case, the right choice
of MCR among the possible merges can be made in order to guarantee partic-
ular algebraic properties, further emphasizing the need for human intervention
in merge.

4.1 Properties of LCRs

Throughout this subsection, whenever we write M +N , we assume that M and
N are consistent MTSs and + results in LCRM,N .

Proposition 1. For MTSs M , N , and P , the + operator satisfies:
1. (Idempotency) M +M ≡o M .
2. (Commutativity) M +N ≡o N +M .
3. (Associativity) (M +N) + P ≡o M + (N + P ).

A useful property of + is monotonicity with respect to observational refinement:
(M �o P ) ∧ (N �o Q) ⇒ M +N �o P +Q. This allows for elaborating differ-
ent viewpoints independently while ensuring that the properties of the original
viewpoints put together still hold.

Proposition 2. (Monotonicity) The operator + is monotonic with respect to
observational refinement.
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We now look at distributing parallel composition over merging. Assume that two
stakeholders have developed partial models M and N of the intended behaviour
of a component M . Each stakeholder will have verified that some required prop-
erties hold in a given context (other components and assumptions on the en-
vironment P1, . . ., Pn). It would be desirable if merging viewpoints M and N
preserved the properties of both stakeholders under the same assumptions on
the environment, i.e., in (M + N) ‖ P1 ‖ · · · ‖ Pn. This would be supported
if (M‖P1‖ · · · ‖Pn) + (N‖P1‖ · · · ‖Pn) �o (M +N)‖P1‖ · · · ‖Pn; but unless some
conditions are imposed on the model vocabularies, this property does not hold.

Example 1. Consider models C, D, and F in Figure 3 and assume that αF = ∅.
D + F is always equivalent to D, and by rule MT in Figure 1, so is (D + F)‖C.
On the other hand, D‖C is equal to D and F‖C is equal to C, by rules MT and
TD, respectively. It follows that (F‖C) + (D‖C) is equivalent to C, and hence:
(F‖C) + (D‖C) ≡o C �o D ≡o (F +D)‖C.

The desired property fails due to the parallel composition of F and C. Since
c does not belong to αF , parallel composition does not restrict the occurrence
of c when composing F with C. However, this is methodologically wrong if
we assume that F and D model the same component (which is reasonable be-
cause F and D are being merged). From D, we know that the system modelled
by F can communicate over c. Hence, c should be included in αF ; otherwise,
the communicating interface between the components modelled by F and C is
under-specified. Therefore, when composing two partial models in parallel, the
entire interface through which the corresponding system components communi-
cate should be in the alphabet of their partial descriptions. We therefore require
that αP ⊆ αM ∩ αN , where P = P1‖ · · · ‖Pn, for distributivity to hold.

Proposition 3. (Distributivity) If M , N , and P are MTSs such that αP ⊆
αM ∩ αN , then: (M‖P ) + (N‖P ) �o (M +N)‖P .

The other direction of Proposition 3 does not hold: (M + N)‖P �o (M‖P ) +
(N‖P ). This makes sense, as the composition of M with P may restrict the
behaviours of M , for instance, making certain states of M unreachable. It is
possible that M‖P + N‖P does not refine (M +N)‖P because inconsistencies
are caused by those states of M that are unreachable in M‖P .

Example 2. Assume that models D, E , and F in Figure 3 are over the vocabulary
{a, c}. Models D and E are consistent and their LCR is F . So, (D+ E)‖D ≡o F
by the rules in Figure 1. On the other hand, D‖D = D and E‖D = D, and
therefore by Idempotency, D‖D + E‖D ≡o D. Since F �o D, the result follows.

In Example 2, D and E have a disagreement on a after following the maybe
transitions on c, which results in the merge F . The source of this disagreement
is removed upon composing both D and E with D, because D restricts the be-
haviour of E on a. The merge of D‖D and E‖D therefore allows more behaviours,
and does not refine (D + E)‖D.
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4.2 Properties of MCRs

In this subsection, we present algebraic properties of + without assuming the ex-
istence of the LCR. The algebraic properties are therefore stated in terms of sets
and the different choices that can be made when picking an MCR. Idempotence
is the only property in Section 4.1 that still holds, since an LCR always exists
between a system and itself. The rest of the properties discussed in Section 4.1
require some form of weakening.

Commutativity does not hold in general: if M and N are any two MTSs that
have at least two different MCRs, then certainly not every M+N is equivalent to
every N+M . On the other hand, MCR(M,N) is always equal to MCR(N,M),
and therefore the same MCR can be chosen.

Proposition 4. (Commutativity) MCR(M,N) = MCR(N,M).

Associativity fails for the same reason that commutativity fails. The strongest
form of associativity in terms of sets is:

∀A ∈MCR(M,N) · ∀B ∈MCR(N,P ) ·MCR(A,P ) =MCR(M,B)

The following example shows that this form does not hold in general.

Example 3. Consider models C, H, and M in Figure 3 and assume that αC =
{c}, αH = {b}, and αM = {a}. Model K is in MCR(C,H), and there is no
D ∈MCR(M, C) such that MCR(K,M) = MCR(H, D).

In Example 3,K requires that action c precedes action b in every trace, and there-
fore so does every MCR of K and M, since neither b nor c is in αM. However,
because b is not in αM or αC, for every D inMCR(M, C), there is an MCR ofH
and D such that action c follows action b. Hence, MCR(K,M) �= MCR(H, D)
for any D in MCR(M, C). In fact, Example 3 shows that there exists M , N ,
and P such that: ∃A ∈ MCR(M,N) · ∀B ∈ MCR(N,P ) · MCR(A,P ) �=
MCR(M,B). Therefore, set equality of MCR(A,P ) and MCR(M,B) for as-
sociativity is not possible. Additionally, it can be shown that fixing both A in
MCR(M,N) and B in MCR(N,P ) is unreasonable, as it may force incompat-
ible decisions to be made when merging A with P and M with B [3]. Instead,
the following proposition outlines two forms of associativity, without set equality,
that fix some A in MCR(M,N) or some B in MCR(N,P ), but not both.

Proposition 5. (Associativity) If M , N , and P are MTSs, then:

1. ∀A ∈ MCR(M,N) · ∃B ∈MCR(N,P ) · (MCR(A,P ) ∩MCR(M,B) �= ∅),
2. ∀B ∈ MCR(N,P ) · ∃A ∈ MCR(M,N) · (MCR(A,P ) ∩MCR(M,B) �= ∅),

where CR(A,P ) �= ∅ and CR(M,B) �= ∅.

Condition (1) in Proposition 5 says that for any M+N , there exists some N+P
such that the same MCR for (M + N) + P and M + (N + P ) can be selected.
Condition (2) is analogous to condition (1) with the roles of M +N and N + P
reversed. Note that Proposition 5 reduces to Proposition 1 if all sets of MCRs
are singletons (up to equivalence).
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Monotonicity is also disrupted by multiple MCRs. It is not expected that any
choice of M + N is refined by any choice of P + N when M is refined by P ,
because incompatible decisions may be made in the two merges. Rather, there
are two desirable forms of monotonicity: (1) whenever M + N is chosen, some
P +N can be chosen such that P +N refines M+N ; and (2) whenever P +N is
chosen, then some M +N can be chosen such that P +N refines M +N . Form
(1) does not hold, as the following example shows.

Example 4. Models D and H in Figure 3 with αD = {c} and αH = {b} are
consistent, and their merge D+H may result in model K. Also, D �o F (assum-
ing that αF = {c}) and models F and H are consistent. However, LCRF ,H is
equivalent to H over {b, c}, and since H �o K, no MCR of F and H that refines
K can be chosen.

Form (1) fails because there are two choices of refinement being made. On the
one hand, by picking a minimal common refinement for M and N over others,
we are deciding over incompatible refinement choices. On the other hand, we
are choosing how to refine M into P . These two choices need not be consistent,
leading to failure of monotonicity. This tells us that choosing an MCR adds
information to the merged model, which may be inconsistent with evolutions of
the different viewpoints that are represented by the models being merged. Form
(2) always holds, as stated below.

Proposition 6. (Monotonicity) If M, N, P, and Q are MTSs, then:
M �o P ∧N �o Q⇒ ∀B ∈MCR(P,Q) · ∃A ∈MCR(M,N) · A �o B

Thus, once P +Q is chosen, there always exists some M +N that it refines, and
so the properties of M andN are preserved in P+Q. Note that ifMCR(M,N) is
a singleton set, Proposition 6 reduces to Proposition 2, as expected. In practical
terms, this means that if the various viewpoints are still to be elaborated, the
results of reasoning about one of their possible merges (picked arbitrarily) are
not guaranteed to carry through once the viewpoints have been further refined.

We now address distributivity in the context of multiple MCRs. Similar to
monotonicity, there are two desirable forms of this property: (1) given any A in
MCR(M‖P,N‖P ), there is some B in MCR(M,N) such that A is refined by
B‖P ; and (2) given anyB inMCR(M,N), there is some A inMCR(M‖P,N‖P )
such that A is refined by B‖P . Form (1) does not hold, as the following example
shows.

Example 5. Consider models F , N , O, P , Q, R, S, and T in Figure 3 and
assume that αF = {d}, and the rest have vocabulary {a, b, c, d}. By the rules in
Figure 1, N‖F = Q and O‖F = R, and furthermore, T is in MCR(Q,R). On
the other hand, LCRN ,O is P , and P‖F = S, which is not a refinement of T .

In the previous example, LCRN ,O exists because the required transitions on d
in these models restrict the choices that can be made with respect to combining
the non-determinism on action a: (N1 and O1) and (N2 and O2) are consistent,
but neither (N1 and O2) nor (N2 and O1) are consistent. Upon composing with
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Fig. 4. The MTSs for (a) WaterLevelSensor, (b) MethaneSensor, and (c) Pump

F , the source of the inconsistencies between (N1 and O2) and (N2 and O1) is
removed, and consequently, LCRN‖F ,O‖F does not exist. In particular, similar
to Example 2 in Section 4.1, parallel composition may remove inconsistencies
between M and N , allowing for more common refinements of M‖P and N‖P .

On the other hand, Form (2) holds, and is of particular utility when elabo-
rating models from different viewpoints (see Section 5).

Proposition 7. (Distributivity) If M , N , and P are such that αP ⊆ αM∩αN ,
then: ∀B ∈ MCR(M,N) · ∃A ∈MCR(M‖P,N‖P ) ·A �o B‖P .

In this subsection, we showed that when + does not necessarily produce an LCR,
most properties studied in Section 4.1 fail to hold. Intuitively, the existence of
inequivalent MCRs implies that merging involves a choice that requires some
form of human intervention: a choice which is loaded with domain knowledge.
This impacts the results on algebraic properties when moving from LCRs to
MCRs. However, we have shown that the right choices of MCRs can be made in
order to guarantee particular algebraic properties.

5 A Case Study: The Mine Pump

In this section, we show how our results support elaboration of partial models
for a mine pump case study [18].

Overview. A pump controller is used to prevent the water in a mine sump
from passing some threshold, and hence flooding the mine. To avoid the risk of
explosion, the pump may only be active when there is no methane gas present
in the mine. The pump controller monitors the water and methane levels by
communicating with two sensors. In addition, the pump is equipped with a
danger light that is intended to reflect the presence of methane in the sump.

We model the mine pump with four components: WaterLevelSensor, Methane-
Sensor, PumpControl, and Pump. The complete system, MinePump, is the
parallel composition of these components, namely (PumpControl ‖ Pump ‖
MethaneSensor ‖ WaterLevelSensor).

WaterLevelSensor models the water sensor and includes assumptions on how
the water level is expected to change between low, medium, and high. Methane-
Sensor keeps track of whether methane is present in the mine, and Pump models
the physical pump that can be switched on and off. For simplicity, we assume
to have complete knowledge for these descriptions and hence model them with
LTSs depicted in Figure 4, where initially the water is low, the pump is off, and
no methane is present.
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Fig. 5. The MTS for OnPolicy

PumpControl describes the controller that monitors water and methane levels,
controls the pump in order to guarantee the safety properties of the pump system,
and also maintains the status of the danger light according to the methane level.
This informal description leaves open the exact water level at which to turn the
pump on and off. For example, the pump could be turned on when there is high
water or possibly when the water is not low, (e.g., at a medium level). The pump
could be turned off when there is low water or possibly when the water is not high.

Partial Behaviour Models. We assume that there are two stakeholders for
the pump controller: one with the knowledge of when the pump should be on
(referred to as the on policy) and another with knowledge of when the pump
should be off (referred to as the off policy).

The MTS models used to describe the policies for the pump controller use an
event labelled tick, which models the passage of time units as kept by a global
clock. All components whose behaviour is timed synchronize to this event. This
corresponds to a standard approach to modelling discrete time in event-based
formalisms [22]. Modelling time is required for systems such as the mine pump,
where urgency of certain events, such as switching the pump off to avoid an
explosion, must be captured.

Consider the OnPolicy model (Figure 5) provided by one of the stakeholders.
This model attempts to describe how the pump controller will ensure that the
pump is on in order to satisfy the safety requirements for the mine. To do so,
the controller keeps track of the water level and methane presence information
provided by the various sensors. States 4 to 7 and 0 to 3 are those in which the
water level is high and not high, respectively, while states {1, 2, 5, 6} and {0, 3,
4, 7} are those in which methane is present and not present, respectively.

The on policy requires the pump controller to switch the pump on when there
is high water and no methane present (see transition labelled switchOn from
state 4 to state 7), and leaves the possibility open for turning the pump on when
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there is medium water or low water (see switchOn? transition from state 0 to
state 2). Event tick is not allowed to occur in state 4, which captures the fact
that the pump controller is required to react fast enough to switch the pump on
before the time unit expires (or that there is no longer an urgency because the
water is no longer high – leading to state 0 – or there is methane – leading to
state 5). In addition, all other tick events are maybe transitions modelling the
fact that time may pass at any rate on all other states, and hence indicating
that there are no other timing requirements for the pump controller.

The OffPolicy turns the pump off when there is low water or methane appears.
In addition, OffPolicy models a danger light with actions dangerLightOn and
dangerLightOff, which is turned on when methane is present in the mine. The
actions that refer to the danger light are not in the scope of OnPolicy; in other
words, they are not in the alphabet of OnPolicy. Due to the size of OffPolicy
(16 states, 112 transitions), we do not depict it here; it is available in [3].

Properties. We consider four properties that stakeholders expect their models
to satisfy, but due to lack of space omit their formalization in Lw

μ . The first two
properties (Φ1 and Φ2) are expected to be satisfied by both policies. Φ1 states
that the pump should only be turned on if it is off and similarly, Φ2 states that
the pump should only be turned off if it is on. These two properties necessitate
including both switchOn and switchOff in the scope of OnPolicy and OffPolicy.
In addition, the stakeholder for the on policy expects that when there is high
water and no methane, the pump should be on (Φ3), while the stakeholder for
the off policy expects that if there is low water or methane present, the pump
should be off (Φ4).

It is possible to show that both MinePump1 and MinePump2 satisfy properties
Φ1 and Φ2 and additionally, MinePump1 satisfies Φ3 and MinePump2 satisfies
Φ4. As OnPolicy leaves the off policy open by modelling possibilities for turning
the pump off with maybe behaviour, and similarly, OffPolicy leaves the on policy
open, properties Φ3 and Φ4 evaluate to maybe in MinePump2 and MinePump1,
respectively.

Merge. Given the results presented above, we claim that the system model
resulting from the merged policies and models for the environment satisfy all
requirements, i.e. (OnPolicy + OffPolicy) ‖WaterLevelSensor ‖MethaneSensor
‖ Pump satisfies Φ1, Φ2, Φ3, and Φ4. The argument is as follows.

Using the consistency algorithm in [3], OnPolicy and OffPolicy can be shown
to be consistent, and hence the full pump controller can be defined as PumpCon-
trol = OnPolicy + OffPolicy. Additionally, the alphabet restrictions in Propo-
sition 7 are satisfied by MinePump1 and MinePump2, and therefore there exists
a merge of MinePump1 and MinePump2 that is refined by MinePump. Hence,
by definition of merge and Theorem 1, properties Φ1, Φ2, Φ3, and Φ4 hold in
MinePump. In particular, the maybe properties Φ3 and Φ4 of MinePump1 and
MinePump2 become true properties of MinePump, which corresponds to the on
and off policies being refined into concrete behaviours in the merge.
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The above reasoning did not rely on the fact that the LCR of OnPolicy and
OffPolicy exists. Existence of the LCR does guarantee that the merge of the
policies can be built automatically using the algorithms reported in [3].

In addition, by Proposition 7, the properties of the compositions MinePump1
and MinePump2 are preserved in addition to those of OnPolicy and OffPol-
icy. This is important as some relevant properties may only hold under certain
assumptions on the environment. In this case study, OnPolicy could easily be
modified to be under-specified enough so as not to satisfy Φ1 without the as-
sumption (modelled in WaterLevelSensor) that water levels cannot jump directly
from low to high without going through medium.

Now suppose that further information regarding the on and off policies be-
comes available, e.g., that the pump controller should try to keep the pump off
as much as possible while satisfying existing requirements. This means that the
pump should only be switched on when the water is high and should be switched
off as soon as the water is no longer high. By monotonicity (Proposition 6), we
know that rather than being forced to elaborate the merged model MinePump
or PumpControl, we can effectively refine the two original policies into OnPolicy ′

and OffPolicy ′ and then merge them with the guarantee that in the final model
((OnPolicy ′ + OffPolicy ′) ‖ Pump ‖ MethaneSensor ‖ WaterLevelSensor) all
required properties still hold.

Conclusion. In this section, we have exemplified several of the properties of
merge discussed in this paper. Specifically, we showed that we can start from
partial models from different stakeholders, each satisfying certain system re-
quirements (possibly under some assumptions on the environment), and elabo-
rate through refinement, merge and parallel composition a system model that
preserves the properties of the initial viewpoints.

6 Conclusions

In this section, we summarize the paper, compare our work with related ap-
proaches, and discuss directions for future research.

Summary. Merging is a process based on finding a common observational refine-
ment of consistent systems [27], and therefore preserves weak μ-calculus prop-
erties of the original systems. In this paper, we studied fundamental questions
related to using merge in practice. In particular, we showed that existence of
merge is characterized by weak μ-calculus properties and can be decided al-
gorithmically, and described conditions for uniqueness, which are essential for
automating merge. Together with several algebraic properties (both in the case
when the LCR exists and when merge results in one of several MCRs), our re-
sults provide the necessary support for merging complex systems, such as those
involving the parallel composition of several components, as demonstrated in the
case study.

Related Work. Explicit partiality corresponds naturally to the lack of informa-
tion atmodelling time [9] or to the loss of informationdue to abstraction [4,8,14,25].
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State-machine formalisms have been extended to allow partiality in states (e.g.,
Partial Kripke Structures (PKs) [4] ), transitions (e.g., MTSs [21], Mixed Transi-
tion Systems [8]), or both (e.g., Generalized KMTSs [25]). In all these formalisms,
properties that are preserved in a more defined model have been identified, e.g.
Hennessy-Milner logic for MTSs [21], 3-valued CTL for PKs, and 3-valued
μ-calculus for KMTSs [14].

The approaches closest to ours are those of Larsen et al. [19,20] and Huth et
al. [13,14]. [20] introduced an operator with a behaviour similar to our merge
(called conjunction), but defined only for MTSs over the same vocabulary with
no τ transitions, and for which there is an independence relation (at which
point the LCR exists). Although not studied in depth, the operators in [20,19]
are based on strong refinement. We have shown that the existence of multiple
MCRs introduces a number of subtle issues for a similar operator based on ob-
servational refinement. Extensions to MTSs have been proposed to guarantee
uniqueness of merge and generalization (e.g. [19,14]). The price paid is more
complicated modelling frameworks which engineers may not adopt as easily, and
hence we focus on MTSs. In addition, non-uniqueness of merge can be seen as
an opportunity for elicitation, validation, and negotiation of partial descriptions.
Finally, Hussain and Huth [13] study the problem of finding a common (strong)
refinement between multiple MTS, but focus on the complexity of the relevant
model-checking problems rather than engineering issues (e.g., existence, unique-
ness and algebraic properties). Our models are more general in that we allow
τ transitions and different alphabets, but less general in that the work in [13]
handles hybrid constraints between the models.

Our work focuses on merging models that describe only the observable be-
haviour of a system, and thus simulation-like relations are central to merging.
Other approaches to merging descriptions exist, but the models being merged in-
clude state information [9,24,5,29,11,1] and consequently other notions of preser-
vation may apply, such as isomorphism [9,24].

An alternative to partial operational descriptions, on which we focus, is the
use of declarative specifications. For instance, classical logics are partial and sup-
port merging as the conjunction of theories. Similarly, Live Sequence Charts [7]
support merging through logical conjunction, as each chart can be interpreted as
a temporal logic formula. We believe that our approach is more suitable for ex-
ploration and validation of unknown behaviours, since explicit reasoning about
such behaviours is an integral part of our merging process.

Future Work. The long-term goal of our work is to provide automated sup-
port for creating, merging and elaborating partial behavioural models, as well as
enabling users to choose the desired merge from the set of possible minimal com-
mon refinements. In the near future, we plan to conduct additional case studies,
and produce implementations of the merge algorithms found in [3]. In addition,
since weak μ-calculus is expressive but can be subtle to use, we plan to extend
the logic Fluent LTL (FLTL) [10], which is a simple language for expressing
complex temporal properties of LTSs, to reasoning about partial models and use
it as the specification language in our framework.
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Abstract. Circus is a combination of Z and CSP that supports the devel-
opment of state-rich reactive systems based on refinement. In this paper
we present JCircus, a tool that automatically translates Circus programs
into Java, for the purpose of animation and simulation. It is based on
a translation strategy that uses the JCSP library to implement some
of the CSP constructs of Circus. The tool generates a simple graphical
interface; we present a simple example to demonstrate the translation
strategy, and the execution of the resulting program. We discuss the
class GeneralChannel, which we designed to support the implementa-
tion of multi-synchronisation. We also discuss our improvements to the
translation strategy, some limitations of the tool, and our approach to
prove the correctness of the multi-synchronisation protocol.

1 Introduction

Circus [1] is a combination of the Z notation [2], the process algebra CSP [3],
and Djikstra’s language of guarded commands. It is a unified language for speci-
fication and design of state-rich reactive systems. In general terms, data require-
ments are expressed with Z schemas, and behavioural aspects are expressed
using Z, CSP and the guarded commands. Circus also includes a refinement cal-
culus, which allows stepwise development of programs. The semantics of Circus
is based on the Unifying Theories of Programming [4], a relational model that
unifies programming theories across many different paradigms.

Circus supports specifications of systems at various levels of abstraction. In [5],
a complete development strategy supported by Circus is presented. Starting from
an abstract Circus specification, refinement laws are gradually applied in order
to reach a concurrent implementation in which all schemas used to describe
operations are refined to commands and CSP actions. Afterwards, a translation
strategy is applied to generate a Java implementation. The JCSP library [6] is
used for implementation of some CSP primitives in Java.

Unlike the refinement calculus, which requires human expertise to be
applied, the translation strategy can be automated. Tool support is important
to save effort and avoid human errors that are typical of the activity of writing
code.

This paper describes JCircus, a tool that implements the translation strat-
egy from Circus to Java. It receives as input a Circus program written in LATEX
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markup based on that adopted for the Z Standard [7], and produces a Java
program that implements the program. JCircus translates concrete Circus pro-
grams, that is, those in which specification statements and Z schemas are not
used in action definitions. The strategy covers a large subset of concrete Circus,
including generic processes and some CSP replicated operators. Due to limita-
tions in the JCSP library, however, the protocols and data structures used in
the implementation impose restrictions on the input programs.

JCSP does not implement multi-synchronisation, that is, synchronisation in-
volving three or more processes. As Circus includes this feature, the translation
strategy makes use of a protocol that implements multi-synchronisation. For
JCircus we designed the class GeneralChannel that represent channels; it encap-
sulates the protocol, in the case of channels involved in multi-synchronisation.
This class can be regarded as an extension of JCSP, as its use is not restricted
to Java implementations of Circus programs.

The main purpose of JCircus is to provide animation for Circus programs;
for that, it also provides a simple graphical interface for execution of the gen-
erated programs. We do not have efficiency as a primary concern, but rather,
correctness: we have formally verified part of the translation strategy, namely,
the multi-synchronisation protocol.

In the next section we give a brief introduction to Circus and in Section 3 we
present the JCSP library. In Section 4, we present JCircus and the translation
strategy with a simple example, and we also present the class GeneralChannel.
In Section 5, we discuss our improvements to the strategy, some errors that
were found in the original strategy, the limitations of JCircus, and our approach
to prove its correctness. In Section 6, we draw conclusions and discuss some
directions of future work.

2 Circus

In Circus, just as in CSP, a system is regarded as a process. However, in Circus
a process may contain an internal state, which is described using the schema
constructs of Z. The state of a process is encapsulated; channels are the only
means of communication between a process and its environment.

Like a Z specification, a Circus program is formed by a sequence of paragraphs.
We use a small example of a program that calculates the greatest common divisor
(GCD) between two natural numbers (Figure 1) to explain some of the main
constructs of Circus.

Our example begins with the declaration of two channels that communicate
natural numbers. The channel in receives two numbers, in sequence, and the
channel out outputs their GCD.

A process declaration gives its name and a process definition. The most basic
form of process definition specifies the state of the process, a sequence of process
paragraphs, and a nameless main action which describes the behaviour of the
process. All these are delimited by the keywords begin and end.
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channel in, out : N

process GCD Euclidean =̂ begin
state GCDState =̂ [a, b : N]
InitState =̂ x , y : N • a, b := x , y
UpdateState =̂ a, b := b, a mod b
GCD =̂ μX • if b = 0 → out !a → Skip

[] b �= 0 → UpdateState; X
fi

• in?x → in?y → InitState(x , y); GCD
end

channel gcd , sum
channel read , write : N

process SumOrGCD =̂ (GCD Euclidean |[ {| in,out |} ]| GCDClient) \ {| in, out |}
process GCDClient =̂ begin

ReadValue =̂ read?x → read?y → ChooseOper(x , y)
ChooseOper =̂ x , y : N •

gcd → in!x → in!y → out?r → write!r → Skip
�

sum → write!(x + y) → Skip
• μX • ReadValue; X

end

Fig. 1. Concrete Circus program for calculation of the GCD

In our example, we declare a process GCD Euclidean which has its state de-
scribed by the schema GCDState; it contains two components, a and b, which
are initialised with the numbers for which we want to calculate the GCD. The
following definitions in the basic process describe actions. The initialisation op-
eration is InitState, which defines a parametrised action that takes x and y as
input, and assign them to a and b. The action UpdateState updates the values
of the state components in each iteration of the calculation of the GCD. The
recursive action GCD implements the Euclidean algorithm for calculation of the
GCD. When b �= 0, it recurses; if b = 0, then the GCD is output. The basic
action Skip terminates without communicating values or changing the state.

The main action describes the behaviour of the process. It receives two
inputs through channel in, initialises the state with these values, and then calls
GCD .

A process definition like that of GCD Euclidean uses Z and CSP constructs
to define the state and the behaviour of the process. It is also possible to define
processes in terms of others previously defined, using the CSP operators for
sequence, external choice, internal choice and parallelism, among others. The
process SumOrGCD is a parallel composition of the processes GCD Euclidean
and GCDClient . They communicate via in and out , which are hidden; this means
that the environment cannot see communications that occur through them.



118 A. Freitas and A. Cavalcanti

The process GCDClient is recursive: in each iteration, it reads values x and y
from a channel read , and passes them to the parametrised action ChooseOper ,
which offers a choice between the sum and the greatest common divisor oper-
ations. The external choice operator is as in CSP: it offers the environment a
choice between two or more actions. If the GCD operation is chosen, it delegates
to process GCD Euclidean the calculation of the greatest common divisor; com-
munication occurs through channels in and out . Otherwise, it outputs on write
the summation of the two values.

In Section 4, we discuss the translation of this example to Java using JCircus.
More details on Circus can be found in [8].

3 JCSP

The translation strategy makes use of the JCSP library to implement many of the
CSP constructs used by Circus. The library provides a simplified way to program
concurrency in Java without having to deal directly with the Java primitives.

In JCSP, a process is a class that implements the interface CSProcess, which
defines only the method public void run(). The implementation must encode
in this method the behaviour of the process.

JCSP also defines interfaces for channels: ChannelInput is the interface for
input channels and defines the method read; ChannelOutput is the interface for
output channels and defines the method write; Channel extends both Channel
Input and ChannelOutput and is used for channels which are not specified
as input or output channels. The implementations for channels are the classes
One2OneChannel,One2AnyChannel,Any2OneChannel and Any2AnyChannel. The
appropriate implementation to be used when creating a channel depends on
whether there are one or more possible readers and writers for the channel.

Synchronisation in JCSP is not in exact correspondence with the original
concept in CSP. Despite being possible to have more than one process that read
or write on a channel, only one pair of processes can synchronise at each time;
this model is similar to that of occam [9]. Thus, multi-synchronisation, that
is, three or more processes synchronising on a single communication, which is
allowed in CSP, is not directly supported by JCSP. To solve this problem, the
translation strategy implements a protocol for multi-synchronisation.

The class Alternative implements the external choice operator. Its construc-
tor takes an array of channels that may be selected. The implementation of the
alternation requires that only input channels that have at most one reader par-
ticipate. The method select() waits for one or more channels to become ready
to communicate, makes an arbitrary choice between them, and returns the index
of the selected channel.

Parallelism is implemented by class Parallel, which implements CSProcess.
The constructor takes an array of CSProcesses, which are the processes that
compose the parallelism. The method run executes all processes in parallel and
terminates when all processes terminate. Differently from CSP, it is not possi-
ble to choose the channels on which the processes synchronise; in JCSP, they
synchronise on all channels that they have in common.
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The CSP constructors Skip and Stop are implemented by the classes Skip and
Stop, respectively. JCSP includes also implementations for other features that
are not available in CSP, such as barrier synchronisation, timers and process
managers, among others, and extensions for the java.awt library that provide
channel interfaces for graphical components. For details, see [6].

4 JCircus

The translator from Circus to Java is an implementation of the translation strat-
egy that was originally described in [5]. The strategy defines rules for translation
of each construct of Circus. Translation is carried out by the recursive applica-
tion of the translation rules, following the syntactic structure of the program.
We proposed some adaptations to the original translation strategy, which we
discuss later on in this section and in Section 5. The complete reference to the
rules implemented in JCircus can be found in [10].

JCircus translates a concrete Circus program (written in LATEX markup) into
a Java program that implements the specification. It requires from the user: the
path of the input file, the name of the project (which will be the name of the
Java package for the program), and the output path. Before translation, the tool
performs parsing and typechecking, and verifies if the specification meets the
requirements for translation.

For each process definition in the input file, the tool asks if the user wants
to create a main class for it. For a process X , this class is called Main_X, and
it is the starting point for the execution of the process. It implements a parallel
composition of the process and a graphical interface that simulates its environ-
ment. A batch file Run_X.bat is also created; it contains commands to compile
the project and run the class Main_X using JDK [11].

4.1 The Translation Strategy

The translation consists of two phases. The first phase collects information about
types and channels: the free types defined in the program, the channels used by
each process, how they are used (for input or output), and whether they are
hidden or not. The second phase uses this information to generate the Java
code; it is basically an application of the translation rules.

Figure 2 shows as an example the rule for translation of a process declaration.
The function |[ ]|ProcDecl is applied to a process declaration (ProcDecl) and takes
as parameter the name of the project (N). Each process declaration is translated
to a Java class that implements the interface CSProcess, and has the same name
as the process. The body of the class is translated with the rule for process
definition (ProcDef), which we omit here. This rule introduces the attribute
declarations, the constructor, and the implementation of the method run.

Figure 3 shows the class GCD_Euclidean (without package and import declara-
tions), which results from the translation of the process GCD Euclidean. Its pri-
vate attributes are the channels that this class uses: in and out . As they are not
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Rule A.1 Process declaration

|[ ]|ProcDecl : ProcDecl �→ N �→ JCode
|[process P =̂ ProcDef ]|ProcDecl proj =

package proj.processes;
import java.util.*;
import jcsp.lang.*;
import proj.axiomaticDefinitions.*;
import proj.typing.*;
public class P implements CSProcess { |[ProcDef ]|ProcDef P }

Fig. 2. Translation rule

hidden in the declaration of the process, they are taken as input by the construc-
tor of the class. The channels are implemented by the class GeneralChannel.
The use of this class was one of the modifications to the original strategy, which
used the Any2OneChannel class provided by JCSP instead.

The translation of the process definition gives the implementation of the
method run (Figure 3, lines 6-47) of the class. In our example, it is a defini-
tion of a basic process, which is translated to a call to the method run of an
anonymous instantiation of CSProcess (lines 7-46).

The anonymous instantiation of CSProcess declares the state components
as private attributes. Since an action cannot be referenced outside the process
where it is defined, action definitions are translated as private methods.

The parametrised action definition InitState yields a parametrised method
with the same name. The Circus multiple assignment is translated to a sequence
of Java assignments. The implementation of the multiple assignment in action
UpdateState needs auxiliary variables because variable a is being updated and
used within the same assignment.

The definition of the action GCD uses the recursive operator μ; the translation
defines an inner class I_0. The translation of the recursive action yields the
declaration (lines 18-34), initialisation (line 35), and execution (line 36) of the
method run of this class. It implements CSProcess, and its method run contains
the implementation of the body of the recursion. In the places where a recursive
call is made, there is a new instantiation and execution of I_0 (lines 28-29).

The main action of the basic process is translated as the body of the method
run for the anonymous class that implements it (lines 39-44). In our example,
we have two inputs on channel in, a call to InitState, and a call to GCD .

Figure 4 shows the translation of the process SumOrGCD . It is a parallel
composition of two other processes; so, its attributes are the channels used by
each of them. However, since in and out are hidden in this process, they are not
taken by the constructor, instead, they are created there.

The constructor of the class GeneralChannel takes an Any2OneChannel and
an object of type ChannelInfo. This class is a mapping that associates a pro-
cess name with an integer, that indicates if the instance of the channel is used
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public class GCD_Euclidean implements CSProcess { (1)
private GeneralChannel in, out; (2)
public GCD_Euclidean(GeneralChannel in, GeneralChannel out) { (3)

this.in = in; this.out = out; (4)
} (5)
public void run () { (6)

(new CSProcess() { (7)
private CircusNumber a, b; (8)
private void InitState(CircusNumber x, CircusNumber y) { (9)

a = x; b = y; (10)
} (11)
private void UpdateState() { (12)

CircusNumber aux_a = b; (13)
CircusNumber aux_b = a.mod(b); (14)
a = aux_a; b = aux_b; (15)

} (16)
private void GCD() { (17)

class I_0 implements CSProcess { (18)
public I_0() {} (19)
public void run() { (20)

if ((b.getValue() == (21)
(new CircusNumber(0)).getValue())) { (22)

out.write(a); (23)
(new Skip()).run(); (24)

} else if (b.getValue() != (25)
(new CircusNumber(0)).getValue()) { (26)

UpdateState(); (27)
I_0 i_0_0 = new I_0(); (28)
i_0_0.run(); (29)

} else { (30)
while(true){} (31)

}; (32)
} (33)

} (34)
I_0 i_0_0 = new I_0(); (35)
i_0_0.run(); (36)

} (37)
public void run() { (38)

{ CircusNumber x = (CircusNumber) in.read(); (39)
{ CircusNumber y = (CircusNumber) in.read(); (40)

InitState(x, y); (41)
GCD(); (42)

} (43)
} (44)

} (45)
}).run(); (46)

} (47)
} (48)

Fig. 3. Translation of process GCD Euclidean
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public class SumOrGCD implements CSProcess {

private GeneralChannel gcd, read, sum, write, in, out;
public SumOrGCD(GeneralChannel gcd, GeneralChannel read,

GeneralChannel sum, GeneralChannel write) {
this.gcd = gcd;
this.read = read;
this.sum = sum;
this.write = write;

ChannelInfo inf_in = new ChannelInfo();
inf_in.put("GCDClient", new Integer(0));
inf_in.put("GCD_Euclidean", new Integer(1));
this.in = new GeneralChannel(new Any2OneChannel(),inf_in,"SumOrGCD");

ChannelInfo ch_out = new ChannelInfo();
inf_out.put("GCDClient", new Integer(1));
inf_out.put("GCD_Euclidean", new Integer(0));
this.out = new GeneralChannel(new Any2OneChannel(),inf_out,"SumOrGCD");

}
public void run(){

new Parallel(new CSProcess[] {
new GCDClient(new GeneralChannel(gcd, "GCDClient"),

new GeneralChannel(in, "GCDClient"),
new GeneralChannel(out, "GCDClient"),
new GeneralChannel(read, "GCDClient"),
new GeneralChannel(sum, "GCDClient"),
new GeneralChannel(write, "GCDClient")),

new GCD_Euclidean(new GeneralChannel(in,"GCD_Euclidean"),
new GeneralChannel(out,"GCD_Euclidean"))

}).run();
}
}

Fig. 4. Translation of process SumOrGCD

as an input (1) or an output (0) channel. In our example, channel in is used for
input by the process GCD Euclidean and for output by the process GCDClient ;
the channel out is used for output by GCD Euclidean and for input by
GCDClient . The constructor also takes the name of the process that is using
the instance of the channel; in our case, the process SumOrGCD .

The body of the method run contains the translation of the parallelism, which
uses the class Parallel of JCSP. As said before, the constructor of Parallel
takes an array of CSProcesses; in this case, instances of GCD_Euclidean and
GCDClient. Their constructors take the channels used by each process. We con-
struct new instances of the channels based on the ones that we already have,
changing only one attribute: the name of the process.
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4.2 Running the Program Generated by JCircus

Besides the classes specified by the translation strategy, JCircus also generates a
simple graphical interface to simulate the execution of a process. For a process
X , this class is called Gui_X; it represents the environment that interacts with
the process. It is a Java Swing frame, with buttons and fields to represent the
interface of the process to its environment, namely, the channels that the process
uses and are not hidden. The state, hidden channels, and internal operations are
not visible by the environment. The graphical interface is also an implementation
of a CSProcess. It runs in parallel with the class that represents the process.

Figure 5 shows the graphical interface for the process GCD Euclidean. This
process uses only two channels: the input channel in and the output channel out ,
and both communicate natural numbers. In the text fields next to the buttons,
we can type values for the input channels or visualise the values communicated
through the output channels.

Fig. 5. GUI for process GCD

When we run the class Main_GCD_Euclidean, the screen presented in Figure 5
is shown. The program waits for a synchronisation on channel in, as this is the
first communication in which the process GCD Euclidean can engage. As this
is an input channel, we must type in the first text field the input value, which is
the first of the pair of numbers for which we want to calculate the GCD . After
entering the value, we press the button in; this represents the synchronisation on
channel in. The generated program does not perform parsing or type checking.
It expects that the values entered by the user are well-formed and well-typed.

Once the first number has been entered, the program waits for the second
communication through channel in. After that, the program calculates the GCD
and waits for synchronisation on the channel out . When we press the button out,
the GCD appears in the text field just next to it.

4.3 The Class GeneralChannel

The original translation strategy used the class Any2OneChannel from the JCSP
library to implement a simple synchronised channel, that is, a channel on which
at most two processes synchronise. This class implements the interface Channel
which defines methods read and write. Every synchronisation is point-to-point;
it occurs by monitor synchronisation when one reference calls read and the other
calls write. Multi-synchronisation is not directly supported by JCSP.
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To allow the implementation of processes that use multi-synchronisation, the
original translation strategy makes use of a protocol: for each channel involved in
a multi-synchronisation, there is a controller process running in parallel with the
system, and this process manages the requests for multi-synchronisation on the
channel it controls. The communication between the controller and each process
is done via simple synchronisations. Basically, each channel c is replaced by an
array of Any2OneChannels from_c, which the controller uses to communicate
with their clients, and an Any2OneChannel channel to_c, which is shared by the
clients to send messages to the controller.

We have designed a class GeneralChannel to provide an abstraction for chan-
nels irrespectively of their use in multi-synchronisations. This class encapsulates
the data necessary for the implementation of multi-synchronisation; it contains
an array of Any2OneChannels from and one Any2OneChannel to. If the instance
of the channel is not involved in a multi-synchronisation, the channel to is used,
and the array from is ignored.

An object of class GeneralChannel contains not only the data necessary
to implement communication, but it also defines how the channel is used by
a process, that is, whether the process writes to or reads from the channel.
This information is registered in the attributes ChannelInfo channelInfo and
String processName. The class ChannelInfo is a mapping from Strings to
integers. The Strings are the names of all processes that synchronise on the
channel, and, for each of them, the associated integer determines whether the
channel is used for writing or reading. The attribute String processName
records the name of the process that uses the instance of the channel. By looking
up processName in channelInfo, the constructor sets up the attribute int rw,
which holds 0 if this instance is used for writing, and 1 if it is used for reading.

The class GeneralChannelhas three constructors: one for channels used in sim-
ple communications, one for channels involved in multi-synchronisations, and one
that constructs a channel from another GeneralChannel, changing only the pro-
cess name. The last one is used when calling the constructor within a compound
process’ class; for example, the instantiation of GCDClient and GCD_Euclidean in
Figure 4. When using this constructor, the status rw is properly set for the new
GeneralChannel instance, according to the new processName. The signatures of
the constructors are presented in Figure 6.

Like the class Any2OneChannel, the class GeneralChannel defines methods
read and write. In the case of a channel that is not involved in a multi-
synchronisation, the implementation just calls the method read or write of
the channel to; in the case of a channel involved in multi-synchronisation, these
methods contain an implementation of the protocol for the appropriate case.

Besides the methods read and write, the class GeneralChannel also defines
the method synchronise. It is used in the translation of channels that do not
communicate values, as channels gcd and sum in our example (these channels do
not contain input (?) or output (!) fields). Since, in JCSP, the synchronisations
are point-to-point, it is necessary to always define a reader and a writer. In our
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/* Constructor for multi-synchronisation */
public GeneralChannel (Any2OneChannel to, Any2OneChannel[] from,

ChannelInfo channelInfo, String procName) { ... }

/* Constructor for single-synchronisation */
public GeneralChannel (Any2OneChannel[] from,

ChannelInfo channelInfo, String procName) { ... }

/* Constructs a new instance of a channel, changing the processName */
public GeneralChannel (GeneralChannel gc, String procName) { ... }

Fig. 6. Constructors of GeneralChannel

implementation we use the method synchronise, so that we do not have to
determine if a channel should be read or written, in a particular process.

To determine if a channel is used as a reader or a writer in one process requires
inspecting the uses of the process. In the example below we have three processes
A, B , and C that execute an event c. These processes are combined in parallel,
two at a time in the processes ParAB , ParBC and ParAC .

process A =̂ begin • c → Skip end
process B =̂ begin • c → Skip end
process C =̂ begin • c → Skip end

process ParAB =̂ A |[ {| c |} ]| B
process ParAC =̂ A |[ {| c |} ]| C
process ParBC =̂ B |[ {| c |} ]| C

If we determine, for instance, that channel c will be a reader in process A and a
writer in process B (for the parallelism ParAB), then we would not be able to
determine the role of channel c in process C ; ParAC would require that it was
a writer, and ParBC would require it to be a reader.

In our solution, the communications on channel c are translated using the
method synchronise, whose implementation is presented in Figure 7. The at-
tribute rw is set in the constructor of the GeneralChannel, as explained before,
according to the mapping in the ChannelInfo objects, which are initialised in

public Object synchronise(Object x) {
Object r = null;
if (this.rw == GeneralChannel.READ)

r = this.read();
else

this.write(x);
return r;

}

Fig. 7. Implementation of method synchronise



126 A. Freitas and A. Cavalcanti

the classes Main_ParAB, Main_ParAC and Main_ParBC, with specific mappings
for each parallelism.

5 Discussions

Our main contribution to the original translation strategy was the class intro-
duced in the last section, GeneralChannel. In this section, we discuss other
improvements to the original translation strategy, including the correction of an
error related to parallelism of actions. Furthermore, we discuss the limitations
of JCircus and our approach for validating the multi-synchronisation protocol.

5.1 Translation of Circus types

The treatment of types in JCircus is different from that in the original proposal, in
which free types and special forms of abbreviation are translated to classes that
represent types. The forms of abbreviation considered were those that defined
sets in terms of at most one other set, by extending or restricting its elements;
that is, they could have the form TNameexp == TName ∪ {V1, . . . ,Vm} or
TNameexp == TName \ {V1, . . . ,Vn}. For instance, the following example is
taken from a case study presented in [8].

Mode ::= automatic | manual | disabled
SwitchMode == Mode \ {disabled}

In the original translation strategy, these definitions yield two classes: Mode,
which defines constants final int automatic = 0, final int manual = 1,
and final int disabled = 2; and SwitchMode, which extends Mode and de-
fines a constant int final MAX = 1, that restricts the values that it can assume.

We found this approach inappropriate because the notion of type here does
correspond to the Circus type system, which follows that of Z: SwitchMode does
not introduce a new type. It actually defines a set; a variable declared as, for
instance, var x : SwitchMode actually has type Mode. The treatment of types in
the original translation strategy could result in a situation in which a correctly
typed Circus program would result in a Java program that does not compile.

In the implementation of JCircus, we opted for following the Circus type system
to have a 1-1 mapping between Circus types and Java classes that represent
types. At the moment, we implement only free types and the basic type A; we
do not treat compound types yet, which is left as future work. Each free type
definition generates a class that represents that type, and abbreviations are not
considered. The basic type A, defined in the Z Standard to represent number
types, is implemented using class CircusNumber, but we have another restriction
here, since at the moment this class only implements a subset of A: the set of
integer numbers. Although in a Circus specification a number variable can hold
a value from an infinite set, in a programming language, like Java, we have finite
memory, which restricts the actual ranges that can be represented.
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5.2 Parallelism of Actions

We found a mistake regarding the translation of action parallelism. Action par-
allelism is different from process parallelism because the former requires the
definition of the set of variables that each parallel action can modify; we call
this set a partition. For process parallelism, there is no such concern, since each
process can access only its own data. The semantics of action parallelism defines
that each parallel action deals with copies of the local variables, and at the end
of the parallelism, the original variables are updated with the values of their re-
spective copies from the actions where they appear in the partition. In this way,
concerns about shared access to the state by the parallel actions are avoided.

The original translation strategy did not reflect this semantics when one of
the parallel actions contained an action call. In this situation, the action call,
which was translated as a method call, would update the original values, instead
of the copy. Our solution was to change the translation of an action call that
occurs within a parallelism; it is translated using an inner class (that imple-
ments CSProcess) that declares as attributes copies of the local variables. The
translation consists of instantiation and execution of this class, and update of
the values of the original variables at the end.

5.3 Limitations

The implementation of JCircus also helped us to identify some requirements that
were not explicitly stated in the original translation strategy. We describe three
of them here. First, synchronisation on channels must always involve the same
number of processes, and the same processes. So, this is not allowed.

process P1 =̂ begin • c → Skip end
process P2 =̂ begin • c → Skip end
process P3 =̂ begin • c → Skip end

process P =̂ (((P1 |[ {| c |} ]| P2) |[ {| c |} ]| P3); (P1 |[ {| c |} ]| P2)) \ {| c |}

Process P is a sequential composition; the first process is a parallelism of three
processes P1, P2 and P3, synchronising on c; the second is a parallelism of P1
and P2, synchronising on c. So, in the first parallelism, channel c is involved in a
multi-synchronisation, whereas in the second one, it is not. This cannot occur; the
channel c is instantiated in the constructor of class P, and the settings regarding
multi-synchronisation must hold for the whole implementation of process P.

The second limitation we discuss here also involves parallelism. Because the
implementation of class GeneralChannel uses the name of the processes involved
to determine how each process uses the channel, there cannot be repeated copies
of a processes in a parallelism, or parallelism of anonymous processes, like in the
following examples.

process P =̂ A |[ {| . . . |} ]| A
process Q =̂ begin . . . end |[ {| . . . |} ]| begin . . . end
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However, this is not a serious restriction, which can be solved by redefining
the processes with new names. This rewriting could be automatically done by
JCircus, and this is one of the improvements that are planned for future versions.

The third limitation is that the situation in which a channel is used for reading
and for writing by the same process is not allowed. The reason is the design of the
class GeneralChannel, already discussed; it requires that the role of a channel
is uniquely determined in each process where it is used.

These and other limitations are recognised and documented as restrictions
on the input specification. They are also checked by JCircus; it gives an error
message in the case that the input program violates one of these restrictions.

5.4 Verification of the Multi-synchronisation Protocol

In order to have a useful tool, we are concerned not only with the correct im-
plementation of the translation rules, but also with a guarantee that the rules
themselves are correct. A complete proof of soundness for the translation strategy
requires a formal semantics for Java, and a mapping from the Circus semantics.
With that, we could prove that the semantics of every Circus program is in corre-
spondence with the semantics of the Java program obtained with the translation.
This, however, is by no means a simple task. We have proposed a smaller step to
bridge the gap between Circus and Java: to model the JCSP constructs and the
Java programs in Circus itself, and use the Circus refinement calculus to prove
that the translation rules are refinement laws. We used this approach to tackle
the verification of the algorithm for multi-synchronisation.

We were inspired by the work on [12] which considers a simple form of multi-
synchronisation. It is verified to be equivalent to another model that uses only
simple synchronisations. We have used a similar approach to verify a more com-
plex type of multi-synchronisation, where the channel takes part in an external
choice. We proposed a Circus model for this kind of multi-synchronisation; then
we proposed a Circus model for the multi-synchronisation protocol, and proved,
using the refinement calculus of Circus that the multi-synchronisation is refined
by our model of the implementation. The model is very close to the implemen-
tation and improves our confidence in it.

The approach taken for carrying out the refinement consists in refining the
specification to an action system; transforming the implementation model into
another action system; and then proving that the action systems are equivalent.
An action system is a type of recursive process whose execution is controlled by
a local variable which determine which events that are enabled in each iteration.
We have used equality or refinement rules in each step of the transformation.

6 Conclusions

We have described JCircus, a tool that implements a translation strategy from
Circus to Java. JCircus was developed in Java itself, and the translator module
amounts to about 10000 lines of code. We have followed a structured approach
for design and testing, and the project is documented in UML.
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JCircus was implemented using the CZT framework [13], an open-source Java
framework for the ISO Z Standard and extensions. It has been recently ex-
tended to support Circus. The framework provides, among other things, a Java
library for abstract syntax trees, basic tools like parsers, type checkers and print-
ers, and an interchange format, based on XML, for representing specifications.
The use of the CZT framework allows future integration with other tools for
Circus that use the same framework. Currently, we have a parser and a type
checker [14] for Circus, that JCircus already uses, and a prototype model checker
for Circus [15]. A long-term goal of the Circus group is to provide an integrated
environment that supports development using Circus. JCircus is available at
http://www.cs.york.ac.uk/circus/jcsp/freitas-msc/, where we can also
find examples of translations.

Some previous work on translation tools are a translator from a subset of
CSP into Handel-C [16], and a translator of CSP to Java and C code [17].
The latter also uses libraries that implement CSP operators in a programming
language. Their strategy is similar to ours, however, we have the translation
rules formalised and we cover a broader range of CSP operators. As far as we
know, there is no other translator for Circus.

Another distinguishing feature of our work is the generation of the graph-
ical interface. It is an additional functionality provided by JCircus and is not
formalised by the translation rules. It makes the execution of the program gen-
erated immediately available, and is appropriate for the rapid prototyping of
Circus programs. The classes that capture the behaviour of each of the pro-
cesses, however, can be used in other contexts, where, for example, an interface
that is more specific to the application is implemented.

JCircus can translate some interesting examples, but the work is far from
complete. There are still some features that need to be implemented to make
the tool more useful. Some Circus constructs are not supported by our tool
because we do not have a robust parser yet. However, the translation rules are all
implemented. The CZT project is currently working on a new parser for Circus,
which extends the existing Z parser. When this parser is done, the translation
of the constructs which are not currently supported will become available.

One important extension is the provision of implementation of compound Cir-
cus types, and number types other than integers in the CircusNumber class.
Implementation of more types will make the tool available for translation of a
larger range of programs. Another piece of future work is the investigation of
new implementations for the external choice and parallelism that avoid the limi-
tations of classes Alternative and Parallel of JCSP. The limitations described
in Section 5.3 also make an interesting topic for future research.
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Abstract. For standard (ie non-probabilistic) systems of reasonable
size, correctness is analysed by simulation and/or model checking, possi-
bly with standard program-logical arguments beforehand to reduce the
problem size by abstraction.

For probabilistic systems there are model checkers and simulators too;
but probabilistic program logics are rarer. Thus e.g. model checkers face
more severe exposure to state explosion because “front-end” probabilistic
abstraction techniques are not so widely known [18].

We formalise probabilistic refinement of action systems [3] in order
to provide just such a front end, and we illustrate with the probabilistic
model checker PRISM [21] how it can be used to reduce state explosion.
The case study is based on a performance analysis of randomised backoff
in wireless communication [1].

Keywords: Probabilistic abstraction and refinement, structured speci-
fication and analysis of performance, probabilistic model checking.

1 Introduction

The analysis of performance properties of systems requires a quantitative as-
sessment of behaviour, and currently there are two major styles of quantitative
verification.

Probabilistic model checking links a “programming” language (for describing
the system operationally) with a “logical” language (for describing the desired
properties). The latter is usually a form of probabilistic temporal logic expressing
e.g. “with probability p the system will eventually establish G”. The model
checker checks automatically whether the former satisfies the latter.

Proof-based methods, on the other hand, are more general in principle but
harder to use in practice. For them, the link between the operational descrip-
tion and the desired properties is made by a formal proof; but the proof is not
provided automatically — it must be figured out (by a human).

Although our main focus is on proof, our aim is to combine the two in a way
that takes the best from each, and avoids many of their individual limitations. We
use the proof-based methods to analyse only part of the system, concentrating
on exposing a high-level abstraction which preserves the properties of interest.
We take this as far as we can, for the more we abstract the smaller the state

J. Misra, T. Nipkow, and E. Sekerinski (Eds.): FM 2006, LNCS 4085, pp. 131–146, 2006.
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space will be; but when the details begin to bite, making continued progress with
proof either difficult or impossible, we switch over to model checking — and just
push the button.

The key for the abstraction is “preserves the properties of interest”. For this
we use action systems [3,23,9] enhanced with probability based on a (sequential)
probabilistic program logic [18]. Action systems are sufficiently general to con-
nect the sequential program logic, and its probabilistic programming language
pCSP [19], to the modelling language used by probabilistic model checkers such
as PRISM [14].

Our contributions are as follows

1. An extension of probabilistic action systems of Morgan [19] to include syn-
chronisation (Sec. 3.1), hiding (Sec. 3.2) and property-preserving refinement
(Sec. 3.3);

2. Proof rules for probabilistic refinement in the context of hiding, extending
those used in standard frameworks [7] (Sec. 3);

3. A mapping from a subset of action systems to PRISM’s modelling language,
allowing quantitative specifications to be verified using PRISM (Sec. 4);

The contributions are illustrated by a small case study (Sec. 5), demonstrating
how the probabilistic backoff procedure used in wireless communication may
be developed in a stepwise fashion, appealing to model checking to investigate
detailed performance issues. Our experiments using the PRISM model checker
indicate that the technique of probabilistic refinement can substantially reduce
the state space overhead, whilst maintaining the integrity of the performance
analysis in subsequent refinements, without the need for further model checking.
Finally we note that all proofs of lemmas are available elsewhere 1.

The notational conventions used are as follows. Function application is rep-
resented by a dot, as in f.x. We use an abstract state space S, and denote the
set of discrete probability distributions over S by S (that is the sub-normalised
functions from S into the real interval [0, 1], where function f is sub-normalised
if
∑

s : S f.s ≤ 1). Given predicate Pred we write [Pred] for the characteristic
function mapping states satisfying Pred to 1 and to 0 otherwise, punning 1 and
0 with “True” and “False”. The (p, 1−p)-weighted average of distributions d and
d′ is denoted d p⊕ d′.

2 Probabilistic Guarded Commands

When programs incorporate probability, their properties can no longer be guar-
anteed “with certainty”, but only “up to some probability”. For example the
program

coin =̂ b := T 2/3⊕ b := F , (1)

sets the Boolean-valued variable b to T only with probability 2/3 — in practice
this means that if the statement were executed a large number of times, and the
1 http://www.comp.mq.edu.au/∼anabel/
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final values of b tabulated, roughly 2/3 of them would record b having been set
to T (up to well-known statistical confidence [8]).

The language pGCL and its associated quantitative logic [18] were developed
to express such programs and to derive their probabilistic properties by extend-
ing the classical assertional style of programming [20]. Programs in pGCL are
modelled (operationally) as functions (or transitions) which map initial states
in S to (sets of) probability distributions over final states — the program at
(1) for instance has a single transition which maps any initial state to a (single)
final distribution; we represent that distribution as a function d, evaluating to
2/3 when b = T and to 1/3 when b = F.

Since properties are now quantitative we express them via a logic of real-
valued functions, or expectations. For example the property “the final value of b
is T with probability 2/3” can be expressed as the expected value of the function
[b = T] with respect to d [8], which evaluates to 2/3× 1 + 1/3× 0 = 2/3.

Direct appeal to the operational semantics quickly becomes impractical for all
but the simplest programs — better is the equivalent transformer-style semantics
which is obtained by rationalising the above calculation in terms of expected
values rather than transitions, and the explanation runs as follows. Writing ES
for the set of all (non-normalised) functions from S to [0, 1], which we call the
set of expectations, we say that the expectation [b = T] has been transformed
to the expectation 2/3 by the program coin (1) above so that they are in the
relation “2/3 is the expected value of [b = T] with respect to the coin’s result
distribution”. More generally given a program Prog, an expectation E in ES
and a state s ∈ S, we define wp.Prog.E.s to be the expected value of E with
respect to the result distribution of program Prog if executed initially from state
s [18]. We say that wp.Prog is the expectation transformer relative to Prog. In
our example that allows us to write

2/3 ≡ wp.(b := T 2/3⊕ b := F).[b = T] .

In the case that nondeterminism is present, execution of Prog results in a set of
possible distributions and we modify the definition of wp to take account of this
— indeed we define wp.Prog.E.s so that it delivers the least -expected value with
respect to all distributions in the result set. The transformers [18] give rise to a
complete characterisation of probabilistic programs with nondeterminism, and
they are sufficient to express many performance-style properties, including the
probability that an event occurs [18], the expected time that it occurs [18], and
long-run average of the number of times it occurs over many repeated executions
of the system [16].

In Fig. 1 we set out the semantics for pGCL, a variation of Dijkstra’s GCL
with several extensions and modifications, all of which are labelled by (†). They
are miracles, probability and “unguarded iteration” [4], the last representing
a looping program which can iterate for an indeterminate length of time, a
behaviour typifying reactive systems. All the programming features have been
defined previously elsewhere, and (apart from probabilistic choice) have interpre-
tations which are merely adapted to the real-valued context. For example non-
determinism, as explained above, is interpreted demonically and can be thought
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of as being resolved by a “minimal-seeking demon”, providing guarantees on all
program behaviour, such as is expected for total correctness. Probabilistic choice,
on the other hand, selects the operands at random with weightings determined
by the probability parameter p.

In addition to the definitions in Fig. 1 we will use the function gd which,
applied to a command, defined the states from which the command is enabled.

gd.C =̂ (1− wp.C.0) , (2)

so that when applied to a command of the form G → Prog returns [G]; we
also refer to Prog in G → Prog as its body. Given a family I of commands
we write [] i : ICi for the generalised (nondeterministic) choice over the family,
and
∑

i∈I Ci@pi for the generalised probabilistic choice (where
∑

i∈I pi = 1).
Similarly for variable v we write n :∈ Pred for the generalised nondeterministic
choice over any value from its type that satisfies the predicate Pred.

We say that a command is normal if it is of the form of a generalised prob-
abilistic choice over standard (non-probabilistic) commands Fi, i.e. of the form∑

i∈I Fi @pi, where
∑

i∈I pi ≤ 1. We shall need to be able to compose the effect
of “running” commands simultaneosly, and the next definition sets out how to
do it.

Definition 1. Given normal guarded commands C =̂ G→ Prog and C′ =̂ G′ →
Prog′, we define their composition as follows.

C ⊗ C′ =̂ (G ∧G′) →
∑

(i,j)∈I×J

(Fi ⊗ F ′
j) @(pi×p′j) ,

where Prog =
∑

i∈I Fi @pi and Prog′ =
∑

j∈J F
′
j @p′j, and wp.F ⊗ F ′ is given

by the fusion operator of Back and Butler [4]. In the case that F and F ′ operate
over distinct state spaces (as in our case study), F ⊗F ′ is equivalent to F ; F ′.

We end this section with a list of some nice features and idioms of pGCL.

• Unguarded iteration satisfies the equation it C ti = skip [] C; (it C ti),
expressing the fact that termination may occur at any time.
• Following from above, it magic ti = skip [] magic ; (it magic ti) = skip.
• When C is a guarded command G→ Prog, the expression

wp.(it C ti).1 , (3)

is the greatest guaranteed probability that the command (if executed) must
establish ¬G eventually. If this is 1 at any state, it means that the demon is
obliged to terminate after a finite number of executions of C (with probability
1) to minimise the risk of a miracle; if it is 0 however it means that C may be
executed forever, without ever establishing ¬G.

For example when G is “(n > 0)”, and Prog is “n := n + 1”, then (3) is the
(standard) [n ≤ 0], since when n is greater than 0, the command can increase
n indefinitely, and when n is less than 0 the interior command cannot execute
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skip wp.skip.E =̂ E ,
abort wp.abort.E =̂ 0 ,
magic(†) wp.magic .E =̂ 1 ,
assignment wp.(x := f).E =̂ E[x := f ] ,
sequential composition wp.(r; r′).E =̂ wp.r.(wp.r′.E) ,
probabilistic choice(†) wp.(r p⊕ r′).A =̂ p × wp.r.E + (1−p) × wp.r′.E ,
nondeterministic choice wp.(r []r′).A=̂wp.r.E� wp.r′.E , where � is pointwise minimum,
Boolean choice wp.(if G then r else r′).E =̂ [G] × wp.r.E + [¬G] × wp.r′.E ,
Guarded command wp.(G → r).E =̂ [G] × wp.r.E + [¬G] ,
Unguarded iteration(†) wp.(it r ti).E =̂ (μX • E � wp.r.X) .

E is an expectation in ES, and f is a function of the state. The real p is restricted
to lie between 0 and 1, and the term (μX . . . ) refers to the least fixed point with
respect to ≤, which we lift to real-valued functions; it is guaranteed to exist since the
expectations form a complete partial order. Commands labelled † are extensions of
the standard pGCL. Commands are ordered using refinement, so that more refined
programs improve probabilistic results, thus

P � Q iff (∀E ∈ ES · wp.P.E ≤ wp.Q.E) .

Fig. 1. Structural definitions of wp for pGCL with miracles and unguarded iteration

even once. On the other hand if Prog is “n := n + 1 2/3⊕ n := n − 1” (and G
remains “(n > 0)”), then solving the fixed point equation (for the least solution)
tells us that (3) is 1/2 evaluated at “n = 1”, implying that there is only 1/2
chance that the command must establish (n ≤ 0) if iterated indefinitely. (And
indeed the larger the initial value of n, the more likely is it that the command
may be iterated forever, without incurring a miracle at all.2)

• gd.C×wp.C.post selects the greatest guaranteed expected value of post from
initially enabled states.
• We write 〈G〉 for the “coercion” G→ skip, the command which behaves like

magic if G does not hold. Similarly we use {G} for its dual, if G then skip else
abort, the “assertion”, which behaves like skip if G holds, and aborts if it doesn’t.
We say that a command C terminates, or is total if wp.C.1 = 1.

3 Probabilistic Action Systems

Action systems [3] are a “state-based” formalism for describing so-called reactive
systems, viz. systems that may execute indefinitely. Although others [9,23] have
added probability to action systems, our work is most closely related to Morgan’s
version of labelled probabilistic action systems [19], which we extend in various
ways described below.
2 See [18], page 287 for a wp-proof of this fact: it is an example of the asymmetric

random walk.
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A (probabilistic) action system consists of a (finite) set of labelled guarded
commands, together with a distinguished command called an initialisation. An
action system is said to operate over a state space S, meaning that the variables
used in the system define its state space. Operationally an action system first
executes its initialisation, after which any labelled action may “fire” if its guard is
true by executing its body. Actions may continue to fire indefinitely until all the
guards are false. If more than one guard is true then any one of those actions may
fire, nondeterministically. We reserve the label τ for “hidden” actions, discussed
later in Sec. 3.2.

In Fig. 2 we set out a small example of a probabilistic action system Walker
which operates over the state defined by its variable n. First n is set nondeter-
mistically either to −1 or 1, and then action a or b fires depending on whether n
is greater than or less than 0, terminating if n is ever set to 0 (which, incidently,
occurs with probability 1). In terms of actions, Walker executes alternately a
string of a’s or b’s, whose frequency is determined by the probabilistic transitions.

Walker =̂

⎛⎜⎜⎝
var n : Z
initially n :∈ {−1, 1}
a : (n > 0) → n := n + 1 1/3⊕ n := n − 2
b : (n < 0) → n := n + 2 2/3⊕ n := n − 2

⎞⎟⎟⎠

Fig. 2. A random walker with actions

For action system P and label a we write Pa for the generalised choice of all
actions labelled with a, and Pi for its initialisation. In the case that P has no
a action we define Pa to be magic . The set of non-τ labels (labelling actions in
P ) is denoted α.P , and called P ’s alphabet. The semantics of an action system
is given by pGCL set out at Fig. 1, so that, for example, gd.(Pa) × wp.Pa.E is
the greatest guaranteed expected value of E from execution of Pa.

We use the action labels in two important ways — the first is to define syn-
chronisation and the second is to define refinement of action systems. We deal
with both below.

3.1 Synchronising Actions

We define synchronisation so that all action systems participating in a parallel
composition simultaneously fire their choice-shared actions together — in this
mode the nondeterminism (arising from possibly overlapping guards) is resolved
first, followed by any probability in the bodies. All other actions fire indepen-
dently, interleaving with any others.

Definition 2. Given normal action systems P and Q and subset A of actions
(not containing τ), we define their parallel composition P ||AQ as follows.
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1. P ||AQ operates over the union of the two state spaces, and α.(P ||AQ) = α.P ∪α.Q ;
2. (P ||AQ)i =̂ Pi ⊗ Qi ;
3. (P ||AQ)b =̂ Pb [] Qb, for b �∈ A ;
4. (P ||AQ)a =̂ [] {P a∈P,Qa∈Q}P a ⊗ Qa for a ∈ A, where P a and Qa are the

individual a-labelled actions belonging to P and Q respectively.

Note that the normality is preserved by Def. 2.

3.2 Hiding Actions

Our notion of abstraction is founded on the use of τ to indicate actions which
are hidden viz. those actions that execute so-to-speak “behind the scenes”. The
idea is to imagine an observer of the system judging its behaviour only on the
passage of non-τ -labelled actions. Thus he does not notice the actual firing of
the τ actions, according any state change they may induce instead to the actions
he has witnessed. The next definition sets out the details.

Definition 3. Given a labelled action system P , and a set of labels H, we define
the action system P\H as follows: 3

1. P\H operates over the same state space as P , and α.(P\H) =̂ (α.P ) − H ;
2. (P\H)a =̂ Pa, if a �∈ H ;
3. (P\H)τ =̂ Pτ [] ( [] h∈HPh) .

Thus Walker\{b} is the action system in which the only “observed actions” are
a’s. In between any a-action, an arbitrary number of the (now) hidden b-actions
may be executed unobserved, but because wp.(it Walkerb ti).1 = 1, only finitely
many can occur between every a action.4 On the other hand Def. 3 forces hidden
actions to fire in the case that only hidden actions are enabled.

3.3 Action Refinement

The ability to compare programs’ behaviour is the mainstay of specification
and refinement, and when used in conjunction with hiding is crucial for step-
wise development of correct systems. Even though refinements normally contain
more detail (and are thus more complicated) than the specifications from which
they are derived, refinement ensures that they satisfy at least as many prop-
erties. Here we set out a formal treatment of property-preserving refinement
(including quantitative properties) together with the principles underlying its
definition.

In standard state-based programs, the refinement relation is applied to “the
complete execution of the program”. In this context however, there is no nat-
ural notion of “complete execution”, as many actions may need to be fired to
achieve some goal. Here we combine the principles of event-based formalisms
3 This definition is similar to Butler and Morgan’s definition [4] in terms of refinement.
4 It is possible to introduce “divergence” after hiding — a situation in which hidden

actions may iterate indefinitely, and which is equivalent to abortion — however we
do not discuss that here.



138 A.K. McIver

(such as Event B [2]) and the probabilistic state-based approach to define a
relation between probabilistic action systems in which the labels determine the
observable behaviour. Our definition of refinement next compares the behaviour
of observable — i.e. labelled — events, event-by-event. 5

Definition 4. Let P and Q be action systems operating over the same state
spaces. We say that P is refined by Q, or P � Q, if 6

1. Pi ; it Pτ ti � Qi ; it Qτ ti
2. it Pτ ti ; Pa ; it Pτ ti � it Qτ ti ; Qa; it Qτ ti, for each a ∈ α.Q ,

where � is defined at Fig. 1 above.

For example, we see that Walker\{b} � ReflectingWalk (where ReflectingWalk
is defined in Fig. 3) since the effect of an arbitrary number of hidden actions
in Walker\{b} (formerly the b actions) is summarised by the single τ event in
ReflectingWalk. (Recall that hidden actions are forced to execute until a visible
event is enabled.)

3.4 Property Preservation

The significance of a refinement relation is that it preserves properties, and in
this section we set out how to define and test quantitative properties, and show
that they are preserved by Def. 4. Our approach is via a small testing language
in the style of concurrent logics [6], the key idea being that investigating a test
is simpler than investigating all behaviours of a program in all contexts. In this
case an action system is tested by incorporating it in a special testing program
which can only do three things: either it aborts, exhibits a miracle or terminates
in a valid state. Only in the latter case does the action system pass the test. Thus
algorithms which implement the test then only need check for termination.

Definition 5. Given an alphabet A we define a test T as follows.

T =̂ {G} | 〈G〉 | T ;T | [] a∈Ka | it T ti ,

where a is any label in A, and G and K are constant symbols.

A test t is to be understood in the context of an interpretation (set out at Def. 6
below) in which the labels correspond to the execution of actions in a given action
system (effectively procedure calls), and the constants correspond to predicates
over the variables (G), or subsets of actions (K). Thus tests specify sequences
of labelled actions and named conditions corresponding to complex temporal
formulae which may or may not be satisfied by particular instances of action
systems. Our testing language is expressive enough to capture some important

5 Compare the definition of state-based data-refinement [12].
6 Note that hidden actions cannot be compared directly since in some cases one action

system might not have hidden actions, whilst the other might.
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classes of properties sufficient to make our connection to model checking “reach-
ability” results. For example the property “predicate B holds until G does” can
be specified by

B � G =̂ it 〈¬G〉 ; ( [] a : Aa) ti ; 〈G ∨ ¬B〉 ; {G} . (4)

To see that observe that if ¬G ∧ B holds (for a particular interpretation), the
minimal-seeking nature of the nondeterminism will force it to fire any enabled
action rather than terminate the iteration, since in that case execution of the
coercion 〈G∨¬B〉 will result in a miracle. Similarly if ¬G∧¬B holds the demon
will jump out of a loop resulting in a following abort (execution of {G}), but
if G holds, the demon chooses between either a miracle or simply to terminate,
the latter being the better option. 7

Next we can interpret a test over an action system P simply by instantiating
each label a by Pa, factoring in the initialisation and the hidden events, in the
latter case by allowing an arbitrary number of hidden events to come before or
after any visible event.

Definition 6. For action system P such that α.P ⊆ A, we interpret a test t
over P as the pGCL program {|t|}VP (defined below), where V maps constants G
to predicates over S, and constants K to finite, nonempty subsets of actions from
A.

{|t|}V
P =̂ Pi ; it Pτ ti ; ||t||VP , where

||t||VP =̂

⎧⎪⎪⎨⎪⎪⎩
{V.G} or 〈V.G〉 , if t = {G} or 〈G〉
||t′||VP ; ||t′′||VP , if t = t′; t′′

[] a∈V.K(it Pτ ti ; Pa ; it Pτ ti) , if t = [] a∈Ka
it ||t′||VP ti , if t = it t′ ti .

We can now prove our property-preserving character of refinement, which tells
us that properties expressed in the wp-style are all preserved.

Lemma 1. If action systems P � Q then for any test t and any V mapping as
in Def. 6, we have that {|t|}VP � {|t|}VQ.

ReflectingWalk =̂

⎛⎜⎜⎝
var n : Z
initially n :∈ {−1, 1}
a : (n > 0) → n := n + 1 1/3⊕ n := n − 2
τ : (n < 0) → if (odd.n) then n := 1 else n := 0

⎞⎟⎟⎠

Fig. 3. A walker with a reflecting barrier

7 Note that this explanation is valid only when the action system always has some
action enabled — in the simple case of magic for example, the miracle will auto-
matically “guarantee” success.
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Thus (abusing notation so that constants stand for themselves) Def. 6 tells us
that wp.{|(n < 0) � (n = 1)|}VWalker.[n = 1], computes the chance that n becomes
1, after being negative by iterating the actions of Walker, in this case it is
only possible if n is initially negative and odd. Moreover Lem. 1 ensures that
this result applies to ReflectingWalk as well, a fact easily checked by inspecting
Fig. 3.

3.5 Changing Variables

In many cases, as systems are developed, we need to introduce new variables.
To deal with this we use the technique familiar to the treatment of standard
datatypes with named operations [7]. We partition the state space between
“global” and “local” variables — the idea is that two action systems having
different state spaces can still be compared by looking at their respective prop-
erties restricted to their shared global state. 8 As for datatypes we are then able
to match corresponding execution paths using a “simulation” function which
converts P ’s “local state” into Q’s, so that the refinement relation Def. 4 thus
applies.

Definition 7. Given action systems P and Q with global variables g, and local
variables a and c respectively, we say that P �g Q, or Q refines P with respect to
g if there is a standard (i.e. non-probabilistic), non-miraculous and terminating
simulation program rep, mapping variables a to c such that

1. Pi ; rep � Qi;
2. Pa ; rep � rep ; Qa , for a ∈ α.Q
3. (it Pτ ti) ; rep � rep ; (it Qτ ti);
4. skipg � rep ; skipg;

where skipg is a special “do nothing” program which projects the state onto that defined
by the global variables g.

If Pτ is magic , the third condition of Def. 7 (normally) reduces to a proof of
termination for the iteration — this can be done using probabilistic variants,
discussed elsewhere [18].

The next lemma sets out our property-preservation criterion.

Lemma 2. Given action systems P and Q with shared (global) variables g, any
test t, and mapping V mapping any constants G in t to predicates over g, then
if P �g Q we must have also that {|t|}VP ; skipg � {|t|}VQ ; skipg. 9

In this section we set out how to prove property-preserving refinments. In the
next section we discuss how those properties may be verified using probabilistic
model checking.
8 If they do not share any global state — an unusual situation — then condition 4 in

Def. 7 is the same as saying that rep must terminate.
9 In the special case that P ’s local variables are mapped to Q’s local variables, we

may express a test more conveniently using local state, and the results interpreted
over P will still apply to Q provided all the constants G are related by rep in the
two interpretations.
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4 Probabilistic Model Checking

The PRISM model checker [14] comprises a system description language together
with a property specification language based on probabilistic temporal logic. Al-
though the operational interpretation (including the definition of synchronisation
and hiding) are semantically identical to deterministic normal action systems,
PRISM does not have a facility for refinement in the style set out here. In terms
of a specification and refinement task, Lem. 3, next, shows how we can appeal
to PRISM as an “oracle” to compute quantitative properties which by Lem. 2
will be preserved for all subsequent refinements. 10

Lemma 3. Given deterministic normal action systems P1, . . . Pn, we have that

wp.{|(B � G)|}VP .[G].s0 = [V .B U V .G] ,

where (B � G) is defined at (4), P =̂ P1||A . . . ||APn, A is the union of the
alphabets of the Pi, and the PRISM formula [V .B U VG] is interpreted as “the
least probability that V .B holds until until V .G” does relative to P from intial
s0.11

5 A Stepwise Development of Probabilistic Backoff

In this section we develop a small case study based on the probabilistic backoff
procesdure of the IEEE 802.11 standard for wireless communication [1].

5.1 Two Senders and a Receiver

We begin with a very simple specification of part of a network consisting of two
“sending stations” and one “receiver”, given by

Network0 =̂ SenderA ||A ReceiverAB ||A SenderB ,

where the definitions of the sender and receiver are set out in Fig. 4, and A is
the set of all labelled events. This very straightforward specification depicts a
scenario in which senders A and B both need to send messages to a receiver,
who alternately listens, and then acknowledges any message which arrives safely.
Although in reality there may be collisions, and message loss, due to shared
channels those details are not included, since the intention is that “in the end”
both senders should send their messages intact. The Network0 comprises a single
action system, which nondeterministically delivers a message first from one of the
senders, and then from the other in some order. Amongst the facts that may be
proved about this system is that an acknowledgement cannot precede a sending
event, by investigating formula [(¬sa = wait∧¬sa = sent) U (¬sa = sent)] using
PRISM. 12

10 Note the conventions relating to “local” and global” variables within PRISM differ
from ours.

11 A similar result holds for “the greatest probability”.
12 Normally this safety property requires a greatest fixed point, however since sa even-

tually satisfies sent or wait the least fixed point is valid.
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SenderA =̂ ReceiverAB =̂

⎛⎜⎜⎝
var sa : {wait, sent, recv}
initially sa := wait
senda : (sa = wait) → sa := sent
acka : (sa = sent) → sa := recv

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

var r : {listen, ack}
initially r := listen
senda : (r = listen) → r := ack
acka : (r = ack) → r := listen
sendb : (r = listen) → r := ack
ackb : (r = ack) → r := listen

⎞⎟⎟⎟⎟⎟⎟⎠

Fig. 4. A sender and a receiver

5.2 Introducing Collisions

Next we introduce the possibility of collisions, indicating that both senders at-
tempt to send over a shared “channel” at the same time. To do this we introduce
an action system ChannelAB depicted in Fig. 5 to model the shared channel, and
augment the senders with a new event “clash”. the channel can be blocked —
indicating that two senders try to use it at the same time — or clear; but can
only be blocked for a limited time, since the probabilistic choice ensures that
event clash may only occur for a finite number of times. As we’re interested in
the expected number of times the clashing event occurs before one of the senders’
messages gets through, we include a variable t whose only purpose is to count
clashing events. The intermediate

Sender′
A =̂ ChannelAB =̂⎛⎜⎜⎜⎜⎝

var sa : {wait, sent, recv}
initially sa := wait
senda : (sa = wait) → sa := sent
acka : (sa = sent) → sa := recv
clash : skip

⎞⎟⎟⎟⎟⎠
⎛⎝var c : {block, clear}, t : {0 . . . T}

initially c := block ; t := 0
clash : (c = block) → t := t + 1; skip p⊕ c := clear

⎞⎠

Fig. 5. Adding a clashing event and a channel

Network1 =̂ Sender′A ||A ReceiverAB ||A Sender′B ||{clash}ChannelAB ,

does not include the precise details of the mechanism employed to clear the
channel, but only the overall effect viz. that it does indeed clear. Our first task
is to show that Network1 is a refinement of Network0.

Lemma 4
Network0 �g Network1 \{clash} ,

where g represents the variables sa, t and r.
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Proof. Use the function rep =̂ c :∈ {block, clear} ; t :∈ {0, . . . , N}, noting that it
distributes through any guard since it is standard so that the comment after Def. 7
applies, and this we only need prove the termination of (it Network1 \{clash} ti).
But from Def. 3

(Network1 \{clash})τ = (ChannelAB)clash ,

and it (ChannelABclash) ti must terminate with probability 1, a fact that can be
checked using a probabilistic variant [18].

Lem. 4 together with Lem. 2 imply that the properties verified for Network0 still
hold of Network1, and we do not need to check them again directly. Moreover at
this point it is possible to obtain some indication of the performance of the system
by analysing Network1. For example we can estimate the expected number of
clashes by investigating the various probabilities that the two senders are both
in the state sent, and t is set to a specific integer. To do this we model check
the property “[¬(sa = sent ∧ sb = sent) U (t ≤ n)]”. The expected number of
clashes may then be derived from these probabilities.

5.3 Probabilistic Backoff

Our final refinement is to introduce the randomised backoff procedure in each
sender. When each process detects that it is in collision with another — again the
details of how they do this have been suppressed — it sets its “backoff counter”
to some random number and then counts down. As there is a good chance that
the two backoff counters will be set to different values, the implication is that
one of the senders will try to re-send at a time when the other is still “counting
down”, thus breaking the deadlock.

RandSenderA =̂ Channel′AB =̂⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

var sa : {wait, sent, recv}, bca : {0 . . . N}
initially sa := wait; bca := 0
senda : (sa = wait) → sa := sent
acka : (sa = sent) → sa := recv
clash : (bca = 0 ∧ sa = wait) → flip(bca)
tick : (bca > 0) → bca := bca − 1
tick : (bca = 0 ∧ sa �= wait) → skip

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎝var t : {0, . . . , T}
initially t := 0
clash : t := t + 1

⎞⎠ ,

where flip(x) sets the value of variable x to be n with probability 1/rn+1, if n < N ,
and to N with probability 1 − (1/r)N .

Fig. 6. A sending station with a backoff procedure, and channel to count clashes

The new system,

Network2 =̂ RandSenderA ||A′ ReceiverAB ||A′ RandSenderB ,
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is the parallel composition of the three components, this time synchronising on
the all events given by A′ =̂ A∪ {clash, tick}; we show that it is a refinement
of Network1.

Lemma 5
Network1 �g Network2\{tick} ,

where g represents sa, t and r.

Proof. We use rep =̂ if (c = clash then (bca, bcb :∈ (bca = bcb)) else (bca, bcb :∈
(bca �= bcb)), and the argument now follows as for Lem. 4, noting that the
probabilities when bca = bcb after the execution of flip(bca) and flip(bca) must
add up to p, a condition which induces a relation between p and r, i.e. p =∑

i<N r2(i+1) × (1−r)2 + (1−r)2N . Finally we must use Def. 2 to separate the
single actions representing the synchronisation of clash and tick into actions
residing in RandSenderA and RandSenderB.

We end by noting that the facts gathered about Network0 and Network1 — that
no acknowledgement may be sent before a send event, and the expected number
of times that the senders try to send at the same time — still apply to Network2,
without the need for any further checks.

5.4 Experimental Results

Our experiments with PRISM implementations of examples of the above small
systems demonstrate the large increase in model size with later refinements, thus
abstraction of this kind may be thought of as easing state space explosion. For
example with N set to 5 and T set to 100, the PRISM model for Network1 con-
sisted of 1608 states and 2009 transitions, whilst the PRISM model for Network2
consisted of 20, 008 states and 39, 611 transitions. In a more realistic case study
in which we include timing constraints we expect the increase to be greater still.

6 Comparisons with Other Work and Research Directions

Our contribution can be viewed as the first step towards a fully integrated sys-
tem in which developers may use automation to explore (to some extent) the
quantitative performance of their design decisions at early stages in their devel-
opment. Just as we have come to expect from a development based on qualitative
properties alone, the formal refinement relation ensures that the integrity of per-
formance analysis is preserved as the system matures. Whilst our results show
that model checking does not need to be used again once the specified perfor-
mance property has been verified of an abstract system, the refinement process
may continue in principle all the way to the code level. More experience is needed
to decide when best to use the model checking results within a development.

Research in the modelling and evaluation of system performance has primar-
ily focussed on process algebra such as PEPA [11] and TIPP [10] and Stochas-
tic Petri nets [15]. These approaches allow specification of delays, which are
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realised by exponential distributions in a Markov Process simulation. Equiv-
alence between processes — where it is available — is via various weak and
strong bisumulations, and indeed our use of rep is similar to Hillston’s propert-
preserving weak bisimulations. However none of these cases can the performance
properties be transferred directly to the code level, in a structured manner as
they can with the specification/refinement paradigm presented here.

Other approaches using probabilistic action systems include Sere and Troubit-
syna [23] and Hallerstede [9]. In the former case hiding is not available, whilst
the latter models an action system as a Markov Decision Process with specified
rewards. Mechanised tool support automates the selection of a refinement which
guarantees the optimal cost with respect to the “long-run average”. Although
the system allows refinement, equality between action systems is necessary to
preserve the integrity of the properties in more refined systems. In contrast the
approach we have taken is closer to the normal refinement style, in which the
value of worst-case properties increases up the refinement order; moreover best
case-properties can also be ordered via refinement to prove worst case upper
bounds, and are investigated elsewhere [5]. We note that our theory founded on
expectations gives access to probabilities, expected times [18] and long-run aver-
ages [16], though more work is required for tools to compute the latter property
directly.

The use of simulations for probabilistic systems has been studied by oth-
ers, most notably Segala [22] using probabilistic automata; there are also many
extensions of process algebras to include probability [13]. However, these ap-
proaches tend to deal directly with operational features of systems, compared
to this work whose domain-theoretical basis exposes the (standard) mathemati-
cal structures underlying the probabilistic and nondeterministic features of the
semantics. In particular this approach establishes straightforwardly the defini-
tions of the associated quantitative transformer logic, allowing us to address the
practical goal of preservation of system properties. Stepwise developments of
wireless-like protocols have been carried out by Stoelinga [24].

Future work will explore the use of annotating programs with delays and
other performance criteria, and developing tool support for the proof of program
refinements.
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Abstract. The complexity of real-time embedded systems is increasing,
for example due to the use of distributed architectures. An extension
to the Vienna Development Method (VDM) is proposed to address the
problem of deployment of software on distributed hardware. The limita-
tions of the current notation are discussed and new language elements are
introduced to overcome these deficiencies. The impact of these changes
is illustrated by a case study. A constructive operational semantics is de-
fined in VDM++ and validated using VDMTools. The associated ab-
stract formal semantics, which is not specific to VDM, is presented in this
paper. The proposed language extensions significantly reduce the model-
ing effort when describing distributed real-time systems in VDM++ and
the revised semantics provides a basis for improved tool support.

1 Introduction

The complexity of embedded systems is rapidly increasing; they are becoming
distributed almost by default, for example due to the System-on-Chip design
philosophy which is often used nowadays. Safety-critical applications have tra-
ditionally been federated, meaning that each “function” has its own CPU with
minimal interconnections to other functions in the system. This approach is ex-
pensive and for some application areas, such as the automobile industry, it is
no longer economically viable to do so. The current trend is rather to combine
functions together on the same processing unit and then distribute their opera-
tion between a number of networked fault-tolerant processors in order to reduce
cost. It is not hard to imagine that finding the “right” deployment of functional-
ity over such a distributed architecture, that meets all the imposed system-level
requirements, is quite a challenging problem.

It is natural to advocate the use of formal techniques in this application area
in order to cope with this complexity and indeed a large body of knowledge
exists on their use. Most formal techniques however, are not able to deal with
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the combination of complex behavior, timing, concurrency and in particular
distribution in a flexible and intuitive way. Tool support often does not scale
very well to the size of problems faced by industry. System development lead
times remain substantial, even if formal methods can be usefully applied.

The Vienna Development Method (VDM) has been used in several large-
scale industrial projects [1,2,3,4]. Their success was very much due to the solid
formal basis of the notation and the availability of robust and commercial grade
tools. However, not much is known about the application of VDM in the area of
distributed real-time embedded systems. In earlier work [5], we reported that it
is very hard to describe such systems in VDM. The language is not sufficiently
expressive and important tool features are missing to analyze such models.

The aim of this paper is to make VDM++ better suited for describing dis-
tributed embedded real-time systems and to enable the design space exploration
as mentioned before. In Sect. 2, an overview of the notation and the existing
timed extension is presented. The limitations experienced in our earlier work are
summarized and we introduce the main proposed adaptations: the addition of
deployment and asynchronous communication. A small case study is presented
in Sect. 3 that demonstrates the impact of the proposed changes. In Sect. 4, we
define an abstract formal semantics of the extended language and discuss how
the semantics has been validated. Finally, in Sections 5 and 6 we present related
work and we discuss the results achieved.

2 An Overview of the VDM Notation

VDM++ is an object-oriented and model-based specification language with a
formally defined syntax, static and dynamic semantics. It is a superset of the
ISO standardized notation VDM-SL [6]. VDM++ was originally designed in the
ESPRIT project Afrodite and it was subsequently improved and tools were im-
plemented by IFAD. Different VDM dialects are supported by industry strength
tools, called VDMTools, which are currently owned and further developed by
CSK 1. A timed extension to VDM++ was delivered as part of the Vice project:
“VDM++ In a Constrained Environment” [7].

The dynamic semantics of an executable subset of VDM++ is provided as
a constructive operational semantics specified in VDM-SL which is roughly 500
pages including informal explanation [8]. The core of this specification is an ab-
stract state machine which is able to execute a set of formally defined primitive
instructions. Special functions are supplied to “compile” each abstract syntax
element into such a sequence of instructions. The dynamic semantics specifi-
cation is executable and can be validated using VDMTools. The test suite
contains several thousand test cases which are also used to verify the imple-
mentation. The industrial success of VDMTools is, for a large part, due to
excellent conformance of the tool to the formally defined operational semantics
and the round-trip engineering with UML.

1 http://www.csk.com/support e/vdm/
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For an in-depth presentation of the language and supporting tools 2 see [3]. We
provide an overview in Sect. 2.1 and introduce the timed extensions in Sect. 2.2.
The limitations of these extensions are discussed in Sect. 2.3 and we present our
proposed language modifications in Sect. 2.4.

2.1 The Basic VDM++ Notation

In VDM++, a model consists of a collection of class specifications. We distin-
guish active and passive classes. Active classes represent entities that have their
own thread of control and do not need external triggers in order to work. In
contrast, passive classes are always manipulated from the thread of control of
another active class. We use the term object to denote the instance of a class.
More than one instance of a class might exist. An instance is created using the
new operator, which returns an object reference. A class specification has the
following components:

Class header: The header contains the class name declaration and inheritance
information. Both single or multiple inheritance are supported.

Instance variables: The state of an object consists of a set of typed variables,
which can be of a simple type such as bool or nat, or complex types such
as sets, sequences, maps, tuples, records and object references. The latter
are used to specify relations between classes. Instance variables can have
invariants and an expression to define the initial state.

Operations: Class methods that may modify the state can be defined implic-
itly, using pre- and postcondition expressions only, or explicitly, using im-
perative statements and optional pre- and postcondition expressions.

Functions: Functions are similar to operations except that the body of a func-
tion is an expression rather than an imperative statement. Functions are not
allowed to refer to instance variables, they are pure and side-effect free.

Synchronization: Operations in VDM++ are re-entrant and their invocation
is defined with synchronous (rendez-vous) semantics. It is possible to con-
strain the execution of an operation by specifying a permission predicate [9].
A permission predicate is a Boolean expression over so-called history coun-
ters that acts as a guard for the operation, for example to express mutual
exclusion. History counters are maintained per object to count the number
of requests, activations and completions per operation.

Thread: A class can be made “active” by specifying a thread. A thread is a
sequence of statements which are executed to completion at which point the
thread dies. The thread is created whenever the object is created but the
thread needs to be started explicitly using the start operator. It is possible
to specify threads that never terminate.

2.2 The Existing Timed Extension to VDM++

In the Vice project [7], time was added by assigning a user-configurable default
duration to each basic language construct. Whenever a statement is evaluated by
2 Many examples and free tool support can be found at http://www.vdmbook.com
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the interpreter, the global notion of time is increased by the specified amount. In
this way, it was possible to simulate the timed behavior of a program running on
a single processor. In addition, the user can specify the task switch overhead and
the scheduling policy used. The duration statement was added to the language,
with the concrete syntax duration(d) IS, which implies that all statements in
IS are executed instantaneously and then time is increased by d time units.
The duration statement is used to override the default execution time for IS.
Furthermore, the periodic statement was introduced, with the concrete syntax
periodic(d)(Op). This statement can only be used in the thread clause to denote
that operation Op is called periodically every d time units.

2.3 The Limitations of Timed VDM++

In previous work [5], we assessed the suitability of timed VDM++ for distributed
real-time embedded systems. We list the most important problems here.

1. Operations in VDM++ are synchronous; calls are either blocked on a per-
mission predicate (guard) or executed in the context of the thread of control
of the caller. The caller has to wait until the operation is completed before it
can resume. This is very cumbersome when embedded systems are modeled.
These systems are typically reactive by nature and asynchronous. An event
loop can be specified to describe this, but the complexity of the model is
increased and analysis of the model becomes harder.

2. Timed VDM++ supports a uni-processor multi-threading model of compu-
tation which means that at most one thread can claim the processor and only
this active thread can push time in the model forward. This is insufficient
for describing embedded systems because 1) they are often implemented on
a distributed architecture and 2) these systems need to be described in com-
bination with their environment. The subsystems and the environment are
independent and therefore need their own notion of time which requires a
multi-processor multi-threading model of computation.

3. The duration statement in timed VDM++ denotes a time penalty that is in-
dependent of the resource that executes the statement. When deployment is
considered, it is essential to also be able to express time penalties that are rel-
ative to the capacity of the computation resource. Furthermore, there should
be an additional time penalty that reflects the message handling between two
computation resources whenever a remote operation call is performed.

2.4 Proposed Changes

Our aim is to minimize the impact on the existing language as much as possi-
ble. Ideally, we want to remain backwards compatible in order to reuse existing
models and tools. Therefore, we have not considered to merge VDM++ with
other techniques. Informally, we propose the following changes:
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1. The semantics of timed VDM++ is based on the assumption that at most
one thread can push time forward in the model. We propose a richer seman-
tics in which this limitation is removed. Any thread that is running on a
computation resource or any message that is in transit on a communication
resource can cause time to elapse. Models that contain only one computation
resource are compatible to models in timed VDM++.

2. The suggestion is to introduce the async keyword in the signature of an
operation to denote that an operation is asynchronous. The caller shall no
longer be blocked, it can immediately resume its own thread of control after
the call is initiated. A new thread is created and started immediately to
execute the body of the asynchronous operation.

3. A collection of special predefined classes, BUS and CPU, are made available
to the specifier to construct the distributed architecture in his model. The
system class is used to contain such an architecture model. User-defined
classes can be instantiated and deployed on a specific CPU in the model. The
communication topology between the computation resources in the model
can be described using the BUS class.

4. The duration statement is kept intact to specify time delays that are in-
dependent of the system architecture. In addition, we introduce the cycles
statement, with a similar concrete syntax, to denote a time delay that is
relative to the capacity of the resource. The time delay incurred by the mes-
sage transfer over the BUS can be made dependent of the size of the message
being transfered, which is a function of the parameter values passed to the
operation call.

We will demonstrate the impact of these changes in Sect. 3 using a small case
study and in Sect. 4 we present the semantics of the main extensions.

3 Modeling an In-Car Radio Navigation System

In previous work [10,11], we have studied the design of an in-car radio naviga-
tion system. Such an infotainment system typically executes several concurrent
software applications that share a common, and often distributed, hardware plat-
form. Each application has individual requirements that need to be met and the
question is whether all requirements can be satisfied when a particular archi-
tecture is chosen. We present a VDM++ model of the distributed in-car radio
navigation system using the suggested language improvements. We have focused
on modeling the non-functional performance aspects because these will highlight
the impact of the language changes most prominently. The case study aims to
demonstrate that it is easy to describe distributed architectures and the asso-
ciated deployment of functionality onto it. The model presented here reflects
one of the proposals that was considered during the design, consisting of three
processing units connected through an internal communication bus. We use the
terms application and task to informally describe the case study. An overview is
presented in Fig. 1.
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Fig. 1. Informal overview of the case study

Two applications are running on the system: ChangeVolume and ProcessTMC.
Each application consists of three individual tasks. The ChangeVolume appli-
cation, represented by the top right gray box, controls the volume of the ra-
dio. The task HandleKeyPress takes care of all user interface input handling,
AdjustVolume modifies the volume accordingly and UpdateVolume displays the
new volume setting on the screen. The ProcessTMC application, indicated by
the bottom right gray box in Fig. 1, handles all Traffic Message Channel (TMC)
messages. TMC messages arrive at the HandleTMC task where they are checked
and forwarded to the DecodeTMC task to be translated into human readable text
which is displayed on the screen by the UpdateTMC task.

Two additional applications represent the environment of the system: Vol-
umeKnob and TransmitTMC. The former is used to simulate the behavior of a
user turning the volume knob at a certain rate and the latter is used to simulate
the behavior of a radio station that transmits TMC messages. Both applications
inject stimuli into the system (createSignal) and observe the system response
(handleEvent).

In the remainder of this section, we will present how applications and tasks
from the informal case study description relate to classes, operations and threads
in VDM++. Furthermore, we will show how distributed architectures are de-
scribed and how objects are deployed. We present the environment model in
more detail in Sect. 3.1 and the system model in Sect. 3.2.

3.1 The Environment Model

In our case study, there are two environment applications. Each application is
represented by a class, the tasks are represented by operations in that class.
An instance of the class is automatically deployed on an implicit computation
resource, denoted by the dashed boxes in Fig. 1. Environment applications op-
erate in parallel to the system and independent of each other. Execution of an
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environment application does not affect the notion of time in other environ-
ment or system applications. Environment applications communicate with the
system applications over an implicit communication resource that connects all
computation resources in the model.

Typical system-level temporal and timing properties can be specified over the
interface between the environment and the system model. Informal examples of
these requirements are: “The order of the VolumeKnob stimuli is preserved by
the output response sequence of the system.” and “For each HandleTMC stim-
ulus, the maximum allowed response time shall be less than 1000 time units.”.
These requirements can be modeled using standard VDM++ constructs. The
TransmitTMC class is presented in Fig. 2.

class TransmitTMC
instance variables
static private id : nat := 0;
protected e2s : map nat to nat := {|->};
protected s2e : map nat to nat := {|->}

operations
getNum : () ==> nat
getNum () == ( dcl res : nat := id ; id := id + 1; return res );

async public handleEvent : nat ==> ()
handleEvent (pev ) == s2e := s2e munion {pev |-> time}
post forall idx in set dom s2e & s2e (idx ) - e2s (idx ) <= 1000;

createSignal : () ==> ()
createSignal () ==
( dcl num : nat := getNum (); e2s := e2s munion {num |-> time};

RadNavSys‘radio.HandleTMC (num ) )

thread periodic (1000) (createSignal )
sync mutex(getNum )

end TransmitTMC

Fig. 2. The TransmitTMC class

Two instance variables are maintained to log the stimuli (e2s) and the re-
sponses (s2e). These variables are mappings from a unique natural number pro-
vided by the operation getNum, to identify each stimulus, to another natural
number that represents the time at which the event was recorded. The time
keyword provides access to the “wall clock” of the interpreter whenever the
model is executed. A TMC event is inserted into the system by the periodic
thread createSignal every 1000 time units by calling the asynchronous opera-
tion HandleTMC of the Radio class shown in Fig. 3. The operation handleEvent
is called by the system at the end of the UpdateTMC operation (not shown here),
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indicating that the event was completely processed by the ProcessTMC appli-
cation. The worst-case response time requirement is encoded as a postcondition
to the handleEvent operation. The postconditions are checked when the model
is simulated. Whenever the postcondition is false, the interpreter will stop and
the state of the system can be inspected to determine the cause of the problem.
Other timeliness requirements can be specified in a similar way.

3.2 The System Model

In the system model of our example, there are two independent applications that
consist of three tasks each. Tasks can either be triggered by external stimuli or by
receiving messages from other tasks. A task can also actively acquire or provide
information by periodically checking for available data on an input source or
delivering new data to an output source. All three notions of task activation
are supported by our approach. Note that task activation by external stimuli
can be used to model interrupt handling. The HandleKeyPress and HandleTMC
tasks belong to this category. The other tasks in our system model are message
triggered. We already used periodic task activation in the environment model
(createSignal).

class Radio
operations
async public AdjustVolume : nat ==> ()
AdjustVolume (pno) ==
( duration (150) skip; RadNavSys‘mmi.UpdateVolume (pno ) );

async public HandleTMC : nat ==> ()
HandleTMC (pno) ==
( cycles (1E5) skip; RadNavSys‘navigation.DecodeTMC (pno ) )

end Radio

Fig. 3. The Radio class

Application tasks are modeled by asynchronous operations in VDM++. Fig. 3
presents the definition of AdjustVolume and HandleTMC, which are grouped to-
gether in the Radio class. We use the skip statement for illustration purposes
here, it can be replaced with an arbitrary complex statement to describe the
actual system function that is performed, for example changing the amplifier
volume set point. Note that AdjustVolume uses the duration statement to de-
note that a certain amount of time expires independent of the resource on which
it is deployed. The duration statement now states that changing the set point
always takes 150 time units. For illustration purposes, HandleTMC uses the cy-
cles statement to denote that a certain amount of time expires relative to the
capacity of the computation resource on which it is deployed. If this operation
is deployed on an resource that can deliver 1000 cycles per unit of time then the
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delay (duration) would be 1E5 divided by 1000 is 100 time units. A suitable unit
of time can be selected by the modeler.

A special class called CPU is provided to create computation resources in
the system model. Each computation resource is characterized by its process-
ing capacity, specified by the number of available cycles per unit of time, the
scheduling policy that is used to determine the task execution order and a factor
to denote the overhead incurred per task switch. For this case study, fixed pri-
ority preemptive scheduling with zero overhead is used, although our approach
is not restricted to any policy in particular.

system RadNavSys
instance variables

-- create the application tasks
static public mmi := new MMI ();
static public radio := new Radio ();
static public navigation := new Navigation ();

-- create CPU (policy, capacity, task switch overhead)
CPU1 : CPU := new CPU (<FP>, 22E6, 0);
CPU2 : CPU := new CPU (<FP>, 11E6, 0);
CPU3 : CPU := new CPU (<FP>, 113E6, 0);

-- create BUS (policy, capacity, message overhead, topology)
BUS1 : BUS := new BUS (<FCFS>, 72E3, 0, {CPU1 , CPU2 , CPU3 })

operations
-- the constructor of the system model
public RadNavSys : () ==> RadNavSys
RadNavSys () ==

( CPU1.deploy (mmi ); -- deploy MMI on CPU1
CPU2.deploy (radio ); -- deploy Radio on CPU2
CPU3.deploy (navigation ) ) -- deploy Navigation on CPU3

end RadNavSys

Fig. 4. The top-level system model for the case study

A special class BUS is provided to create communication resources in the
system model. A communication resource is characterized by its throughput,
specified by the number of messages that can be handled per unit of time, the
scheduling policy that is used to determine the order of the messages being
exchanged and a factor to denote the protocol overhead. The granularity of a
message can be determined by the user. For example, it can represent a single
byte or a complete Ethernet frame, whatever is most appropriate for the problem
under study. For this case study, we use First Come First Served scheduling with
zero overhead, but again the approach is not restricted to any policy in particular.
An overview of the VDM++ system model is presented in Fig. 4.
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4 Abstract Operational Semantics

In this section we formalize the semantics of the proposed changes to VDM++,
as described in Sect. 2.4. To highlight the main changes and modifications, an
abstract basic language which includes the new constructs is defined in Sect. 4.1.
We describe the intended meaning and discuss the most important issues that
had to be addressed when formalizing this. In Sect. 4.2, a formal operational
semantics is defined. Validation of this semantics is discussed in Sect. 4.3.

4.1 Syntax

We abstract from many aspects and constructs in VDM++ and assume given
definitions of classes, including explicit definitions of synchronous and asyn-
chronous operations. It is assumed that these definitions are compiled into a
sequence of instructions. We abstract from most local, atomic instructions (such
as assignments) and consider only the skip instruction. Let d denote a nonneg-
ative time value, and let duration (d) be an abbreviation of duration(d) skip.
Assume that, for an instruction sequence IS, the statement duration(d) IS is
translated into IS ˆ duration(d), where internal durations inside IS have been
removed and the “ˆ” operator concatenates the duration instruction to the end
of a sequence. The concatenation operation is also used to concatenate sequences
and to add an instruction to the front of the sequence. Functions head and tail
yield the first element and the rest of the sequence, resp., and 〈〉 denotes the
empty sequence. Let ObjectId be the set of object identities, with typical ele-
ment oid. Operation denotes the set of operations, with typical element op. The
predicate syn?(op) is true iff the operation is synchronous. The syntax of the
instructions is defined by:

Instr. I ::= skip | call(oid, op) | duration(d) | periodic(d) IS
Instr. Seq. IS ::= 〈〉 | I ˆIS

These basic instructions have the following informal meaning:

– skip represents a local statement which does not consume any time.
– call(oid, op) denotes a call to an operation op of object oid. Depending on the

syn? predicate, the operation can be synchronous (i.e., the caller has to wait
until the execution of the operation body has terminated) or asynchronous
(the caller may continue with the next instruction and the operation body
is executed independently). There are no restrictions on re-entrance here,
but in general this can be restricted by permission predicates as discussed
in Sect. 2.1. These are not considered here, also parameters are ignored.

– duration(d) represents a time progress of d time units. When d time units
have elapsed the next statement can be executed. As shown in Sect. 3.2,
cycles(d) can be expressed as a duration statement.

– periodic(d) IS leads to the execution of instruction sequence IS each period
of d time units.
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To formalize deployment, assume given a set of nodes Node and a function
node which gives for each object identity oid its processor, denoted node(oid).
Furthermore, assume given a set of links, defined as a relation between nodes
Link = Node×Node, to express that messages can be transmitted from one node
to another via a link. In the semantics described here we assume, for simplicity,
that a direct link exists between each pair of communicating nodes. Note that
CPU and BUS, as used in the radio navigation case study, are concrete examples
of a node and a link.

The formalization of the precise meaning of the language described above
raises a number of questions that have to answered and on which a decision has
to be taken. We list the main points:

– How to deal with the combination of synchronous and asynchronous opera-
tions, e.g. does one has priority over the other, how are incoming call request
recorded, is there a queue at the level of the node or for each object sepa-
rately? We decided for an equal treatment of both concepts; each object has
a single FIFO queue which contains both types of incoming call requests.

– How to deal with synchronous operation calls; are the call and its acceptance
combined into a single step and does it make a difference if caller and callee
are on different nodes? In our semantics, we distinguish between a call within
a single node and a call to an operation of an object on another node.
For a call between different nodes, a call message is transferred via a link
to the queue of the callee; when this call request is dequeued at the callee,
the operation body is executed in a separate thread and, upon completion,
a return message is transmitted via the link to the node of the caller.
For a call within a single node, we have made the choice to avoid a context
switch and execute the operation body directly in the thread of the caller.
Instead, we could have placed the call request in the queue of the callee.

– Similar questions hold for asynchronous operations. On a single node, the
call request is put in the queue of the callee, whereas for different nodes
the call is transferred via a link. However, no return message is needed and
the caller may continue immediately after issuing the call.

– How are messages between nodes transferred by the links? In principle, many
different communication mechanisms could be modeled. As a simple exam-
ple, we model a link by a set of messages which include a lower and an upper
bound on message delivery. For a link l, let δmin(l) and δmax(l) be the min-
imum and maximum transmission time. It is easy to extend this and make
the transmission time dependent of, e.g., message size and link traffic.

– How to deal with time, how is the progress of time modeled? In our seman-
tics, there is only one global step which models progress of time on all nodes.
All other steps do not change time; all assumptions on the duration of state-
ments, context switches and communications have to be modeled explicitly
by means of duration statements.

– What is the precise meaning of periodic(d) IS if the execution of IS takes
more than d time units? We decided that after each d time units a new
thread is started to ensure that every d time units the IS sequence can be
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executed. Of course, this might potentially lead to resource problems for
particular applications, but this will become explicit during analysis.

4.2 Formal Operational Semantics

The aim of the operational semantics is to define the execution of the language
defined in Sect. 4.1. To capture the state of affairs at a certain point during
the execution, we introduce a configuration (Def. 1). Next we define the possible
steps from one configuration to another, denoted by C −→ C′ where C and
C′ are configurations (Def. 3). This finally leads to a set of runs of the form
C0 −→ C1 −→ C2 −→ . . . (Def. 8).

To focus on the essential aspects, we assume that the set of objects is fixed
and need not be recorded in the configuration. However, object creation can be
added easily, see e.g. [12]. Let Thread be a set of thread identities; each thread
i is related to one object, denoted by oi. This also leads to the deployment of
threads: node(i) = node(oi). Finally, we extend the set of instructions Instruction
with an auxiliary statement return(i). This statement will be added during the
executing at the end of the instruction sequence of a synchronous operation
which has been called by thread i.

Definition 1 (Configuration). Aconfiguration C contains the following fields:

– instr : Thread → seq[Instruction] which is a function which assigns a se-
quence of instructions to each thread.

– curthr : Node → Thread yields for each node the currently executing thread.
– status : Thread → {dormant, alive,waiting} to denote the status of threads.
– q : ObjectId → queue[Thread × Operation] records for each object a FIFO

queue of incoming calls, together with the calling thread (needed for syn-
chronous operations only).

– linkset : Link → set[Message×Time×Time] records the set of the incoming
messages for each link, together with lower and upper bound on delivery.
A message may denote a call of an operation (including calling thread and
called object) or a return to a thread.

– now : Time to denote the current time.

For a configuration C, we use the notation C(f) to obtain its field f , such as
C(instr). For a FIFO queue, functions head and tail yield the head of the queue
and the rest, respectively; insert is used to insert an element and 〈〉 denotes the
empty queue. For sets we use add and remove to insert and remove elements.
We use exec(C, i) as an abbreviation for C(curthr)(node(i)) = i to express that
thread i is executing on its node. Let fresh(C, oid) yield a fresh, not yet used,
thread identity (so with status dormant) corresponding to object oid. To express
modifications of a configuration, we define the notion of a variant.

Definition 2 (Variant). The variant of a configuration C with respect to a
field f and value v, denoted by C[ f �→ v ], is defined as

(C[ f �→ v ])(f ′) =
{
v if f ′ = f
C(f ′) if f ′ �= f

Similarly for parts of the fields, such as instr(i).
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Steps have been grouped into several definitions, leading to the following
overall definition of a step.

Definition 3 (Step). C −→ C′ is a step iff it corresponds to the execution of
an instruction (Def. 4), a context switch (Def. 5), the delivery of a message by
a link (Def. 6), or the processing of a message from a queue (Def. 7).

Definition 4 (Execute Instruction). A step C −→ C′ corresponds to the
execution of an instruction iff there exists a thread i such that exec(C, i) and
head(C(instr)(i)) is one of the following instructions:

– skip: Then the new configuration equals the old one, except that the skip
instruction is removed from the instruction sequence of i, that is,
C′ = C[ instr(i) �→ tail(C(instr)(i)) ]

– call(oid, op): Let IS be the explicit definition of operation op of object oid.
If caller and callee are on the same node, i.e. node(i) = node(oid) and
syn?(op) then IS is executed directly in the thread of the caller, i.e.,
C′ = C[ instr(i) �→ ISˆtail(C(instr)(i)) ]
Otherwise, if not syn?(op), we add the pair (i, op) to the queue of oid, i.e.,
C′ = C[ instr(i) �→ tail(C(instr)(i)), q(oid) �→ insert((i, op), C(q)(oid)) ]
If node(i) �= node(oid) and link l connects the nodes, then the call is trans-
mitted via l, so added to the linkset. If syn?(op), thread i becomes waiting:
C′ = C[ instr(i) �→ tail(C(instr)(i)), status(i) �→ waiting,

linkset(l) �→ insert(m,C(linkset)(l)) ]
where m = (call(i, oid, op), C(now) + δmin(l), C(now) + δmax(l)). Similarly
for asynchronous operations, except that then the status of i is not changed.

– duration(d): To allow progress of time, we require that all threads that are
alive and have a non-empty instruction sequence can only perform a dura-
tion. Then time may progress with t time units if C(now) + t is smaller or
equal than all upper bounds of messages in link sets and t is smaller or equal
than all durations that are at the head of an instruction sequence of some
thread. To ensure progress of time (and to avoid Zeno behavior) we choose
the largest t satisfying these conditions. Durations in instruction sequences
are modified by the following definition which yields a new function from
threads to instruction sequences:
NewDuration(C, t) = λi : if head(C(instr)(i)) = duration(di)

then if di − t = 0 then tail(C(instr)(i))
else duration(di − t)ˆtail(C(instr)(i))

else C(instr)(i).
C′ = C[ instr �→ NewDuration(C, t), now �→ C(now) + t ]

– periodic(d) IS: In this case, IS is added to the instruction sequence of thread
i and a new thread j = fresh(C, oi) is started which repeats the periodic
instruction after a duration of d time units, i.e.
C′ = C[ instr(i) �→ IS, instr(j) �→ duration(d)ˆperiodic(d) IS,

status(j) �→ alive ]
– return(j): Then we have node(i) �= node(j) and the return is transmitted

via the link l which connects the nodes, i.e.,



160 M. Verhoef, P.G. Larsen, and J. Hooman

C′ = C[ instr(i) �→ tail(C(instr)(i)), linkset(l) �→ insert(m,C(linkset)(l)) ]
where m = (return(j), C(now) + δmin(l), C(now) + δmax(l))

Definition 5 (Context Switch). A step C −→ C′ corresponds to a context
switch iff there exists a thread i which is not running, i.e. ¬exec(C, i), and also not
dormant or waiting, i.e. C(status)(i) = alive. Then i becomes the current thread
and a duration of δcs time units is added to represent the context switching time:
C′ = C[ instr(i) �→ duration(δcs)ˆC(instr)(i), curthr(node(i)) �→ i ]

Definition 6 (Deliver Link Message). A step C −→ C′ corresponds to
the message delivery by a link iff there exists a link l and a triple (m, lb, ub) in
C(linkset)(l) with lb ≤ C(now) ≤ ub. There are two possibilities for message m:

– call(i, oid, op): Insert the call in the queue of object oid:
C′ = C[ q(oid) �→ insert((i, op), C(q)(oid)),

linkset(l) �→ remove((m, lb, ub), C(linkset)(l)) ]
– return(i): Wake-up the caller, i.e.
C′ = C[ status(i) �→ alive, linkset(l) �→ remove((m, lb, ub), C(linkset)(l)) ]

Definition 7 (Process Queue Message). A step C −→ C′ corresponds to
the processing of a message from a queue iff there exists an object oid with
head(C(q)(oid)) = (j, op). Let j = fresh(C, oid) be a fresh thread and IS be the
explicit definition of op. Then if the operation is synchronous, i.e. syn?(op), then
we start a new thread with IS followed by a return to the caller:
C′ = C[ instr(j) �→ ISˆreturn(j), status(j) �→ alive, q(oid) �→ tail(C(q)(oid)) ]
Similarly for an asynchronous call, where no return instruction is added:
C′ = C[ instr(j) �→ IS, status(j) �→ alive, q(oid) �→ tail(C(q)(oid)) ]

Definition 8 (Operational Semantics). The operational semantics of a
specification in the language of Sect. 4.1 is a set of execution sequences of the
form C0 −→ C1 −→ C2 −→ . . ., where each pair Ci −→ Ci+1 is a step (Def. 3)
and the initial configuration C0 satisfies a number of constraints, such as: ini-
tially no thread has status waiting, all current threads are alive, the auxiliary
instruction return does not occur in any instruction sequence, and all queues
and link sets are empty.

Observe that in the current semantics the threads that may execute are cho-
sen non-deterministically. By introducing fairness constraints, or a particular
scheduling strategy such as round robin or priority-based pre-emptive schedul-
ing, the set of execution sequences can be reduced. Another reduction can be
obtained by the use of permission predicates.

4.3 Validation

The formal operational semantics has been validated by formulating it in the
typed higher-order logic of the verification system PVS 3 and verifying properties
about it using the interactive theorem prover of PVS.
3 PVS is freely available, see http://pvs.csl.sri.com/. The PVS files and all VDM++

models are available on-line at http://www.cs.ru.nl/∼marcelv/vdm/
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In fact, the formal operational semantics presented in this paper is based on a
much larger constructive (and therefore executable) operational semantics of the
extended language, which has been specified in VDM++ itself. This “bootstrap-
ping” approach allows us to interpret models written in the modified language
by symbolic execution of its abstract syntax in the constructive operational se-
mantics model using the existing and unmodified VDMTools.

A large collection of test cases has been created to observe the behavior of each
new language construct and we are fairly confident that the proposed language
changes are consistent. The constructive operational semantics is currently ap-
proximately 100 pages including the test suite. It can be used as a specification
to implement the proposed language changes in VDMTools.

5 Related Work

In the context of UML, there is related work [13,12] about the precise meaning
of active objects, with communication via signals and synchronous operations,
and threads of control. In [13] a labeled transition system has been defined using
the algebraic specification language CASL, whereas [12] uses the specification
language of the theorem prover PVS to formulate the semantics. Note that UML
2.0 adopts the run-to-completion semantics, which means that new signals or
operation calls can only be accepted by an object if it cannot do any local
action, i.e., it can only proceed by accepting a signal or call. Hence, the number
of threads is more restricted than in the VDM++ semantics described here.
In addition none of these works deal with deployments. The related work that
comes closest here is the UML Profile for Schedulability, Performance and Time,
and research on performance analysis based on this profile [14].

6 Concluding Remarks

We propose an extension of VDM++ to enable the modeling of distributed
real-time embedded systems. These language extensions allows us to experiment
with different deployment strategies at a very early stage in the design. On the
syntactic level, the changes seem minor but they make a big difference. The
model of the in-car navigation system presented in this paper is significantly
smaller than the model that was created earlier with timed VDM++. Moreover,
the new model covers a much larger part of the problem domain. We believe
that important system properties can be validated in a very cost-effective way
if these features are implemented in VDMTools.

A constructive operational semantics was defined for a language subset to
prototype and validate the required improvements in the semantics. The changes
are substantial but they still fit the general framework of the full VDM++
dynamic semantics. Furthermore, a generalized abstract operational semantics,
that is not specific to VDM, is presented in this paper as a result.

One might argue that VDM and therefore this work, is not very relevant for
distributed real-time embedded systems. We believe that this is not true. The
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Japanese company CSK, which has recently bought the intellectual property
rights to VDMTools, is targeting this market in particular and they have al-
ready expressed their interest in our results. For example, we were granted access
to the company confidential dynamic semantics specification. Furthermore, we
hope that the availability of free VDM tools and the recently published book [3]
will revitalize the VDM community.
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Christensen,John Fitzgerald, Finn Overgaard Hansen, Shin Sahara and Evert van
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Abstract. The correctness of a system according to a given specification is es-
sential, especially for safety-critical applications. One such typical application
domain is the automotive sector, where more and more safety-critical functions
are performed by largely software-based systems.

Verification techniques can guarantee correctness of the system. Although au-
tomotive systems are relatively small compared to other systems (e.g. business
information systems) they are still too large for monolithic verification of the
system as a whole.

Tackling this problem, we present an approach for modularized verification,
aiming at time-triggered automotive systems. We show how the concept of tasks,
as used in current automotive operating systems, can be modeled in a CASE
tool, verified and deployed. This results in a development process facilitating
verification of safety-critical, real-time systems at affordable cost.

1 Introduction

Together with the growing functionality offered by today’s distributed reactive systems,
the associated complexity of such systems is also dramatically increasing. Taking into
account that the vast majority of the functionality is realized in software, the need for
appropriate design and verification support becomes obvious.

A prime example for this trend is the current situation in the automotive domain.
Here, a premium class car contains up to 70 electronic control units (ECUs) which
are responsible for all kinds of applications: infotainment (like navigation and radio),
comfort (power windows, seat adjustment, etc.), control of technical processes (motor
control, ABS, ESP), and much more. Consequently, the amount of associated software
is enormous – with the tendency to further increase in the future.

With the trend going towards drive-by-wire, the software becomes responsible for
safety-critical functions, like steer-by-wire and brake-by-wire. The state-of-the-art me-
thod of quality assurance, namely testing, is not sufficient in the case of safety-relevant
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functions: Testing can solely show the absence of bugs in a finite number of standard
situations. However, it can never guarantee the software correctness. Formal verifica-
tion is a better choice in this case, as it can guarantee that the software satisfies its
specification.

Unfortunately, current verification techniques for reactive systems suffer from some
problems: Firstly, in order to prove the correctness of a system, both the application
logic itself as well as its infrastructure (operating system and communication mecha-
nisms) have to be verified. This results in an overall verification effort which cannot be
mastered by verifying the system as a whole.

Secondly, there is no continuous verification technique: While current CASE tools
typically used for automotive software development (like MATLAB/Simulink [1], Rose
RT [2], AutoFOCUS [3]) allow modeling of the functionality and structure of a real-
time system, they do not provide an explicit deployment concept. However, without
deployment support it makes no sense to verify properties on the application model,
since they do not necessarily hold after deployment.

To tackle these problems we introduce a task concept for the model-based devel-
opment of distributed real-time systems, which allows modularized verification while
preserving verified properties for the model after deployment. Together, this results in
a continuous methodological support for development of verified automotive software.

We show the feasibility of our concepts on a case study. We demonstrate that em-
bedding of tasks into a realistic environment, such as a time-triggered bus and a time-
triggered operating system, does not violate the verified properties.

The remainder of this paper is organized as follows: Section 2 introduces the case
study used as a continuous example throughout the whole paper. Sections 3 and 4
present the deployment platform (FlexRay Communication Protocol [4] and OSEK-
time OS [5]) and the CASE tool AutoFOCUS [3], used to specify the case study as
a task model. Sections 5 and 6 are the technical core of the paper: They show how
the tasks should be constructed in order that they are deployable without any loss of
verified properties. Section 7 gives an overview of related work and, finally, Section 8
summarizes the whole paper.

2 Case Study: Emergency Call (eCall)

To demonstrate the introduced ideas we use an automated emergency call as a running
example throughout this paper. According to the proposal by the European Commis-
sion [6], such an automated emergency call should become mandatory in all new cars
as of 2009. The application itself is simple enough to be sketched in a few paragraphs,
but it still possesses typical properties of automotive software. By this we mean that it
is a safety-critical application distributed over several electronic control units (ECUs),
whose correct functionality not only depends on the correctness of the application itself
but also on the correctness of a real-time OS and a real-time bus.

We model the eCall as a system consisting of 3 sub-systems, namely: a GPS nav-
igation system, a mobile phone, and the actual emergency call application. External
information (e.g. the crash sensor, the GPS signals) is considered to be a part of the
environment. According to [6], these components interact as follows: The navigation
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system sends periodically the vehicle’s coordinates to the emergency call application so
that it always possesses the latest coordinates. The crash sensor sends periodically the
current crash status to the emergency call application. If a crash is detected, the emer-
gency call application initiates the eCall by prompting the mobile phone to establish
a connection to the emergency center. As soon as the mobile phone reports an open
connection, the application transmits the coordinates to the mobile phone. After the co-
ordinates have been successfully sent, the application orders the mobile phone to close
the connection. The emergency call is finished as soon as the connection is successfully
closed. If the radio link breaks down during the emergency call, the whole procedure is
repeated from the initiation step.

3 Deployment Platform

In order to master the inherent complexity of automotive systems, industry came up
with a number of standards, based on the time-triggered paradigm [7]. They allow re-
alization of distributed systems with predictable time behavior, and thus can be consid-
ered as an appropriate deployment target for safety-critical real-time systems.
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Fig. 1. Target Deployment Platform Architecture

In a time-triggered system actions are executed at predefined points in time. In partic-
ular, using time-triggered operating systems (VxWorks [8], QNX [9], OSEKtime [10]),
the execution of application processes is statically scheduled, and by applying time-
triggered communication protocols (TTP/C [11], TTCan [12], FlexRay [13]), the com-
munication schedule becomes static as well. Further on, time-triggered communication
protocols provide, using time synchronization, a global time base to the distributed com-
munication partners. By this a combination of time-triggered OS and network allows
realization of a deterministic system behavior with guaranteed response times.

The target deployment platform of the presented work is a network of ECUs con-
nected by a FlexRay bus with a multiple-star topology and with OSEKtime OS running
on every node (see [14] for details). Fig. 1 shows a possible deployment of the three
tasks from the eCall study on two ECUs.
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OSEKtime. OSEKtime OS is an OSEK/VDX [10] open operating system standard
of the European automotive industry [5]. The OSEKtime OS supports static cyclic
scheduling. In every round the dispatcher activates a process at the point of time spec-
ified in the scheduling table. If another process is running at this time, it will be pre-
empted until the completion of the activated process. OSEKtime also monitors the dead-
lines of the processes. In the case of deadline violation an error hook is executed.

FTCom [15] is the OSEKtime fault-tolerant communication layer that provides a
number of primitives for interprocess communication and makes task distribution trans-
parent. Messages kept in FTCom are uniquely identified by their IDs. For every message
ID FTCom realizes a buffer of length one. Application processes can send or receive
messages with certain IDs using communication primitives offered by FTCom. How-
ever, they are not aware of the location of their communication partners, i.e. whether
they communicate locally or through a bus.

FlexRay. FlexRay [4,16,17] is a communication protocol for safety critical real-time
automotive applications, that has been developed by the FlexRay Consortium [13]. It
is a static time division multiplexing network protocol and supports fault-tolerant clock
synchronization via a global time base. The drifting clocks of FlexRay communication
partners are periodically synchronized using special sync messages.

The static message transmission mode of FlexRay is based on rounds. FlexRay
rounds consist of a constant number of time slices of the same length, so called slots.
A node can broadcast its messages to other nodes at statically defined slots. At most
one node can broadcast during any slot. The latency of every message transmission is
bounded by the length of one slot.

A combination of time-triggered OS and bus allows synchronization of the computa-
tions and communication. This can be done by synchronizing the local ECU clock with
the global time delivered by FlexRay bus and by setting the length of the OSEKtime
dispatcher round to be a multiple of the length of FlexRay round. A unit of computation
is then also a FlexRay slot.

4 Logical Model

AutoFOCUS is a CASE tool for graphical specification of reactive systems. The tool has
a formal time-synchronous operational semantics. With its graphical specification lan-
guage AutoFOCUS supports different views on the system, namely structure, behavior,
interaction and data-type view. This section gives a very short introduction to Auto-
FOCUS. A more detailed description of AutoFOCUS and its diagram types can be found
in [18].

Structural View: System Structure Diagrams (SSDs). A system in AutoFOCUS is mod-
eled by a network of components C, denoted as rectangles (cf. Fig. 2, where the task
model of the eCall application is shown). The communication interface of a component
c ∈ C is defined by a set of typed directed ports Pc. There are input and output ports,
represented by empty and solid circles, respectively. The components communicate via
typed channels, which connect input and output port pairs of matching types. An out-
put port can be a source of several channels, while an input port can be a sink of at
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Fig. 2. The Component Architecture of the eCall Study

most one. A component can be refined by a further component network. This results in
a hierarchical order of SSDs. The leaf components in the hierarchy have an assigned
behavior, described by State Transition Diagrams.

Fig. 3. State Transition Diagram of the Mobile Phone Logic Component

Behavior View: State Transition Diagrams (STDs). The behavior of a leaf component is
defined by an extended I/O automaton. It consists of a set of control states, transitions,
and local variables (cf. Fig. 3). Black dots on the left of the states denote initial states,
black dots on the right denote idle states1. (“5” on the transition labels denotes the
transition priority and is unimportant in the context of our application.)

An STD automaton A is completely defined by its set of control states S, the set of
local variables V , the initial state s0 ∈ S, and the transition relation δ. A transition,
denoted by

(s1
pre:in:out:post−−−−−−−−−→ s2) ∈ δ(A), for s1, s2 ∈ S,

consists of four elements:

– pre , transition precondition (a boolean expression referring to automaton’s local
variables and the ports of the corresponding component)

– in , input pattern that shows which message must be available on which port in
order that the transition is triggered

1 Idle states will be defined below, see Sect. 5.2.
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– out , output pattern that shows which message is written to which port as a result of
this transition

– post , transition postcondition (a boolean expression referring to automaton’s local
variables and the ports of the corresponding component)

A transition can be triggered in the state s1 if the input ports specified in the input pattern
in have received the necessary input messages and the precondition pre is satisfied.
The transition outputs data to output ports specified in out , changes the local variables
according to the postcondition post , and puts the automaton into the state s2.

For example, the transition with label ReceivedNoCloseConnection from Figure 3
has the form:

(x != close_connection):
connection_control?x:
connection_status!data_sending_ok,idle!Present:

It is fired if it gets a signal different from close_connection on port connection_cont-
rol and sends the data_sending_ok signal through port connection_status and the Pre-
sent signal via port idle. The postcondition is empty.

Communication Semantics. AutoFOCUS components perform their computation steps
simultaneously, driven by a global clock. Every computation step consists of two pha-
ses: First, a component reads values on the input ports and computes new values for
local variables and output ports. After the time tick new values are copied to the output
ports, where they can be accessed immediately via the input ports of connected com-
ponents and the cycle is repeated. This results in a time-synchronous communication
scheme with buffer size one.

5 Deployment

An automotive system is distributed over several communicating electronic control
units (ECUs). In the early design stages it is simpler to model application logic with-
out considering timing properties and future deployment. Pure functionality modeling
results in systems that have to be deployed manually and after deployment can show
wrong behavior or violate timing constraints.

In this section we motivate and describe the AutoFOCUS Task Model (AFTM), which
will be used for (semi-)automatic verification of time–triggered systems. Here, we in-
troduce a framework enabling modeling and deployment of tasks. The framework ar-
chitecture ensures that the properties verified for the logical model are preserved after
deployment. This results in a verified automotive system, provided that the infrastruc-
ture (OS/bus) is verified. For these purposes the framework [14] for automotive sys-
tems with the formalized and verified OSEKtime OS and the FlexRay protocol can be
used. This verification framework is developed in the automotive part of the Verisoft
project [19,20].
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5.1 Design Process

The AutoFOCUS Task Model is designed to be an integral part of a model-based devel-
opment process. The prerequisite for this process is a formal specification of the desired
system. The envisioned process produces the following artifacts:

– The AutoFOCUS model (see also Section 4) represents the application logic (func-
tionality) without incorporating any deployment information. It is the basis for the
AutoFOCUS task model.

– The AutoFOCUS Task Model is an extension of the AutoFOCUS model, targeting at
future deployment to a time-triggered platform. This model is verified against the
given specification.

– C0 code2 is generated from the AFTM. This code is the basis for the estimation
of the worst case execution times (WCETs) that are needed for scheduleability
analysis (see Section 6.1). WCETs can be estimated, given a compiled C program
and the processor the program runs on [23]. The behavioral equivalence between
C0 code and the automaton it was generated from must be proven. This proof can
be done, for example, by the means of translation validation [24]:
• Every transition of an AutoFOCUS automaton is annotated with a pre- and a

postcondition.
• The piece of code, generated from a particular transition, can be annotated with

the same pre- and postconditions as the transition itself.
• Finally, we verify that the pre- and postconditions hold for the generated code.

– For the deployment and scheduling the decision must be taken which tasks run
on which ECUs. The schedules both for every ECU and for the communication
bus must be also constructed. The schedules have to take into account casual de-
pendencies of the tasks, the WCETs and the real-time requirements (e.g. specified
response times).
At the moment we do not construct schedules but only check existing schedules for
correctness. Construction of schedules is a part of our future work.

In that way we obtain a continuous model-based development process, ranging from
high-level system design to verified deployed code.

5.2 AutoFOCUS Task Model (AFTM)

An AutoFOCUS task model is obtained from AutoFOCUS model components through
encapsulation – Fig. 4 shows an AFTM task originating from an AutoFOCUS com-
ponent app_logic. A task may contain a single component or a network consisting of
several components – it is then treated as a product automaton (see Behavior View in
Sect. 4). The transformation from an AutoFOCUS model into an AutoFOCUS task model
is performed manually at the moment, but it is planned to extend the tool AutoFOCUS

in order to automate this transformation.

2 The language C0 [21] is a Pascal-like restriction of C that is similar to MISRA C [22]. In
safety critical applications it is feasible to use C in some restricted way to have less error-
prone programming style.
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Fig. 4. AutoFOCUS task model of EmergencyCallTask

An AutoFOCUS task model consists of a set T of tasks Ti with i ∈ {1, . . . ,m} for
an arbitrary but constant m and a set of directed channels between them. We denote
by Pred ,Succ : T → P(T ) the functions indicating data flow between tasks: Tj ∈
Succ(Ti) means that there is a channel going from Ti to Tj and Tj ∈ Pred(Ti) denotes
a channel going from Tj to Ti.

Every component in an AutoFOCUS model runs continuously, whereas the execution
of a reactive system is an infinite sequence of finite computations started by the OS
scheduler and terminating with a special exit() system call. To match this computation
model, we introduce in AFTM the notion of finite computations through idle states.
An idle state is a state of the original logic component (or component network), where
the computation can continue only after having received new input. In contrast to idle
states, non-idle states are allowed to have outgoing transitions only without requiring
any input. Thereby the set of control states is partitioned into two disjoint subsets:

Sidle = {s | s ∈ S ∧ ∀(s pre:in:out:post−−−−−−−−−→ s′) ∈ δ(A). in �= ∅} (1)

Snon_idle = {s | s ∈ S ∧ ∀(s pre:in:out:post−−−−−−−−−→ s′) ∈ δ(A). in = ∅} (2)

An AFTM task computation is a finite sequence of state transitions leading from an
idle state to some other idle state:

c(val (Pc), s0) =s0
pre1 :in:out1 :post1−−−−−−−−−−−→ s1

pre2 :∅:out2 :post2−−−−−−−−−−−→ . . .

pren−1 :∅:outn−1 :postn−1−−−−−−−−−−−−−−−−→ sn−1
pren :∅:outn :postn−−−−−−−−−−−→ sn

(3)

where s0, sn ∈ Sidle, s1, . . . , sn−1 ∈ Snon_idle, (si−1
prei :ini :outi :posti−−−−−−−−−−−→ si) ∈ δ(A)

for all i ∈ {1, . . . , n}, and val (Pc) denotes the valuation of the component’s ports. This
linkage between target platform task runs and AFTM task computations is also utilized
for timing analysis (cf. Sect. 6.2).

In the Mobile Phone logic component STD (Fig. 3, page 167) the states
no_connection, connection_ok and data_sent are idle. An example of the finite compu-
tations that can be performed by this automaton is connection_ok → sending_data →
data_sent.

Upon reaching an idle state the encapsulated component of a task always sends a
signal through a dedicated idle port:

∀(s1
pre:in:out:post−−−−−−−−−→ s2) ∈ δ(A) : (s2 ∈ Sidle ⇔ (idle!Present) ∈ out) (4)



Towards Modularized Verification of Distributed Time-Triggered Systems 171

A distributed time-triggered system usually does not guarantee the simultaneous
presence of all required input signals because of delays. As an AFTM task may start
only when all required input data are available we introduce an input check for every
task – it forwards the inputs and thus allows the task to start only after all required
inputs have arrived and the task is not running, i.e. it is in an idle state.

We introduce two kinds of input checks: OR and AND. An OR-task T can start
when at least one input from any task Ti ∈ Pred(T ) has arrived. For instance the
EmergencyCallTask task on Fig. 2 is activated either to store new coordinates from the
GPSTask or to perform an emergency call after having received a crash signal. The idea
behind the AND-check is that the task can start only when all the inputs are available.
For instance, the GPSTask (Fig. 2) may first start when both coordinate inputs x and y
have arrived.

The input checks get their inputs solely from the input buffers (see e.g. input_buffer
component in Fig. 4). These buffers store the arriving data as long as the tasks cannot
process them. After the data gathered by the buffer has passed the input check, the input
check sends the started signal to the buffer. Thereupon the input buffer is flushed and
starts gathering a new data set. This simulates the behavior of the FTCom, which is
used for task communication on the deployment platform (cf. Sect. 3).

The output buffer is necessary to assure well-defined points in time for communi-
cation and thus to make communication behavior predictable. The output buffer stores
the outputs of the application logic and forwards them to the environment on receiving
the idle signal. After that the output buffer is flushed and forwards the idle signal to the
input check, indicating the completion of the task computation.

The introduced concepts of input checks and input/output buffers,as well as idle
states,allow correct deployment on a distributed platform running with OSEKtime/Flex-
Ray (cf. Sect. 3). The AFTM properties facilitating deployment are in particular the
following: it models the behavior of the FTCom communication layer, it supports the
notion of finite computations as suitable for time-triggered systems, it reads the input
data at the beginning and communicates the results at the end of the computation, thus
facilitating scheduling and modular verification.

5.3 Code Generation

To run a task on a real system the representation of the model as code in some executable
language is needed (e.g., for the automotive domain C code is usually used). Out of the
AFTM the corresponding C code (more precisely: C0 code) can be generated in a strict
schematical way.

In the presented approach properties of a task are proven for the corresponding
AFTM since this is more effective than verifying the generated C0 code. The equiv-
alence of AFTM and C0 guarantees that the verified properties for the AFTM also hold
for the C0 code. This equivalence can easily be proven using translation validation [24].

6 Verification

In the previous sections we have described how an AutoFOCUS component model
can be packed into an AFTM. This section shows how the AFTM and the deployed
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system, based on AFTM, can be verified. The verification is accomplished in several
steps: First, the AutoFOCUS model, packed into AFTM, is verified. This can be done,
as the SMV model checker [25] is integrated with AutoFOCUS [26]. Then, it is nec-
essary to show that the properties verified for the AutoFOCUS model remain valid in
the deployed model. Formally, let ModelAFTM denote the AutoFOCUS Task Model,
Modeldepl the deployed model, and P the specification (a set of LTL properties). Then,
the accomplishment of this procedure results in the following property.

(ModelAFTM � P )⇒ (Modeldepl � P ) (5)

The prerequisite for the fulfillment of this formula is that ModelAFTM is a valid in-
stance of the AFTM, as described in Sect. 5.2. This is discussed in Sect. 6.1. Sect. 6.2
shows that AFTM constraints, together with certain scheduling constraints put on the
deployed system, imply behavioral equivalence between ModelAFTM and Modeldepl .
Behavioral equivalence, in turn, provides the desired correctness of the deployed sys-
tem, given that ModelAFTM was verified.

6.1 Task and System Properties

To ensure the validity of a particular AutoFOCUS task model, certain properties have to
be proven. First, it must be shown for every component network, deployed to one task,
that all states in its product automaton that are marked as idle satisfy Formula 1. All
the remaining states must satisfy Formula 2 (see page 170). These are purely syntactic
checks on the AutoFOCUS task product automaton.

In the eCall example the automaton of the mobile phone component as shown in
Fig. 3 (page 167) has three idle states (no_connection, connection_ok and data_send).
In these states new inputs from the Emergency Call task and the radio link status are
expected respectively. The remaining states are non-idle, thus, the transitions from these
states are not allowed to access the input ports.

The second property to be verified is that every task sends a special idle signal be-
fore entering an idle state. This signal is needed in AFTM to affect input_check and
output_buffer components (see Sect. 5.2). Formally it must be verified that Formula 4
holds for every transition.

Finally, it is necessary to verify that every sequence of transitions starting in an idle
state always reaches some idle state within a finite number of steps. The first two prop-
erties are simply syntactic checks on the model, while the last one can be verified via
model checking. To verify the last property, it is possible to use the SMV back end of
the tool AutoFOCUS.

6.2 Timing Properties

Timing properties ensure the equivalence of the data flow dependencies imposed by the
AFTM channels and the task dependencies in the deployed system. The prerequisite for
every timing analysis technique are the estimates for BCET/WCET for every task. In
our setting these are minimal/maximal execution times between any pair of idle states.
The estimation can be done e.g. using the static analysis techniques by AbsInt [23].
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The task running time expressed in the logical time base of the deployment architecture
(number of slots) is then obtained by dividing the BCET/WCET estimates by the slot
length:

bslot =
⌈

bcet
|slot |

⌉
, wslot =

⌈
wcet
|slot |

⌉
(6)

The assumption is that no two tasks (on the same ECU) can run in the same slot.
By this, the logical running times of a task T which can be used in the scheduleability
analysis lie within [bslot (T ), . . . , wslot (T )]. Thus, in the remainder of this section the
notion of logical time is used in the scheduling constraints.

We describe the deployment of the system by the following definitions for arbitrary
tasks Ti, Tj ∈ T . The set of relative start times3 is denoted by start(Ti). W.l.o.g.
we assume that start(Tk) �= ∅ for all Tk ∈ T . Let the predicate ecu(Ti, Tj) denote
the deployment of tasks on the same ECU. The messages produced by a task are sent
through FlexRay in slots from the set send(Ti)4. Finally, the number of slots in the OS
round is denoted by |round |.

The scheduleability analysis for the given technical infrastructure lies beyond the
scope of this paper, however, the obtained scheduling tables have to be checked for
their correctness for the given AFTM. We say a scheduling table to be correct, if the
following properties hold.

Communication Jitter. In order to make the bus communication deterministic, the Flex-
Ray slots reserved for the messages produced by a task T , must not lie within the
following interval (see Fig. 5):

∀s ∈ start(T ) : ∀ss ∈ send(T ) : ss �∈ (s+ bslot (T ), s+ wslot (T )]

In the case of a local communication, the consuming task T2 must not be started before
the WCET of its producing counterpart T2 passes:

ecu(T1, T2) ∧ T1 ∈ Pred(T2) ⇒
∀s1 ∈ start(T1), s2 ∈ start(T2) : s2 �∈ (s1 + bslot (T1), s1 + wslot (T1)]

These properties allow us to define the transport time function tr . For a given pair of
tasks T1 and T2 with T1 ∈ Pred(T2) and a start time s1 ∈ start(T1), s1+tr(T1, s1, T2)
is the minimal time after which T2 is allowed to access the messages produced by T1
when T1 is started at time s1. An earlier access would violate the above properties.
For the local communication, i.e., ecu(T1, T2) holds, this time is wslot (T1). Otherwise,
tr(T1, s1, T2) is the longest distance to the next sending slot from send(T1 ), which
transports data that T2 is interested in, plus 1 slot for the transportation itself. The last
case is illustrated in Fig. 6. Due to the above constraints, for any fixed triple of param-
eters the value of tr is constant.

Control & Data Flow. The start times of tasks have to respect the data and control flow
relations between them. We constraint starts/terminations allowed to occur between

3 A task can be started several times per OS round.
4 Note that the set can be empty if the task sends its results only locally.
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any pair of subsequent executions of a task T . For that purpose we define the follow-
ing sets and predicates on them: For a task T let start⊥(T ) = start(T ) ∪ {−1} and
start(T ) = start(T )∪ {|round |+ min start(T )}. The value−1 denotes a fictitious
start time smaller than any actual start time of T . The additional value of start(T )
defines the first T ’s start in the next round. Obviously, it will be greater than any num-
ber in start(T ). Then for a given start time s ∈ start⊥(T ) we denote T ’s next start
time by next(T, s) = s′, with a minimal s′, such that s′ ∈ start(T ) and s′ > s.
Further on, for a given start time s ∈ start(T ) we define T ’s previous start time by
prev(T, s) = s′, with a maximal s′, such that s′ ∈ start⊥(T ) and s′ < s.

Using the definitions from above, we can now formulate scheduling constraints for
the both kinds of input check semantics. The AND-task T which needs outputs from
the tasks T1, . . . , Tn demands, that these tasks must deliver their outputs between any
pair of subsequent starts of T (see also Fig. 7).

∀s ∈ start(T ) : ∀T ′ ∈ Pred(T ) : ∃s′ ∈ start(T ′) :
prev (T, s) ≤ s′ + tr(T ′, s′, T ) < s

In the case of the OR-semantics for T , at least one of the tasks T1, . . . , Tn has to deliver
its outputs in this interval.

∀s ∈ start(T ) : ∃T ′ ∈ Pred(T ) : ∃s′ ∈ start(T ′) :
prev (T, s) ≤ s′ + tr(T ′, s′, T ) < s

No Data Loss. In the presented work we consider systems where no data loss is al-
lowed. By this a message has to be consumed by corresponding tasks, before it will be
overwritten. This implies the following relationship between two subsequent transports
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from any producing task T and the start times of the corresponding consumers (see also
Fig. 8).

∀s ∈ start(T ) : ∀T ′ ∈ Succ(T ) : ∃s′ ∈ start(T ) :
s+ tr(T, s, T ′) < s′ ≤ next(T, s) + tr(T,next(T, s), T ′)

Additionally to the above timing constraints, the response times, which are an im-
portant part of the specification of real-time systems, have to be checked. Since the task
running and transport times are calculable as described above, the response times can
be easily estimated.

The positive accomplishment of the above proof obligations guarantees the correct-
ness of deployment. Thus, the resulting system will work correctly within the assumed
environment.

7 Related Work

In this paper we presented a concept for separate verification of application logic and
infrastructure. The necessity of the separation of functionality and infrastructure ver-
ification is also argued for by Sifakis et al. [27]. They introduce a formal modeling
framework and a methodology, addressing the analysis of correct deployment and tim-
ing properties. The extention in our task concept is the explicit modeling of task depen-
dencies and explicit statements about task activation conditions.

There also exist other approaches for the verification of distributed real-time soft-
ware. J. Rushby in [28] has presented a framework for a systematic formal verification
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of time–triggered communication. His framework allows to prove a simulation rela-
tionship between an untimed synchronous system, consisting of a number of commu-
nicating components (“processors”) and its implementation based on a time-triggered
communication system. His approach considers only a one-to-one relationship between
components and physical devices they run on, i.e. no OS, and no sequentialization of
component execution is taken into account. This approach is insufficient because it ne-
glects the current praxis of automotive software development: OS, bus and application
logic are developed by different suppliers and therefore should be treated separately.

There are also constructive approaches, trying to keep the properties of the models
during deployment. Examples of such approaches are Giotto [29] and AutoMoDe [30].
While the AutoMoDe approach suggests a bottom-up procedure, which is based on
the inter-arrival times of periodic signals, it is more appropriate for digital systems
for measurement and control, where this information is present at the design stage of
development.

The system behavior realized for AutoFOCUS components using AFTM is inspired
by Henzinger’s Giotto approach. The Giotto tasks, realized in C, are also activated only
if all the needed inputs are available. Their outputs are issued after the time of their
worst case execution is elapsed. In order to provide such behavior, Giotto installs a low-
level system driver, called E-machine, which takes over the role of input and output
check during the run-time. For this setting the construction of schedules was proven
to be polynomial in [31]. However, in contrast to the presented approach, the data and
control flow, which serves as an input for schedule synthesis, are extracted in a rather
ad hoc manner, e.g. it cannot be proven, that they correspond to the actual behavior of
the C-code tasks. Furthermore, no additional middleware like the E-machine is needed
in the presented work.

As noted in [32], in the CASE tools typically used for model-based software de-
velopment in the automotive domain, like MATLAB/Simulink [1], Rose RT [2], Auto-
FOCUS [3], there is no explicit deployment concept. In other tools, like ASCET-SD [33]
or Cierto VCC [34], there is an ability to build a deployment model for one ECU only.
However these tools allow the modeling of the systems only on a very low level of
abstraction. The application of such tools in the early design phases would lead to un-
necessary over-specification.

8 Conclusion

The task-based application model is simple enough to be verified using automated ver-
ification techniques such as model checking and robust enough to be deployed without
violation of the verified properties. The special task construction using message buffer-
ing and input checks assures that the task behavior remains the same even after deploy-
ment. Thus, the properties verified for the pure task-based system remain valid for the
deployed system.

It is important that in the presented approach the operating system and the communica-
tion bus are verified separately from the application logic. The verification tasks interact
in the assumption/guarantee way: for the application verification we assume a certain
behavior of the infrastructure and for the infrastructure we verify that it guarantees the
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assumed properties. This reduces the complexity of verification and results in a com-
pletely verified system. The separation of functional and timing properties brings addi-
tional reduction of the verification effort.

The only piece missing to provide a pervasively verified time-triggered system is
the verified infrastructure (OS/bus) providing the properties that the application layer
(deployed AFTM) relies on. Such a verified infrastructure is being developed in the
Verisoft project [19]. In the context of this project the methodology presented in this
paper will also be applied to the emergency call application [6] to achieve a proof-of-
concept pervasive verification of an automotive system.
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Abstract. This paper reports the story of the introduction of formal
methods in the development process of a railway signaling manufac-
turer. The first difficulty for a company is due to the many different
formal methods proposals around; we show how this difficulty has been
addressed and how the choice of a reference formal specification notation
and of the related tools has been driven by many external factors related
to the specific application domain, to the company policies, to european
regulations. Cooperation with University has been fundamental in this
process, which is now at the stage in which internal acceptance of the
chosen formalisms and tools is established.

1 Introduction

Railway signaling has been often considered as one of the most successful areas
for the industrial application of formal methods, reporting many success stories.

There are two main reasons for this success. On the one hand, railway signal-
ing has always generated the interest of formal methods researchers: its safety
requirements with the implied need to avoid any kind of errors, the discrete
nature of typical control computations and the absence of very hard real-time
constraints, have made it a promising application field, in which the different
formal specification and verification techniques can be conveniently applied. On
the other hand, railways have always had a very strong safety culture, based on
simple fail-safe principles. In electromechanical equipments, used in most signal-
ing systems before the introduction of computers, gravity was used to bring a
system to the fail-safe state (e.g. all signals to red) in any occurrence of a critical
event. On the other hand, the impossibility of predicting in general the effects
of the occurrence of faults in computer-based equipment, has long delayed the
acceptance of computer-controlled signaling equipment by railway companies.
The employment of very stable technology and the quest for the highest pos-
sible guarantees have been key aspects for the adoption of computer-controlled
equipment in railway applications. Formal proof, or verification, of safety has
been therefore seen as a necessity.

J. Misra, T. Nipkow, and E. Sekerinski (Eds.): FM 2006, LNCS 4085, pp. 179–189, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



180 S. Bacherini et al.

In this paper, we offer some insight into the actual industrial usage of formal
methods in this field, describing the experience of a railway signalling company,
namely the railway signaling division of General Electric Transportation Systems
(GETS), confronted with the need to adopt formal specification and development
techniques in the development cycle of safety-related equipment.

We will see how the choice of which formalism and tool to adopt inside the
company development cycle has been influenced by several factors. The choice
is indeed not easy: there are many notations, methods, and (prototypal) tools
originating from the academia, which however lack industrial strength in terms
of tool stability, documentation and user support. On the other hand, there are
very few technically sound methods and tools coming from industry. Indeed, the
combination of several external factors, such as specific characteristics of the ap-
plication domain, the general company policies, the european safety regulations,
and the trends over the last years of the main actors of the application domain
(namely, railway operators, railway infrastructure owners, railway signalling in-
dustries), has actually facilitated the choice, narrowing the range of preferred
formalisms and tools.

In section 2, the EN50128 guidelines by the European Committee for Elec-
trotechnical Standardization regarding the development of software for railway
signaling are discussed, with regards to the adoption of formal specification tech-
niques. Section 3 reports more information of the recent evolution of the context
in which GETS operates. Section 4 discusses some first experiments that have
been conducted in cooperation with academy in order to correctly address the
issue. Section 5 discusses the choice made by GETS to adopt Stateflow of the
Matlab environment as the reference formalism and tool.

2 CENELEC Guidelines

The EN50128 guidelines [6], issued by the European Committee for Electrotech-
nical Standardization (CENELEC), address the development of ”Software for
Railway Control and Protection Systems”, and constitute the main reference for
railway signaling equipment manufacturers in Europe, with their use spreading
to the other continents and to other sectors of the railway (and other safety-
related) industry.

The EN50128 document is part of a series of documents regarding the safety
of railway control and protection systems, in which the key concept of Software
Safety Integrity Level (SWSIL) is defined. One of the first steps indicated by
these guidelines in the development of a system is to define a Safety Integrity
Level (SIL) for each of its components, on the basis of the level of risk associ-
ated, by means of a risk assessment process. Assigning different SILs to different
components helps to concentrate the efforts (and therefore the production costs)
on the critical components. The SILs range from 4 (very high), to 1 (low), and
0 (not safety-related).

The EN50128 guidelines dictate neither a precise development methodology
for software, nor any particular programming technique, but they classify a wide
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range of commonly adopted techniques in terms of a rating (from ”Forbidden”
to ”Highly Recommended” and ”Mandatory”) with respect to the established
SIL of the component. Formal methods (in particular CCS, CSP, HOL, LOTOS,
OBJ, Temporal Logic, VDM, Z and B are cited as examples) are rated as highly
recommended for the specification of systems/components with the higher levels
of SIL. Formal proof is also highly recommended as a verification activity. Any-
way, formal techniques are not classified as mandatory, since alternative, more
traditional techniques are also accepted. We should notice however that this is
the first time (the first edition of EN50128 dates back to 1994) that a strong
indication about the usage of formal methods appears in standard guidelines.

Indeed, despite CENELEC directives and success stories, formal methods have
not permeated the whole railway signaling industries, where much software is
still written in traditional ways. This is due to the investments needed to build
up a formal methods culture, and to the high costs of commercial support tools.
Moreover, equipment can conform to CENELEC without applying formal meth-
ods. Verification by thorough testing can be claimed compliant to EN50128. But
relying only on traditional testing shifts an enormous effort (usually more than
50% of the total development effort) on the shoulders of the testing department.
This becomes a risk for a company that is more and more required by the market
to be CENELEC compliant. Indeed, since testing activities are performed in late
phases of product life cycle, bugs detection and fixing activities imply reviews of
early phases with, consequently, high costs and stretched time. The only solution
is to shift back the effort to the design team, by introducing formal methods in
the specification and design phases. This is why the railway signalling division
of General Electric Transportation Systems (GETS) has taken the decision to
adopt formal methods in the development cycle of SIL 4 equipments.

3 The Context

Historically, the ancestors of GETS, similarly to many railway industries all
over Europe, had a strict collaboration with Italian State railways. The design
of new equipment were carried on as a single team between the railway operator
and the equipment providers. The evolution and liberalization of the European
market has clearly separated the roles of the operator, which issues equipment
specifications, and providers, which implement the specification, but also needs
to produce addressing the global market. Hence the specification themselves
have gained more importance, in particular with respect to the possibility to
have unambiguous, formally specified, specifications.

Indeed, this new trend has become evident inside a joint project between
Politecnico di Milano and Italian State Railway FS, Infrastructure Department
(which recently became Rete Ferroviaria Italiana S.p.A.). The purpose of the
project was to define procedures and rules for managing software procurement
for safety-critical signaling equipment [8]. One of the aims of the project was to
select and classify formal methods that were sufficiently mature for industrial
usage, were supported by automated tools, and were likely to gain acceptance
by average engineers, both in the railway and computer technology domains.
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One of the indications emerging from this project was that Statecharts [11]
and SDL [5] were perceived as the most suitable formalisms according to various
parameters, including those cited above.

Another event to be noted is the launching of the Eurointerlocking project
by a consortium among the main European infrastructure companies, with the
aim of developing a standard interlocking system at a European level, with
the purpose to reduce costs, by means of use of standardized components and
standardized interlocking rules. Inside Eurointerlocking, we can cite the interest-
ing EIFFRA (Euro-Interlocking Formalised Functional Requirements Approach)
activity [13], where, together with an attention to textual requirements, and re-
quirement management tools, such as Telelogic DOORS, model-based require-
ments are addressed, by proposing UML [19] state diagrams and Statecharts to
describe the behaviour, and OCL [20] to describe properties of the interlocking
systems.

We can also mention another experience inside Eurointerlocking, by SNCF-
RFF, which has modeled their national (relay based) interlocking logic principles
using Statecharts and Statemate [15].

In conclusion, the trend that we can note within the railway signaling field
is towards state machine - based formalisms, such as SDL and Statecharts, the
latter in their various dialects (UML, Statemate, etc...). The graphical syntax
and the availability of commercial support tools are considered as positive dis-
criminant factors.

4 The Experiments

GETS has addressed the problem of introducing formal methods in its develop-
ment process by contacting experts at University of Florence. Collaboration with
the Faculty of Engineering of the University of Florence was indeed a tradition,
already established on mechanics and electronics. Facing the problem of address-
ing software certification along CENELEC guidelines, and given that exhaustive
testing, possible on the small software systems of the beginnings, was no more
viable, GETS has asked to the University experts to establish a common project
of technology transfer about formal methods.

The project has followed the indications of the already cited RFI procure-
ments guidelines [8] . In particular some first experiments, have been attempted,
modeling in SDL some already produced systems [1,7], with specific attention
to the issues of validation coverage [2] and of code generation [3].

Though modelling with SDL allowed a formal methods culture to start to
consolidate inside GETS, it was not felt that this was the definitive choice, both
for some difficulties emerged with the language itself (the asynchronous nature
of communication, inherited by the original mission of SDL to describe commu-
nication protocols, and some other characteristics of the messages management
have been perceived as difficulties by the designers) and for the not clear future
of the language and its support tools, which were going to be merged into the
UML 2.0 world.
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Following the trends that have been noted in the international railway sig-
nalling arena, mainly inside the Eurointerlocking effort, later experiments have
switched to Statecharts, at first in their Statemate dialect. At that time, it
seemed that also the major GETS client, namely RFI, was inclined to use State-
mate Statecharts for drawing their systems specifications. The experiments con-
sisted in the formal specification of a railway signalling system for the objects
detection in level crossing areas. The system, named PAI-PL, was developed and
homologated SIL 4 by GETS using a customer paper based requirements specifi-
cation. During the experiment, that specification was translated in a Statemate
model and analysed using the related model checker tools. The results showed
both that formal methods could be used in specification activities and that could
also permit to find mistakes or ambiguous aspects in requirements. Nevertheless
after some time, and a quite dense dialog with RFI, it has appeared that no
clear decision had already been taken, and that the railway infrastructure com-
pany was not ready to abandon its traditional way of developing specifications in
favour of formal statecharts specification. This is also because, GETS apart, most
of the others signalling companies did not replied positively to formal methods
quest by RFI.

The choice of the formal method and support tools were now back in the
hands of GETS. The experience acquired on Statecharts indicated that a nat-
ural candidate tool to acquire was ILogix Statemate tool [12]. At this point,
however, other factors, mostly related to costs, have been taken in considera-
tion. We should recall that the quest for the adoption of a formal method for the
specification of systems were coming mainly from the V&V department. Inside
the company the high investment needed to acquire the tools would have been
therefore not shared among all the departments. Design departments were more
keen to adopt instead more flexible tools that could aid several aspects of the
design, and not only the specification by statecharts of the ”discrete” behaviour
of a system.

5 The Choice of Stateflow

An attractive competitor appeared on the scene, in the form of the Stateflow
component [16] of the Matlab modeling environment [17] . Indeed Stateflow
statecharts share most of the characteristics of other dialects of statecharts,
but their semantics have some restrictions, especially in comparison with that
described in [11]. Indeed, Statemate semantics is based on three different views
(behavioural, functional and structural) of a system, which are related to three
corresponding charts (statecharts, activity-charts and module-charts) in a model.
Instead, Stateflow semantics permits to represent only the behavioural view,
while there is no special formalism to represent the other ones. These and the
interactions with the behavioural view can be partially and sometimes with
difficulty made up using Simulink formalism. It is in particular a very hard task
to develop a model compound by nested functional and behavioural blocks.
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From the behavioural point of view, the most peculiar characteristic of State-
flow semantics is the use of the ”clockwise rule” to evaluate the transitions from
the same state. If no user-defined priority rule is given, transitions from the same
state are ordered first on the form of their guards (transitions guarded by an
event are evaluated before those guarded only by a condition, and unguarded
transitions come last): remaining unordered transitions from the state (i.e. shar-
ing the same form of the guards) are ordered by their graphical appearance:
the first transition is the one whose arc starts closest to the upper left corner
of the source state, and the others follow clockwise. We refer to [10] for a com-
plete formal description of Stateflow semantics. The clockwise rule has two main
implications:

– the Stateflow semantics is completely deterministic, since outgoing transi-
tions are always deterministically ordered. The problem is that determinism
in some intricate cases (e.g. involving overlapping boolean conditions) can-
not be immediately perceived by the user, who naturally considers them as
non-deterministic. On the other hand, while Statemate or other statecharts
tools are able to identify (statically or by model-checking) possible sources
of nondeterminism, this is not possible in Stateflow, where such critical situ-
ations perceived by the user as nondeterministic, are actually resolved only
at simulation time.

– porting specifications from Statemate or UML Statecharts to Stateflow and
vice-versa (by simple manual redrawing or by some import/export tool
through a XML/XMI format) is not immediate, and care should be taken
that the intended meaning of the specifications is preserved during the
porting.

We can observe however that the delays of the major client in adopting formal
specifications, referred in the previous sections, have moved the focus away from
waiting for specifications from the client, towards the proprietary production
and use of specifications, for a later sharing with and approval by the client.
Hence, the issue of porting has no more been considered crucial for GETS.

The semantic disadvantages of Stateflow had their counterpart in the possibil-
ity offered by Matlab, and by lots of tools compatible with Matlab and Simulink
environment, of modelling and simulating several aspects of a system: this pos-
sibility was felt as very attractive by many groups inside the design department.
Moreover, Matlab was already widely used at corporate level, so that knowledge
about it could be easily retrieved over the corporation intranet. Again, several
modeling experiments were started, which allowed a better knowledge of the pe-
culiar characteristics of Stateflow. In Figure 1, the main statechart extracted by
the model of the already cited PAI-PL system is shown; actually, the represented
states are phases of the execution of the system, defined in conformance with the
customer requirement specification, and are hierarchically subdivided in lower
level statecharts.

The experiments have shown the capability of Stateflow to formally describe
the behaviour of a system, allowing simulation and integration in a complete
model of the system. The experiments have actually revealed the semantic
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Fig. 1. The Stateflow model of PAI-PL phases

problems that plague Stateflow, but the expected advantages were valued as posi-
tively counterbalancing the negative aspects; hence, a decision to adopt Stateflow
was taken.

For the first time, Stateflow was actually adopted in the design of a new
system, while previous experiments were mainly playing with the specifications of
systems already in production. The tool was successfully used to formally define
the high levels requirements of this new system and to share the specification
with the customer. A more detailed model was developed to define the software
requirements of the system and used to design and write down some functions
of the application code. Moreover the model was used to carry out functional
system tests and to identify corner-case scenarios.

Currently, the use of Matlab has still to become widespread inside the com-
pany, and this is planned to occur incrementally on a project by project base.
The collaboration with University is still active, and is now focused over the
added value that can be obtained from Stateflow specifications, in terms of early
validation (through model checking), test case generation and code generation
These are listed in order of priority for GETS: namely, first guaranteeing an
early validation of Stateflow models, then guaranteeing the consistency between
developed code and the model by means of high coverage testing, and last in-
vestigating the possibility of automating the code generation from the Stateflow
model.

5.1 Model Checking over Stateflow Specifications

Model checking the Stateflow specifications in search of inaccuracies or to guar-
antee the exhaustiveness of their verification and the compliance with customer
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requirements is the first goal for our research activity. Actually, several experi-
ments have already been carried on, using SF2SMV [14], a conversion tool devel-
oped at Carnegie Mellon University under a contract of the locomotive branch
of GETS. The tool allows to convert a Stateflow specification so that it can be
given as input to the popular SMV model checker [18].

The experiments have been quite satisfactory, but have revealed two weak-
nesses, namely the missing maintenance of the conversion tool, and the problem
(common to any other format translator) that counterexamples given by SMV
must be traced by hand on the original Stateflow specification, and this is cer-
tainly a not immediate step.

We are currently investigating the possibility of writing a translator from
Stateflow to the UMC on the fly model checker [9], developed at ISTI in Pisa,
which takes as input UML State Diagrams. Obviously, the translator should be
able to encode the Stateflow semantics into the UML semantics. In return, we
are confident to obtain a better back tracing of counterexamples to the original
Stateflow specification.

An alternative that is also taken in consideration is the use of commercial
model checkers for Stateflow specifications, such as TNI’s SCB and OSC’s Em-
bedded Validator. An evaluation of such tools is also planned.

5.2 Test Case Generation from Stateflow Specifications

The model developed in GETS allowed to identify corner-case scenarios of soft-
ware behaviour and to adopt them as test cases during real system testing. Nev-
ertheless the tests were not collected with a formal methodology that permits to
measure the coverage of the model, but were identified during model simulation
activities with the only purpose of defining software requirements. Therefore it
was impossible both to evaluate the correctness of the model and to completely
test the conformance of the real system to the software requirements through
the model. These two aspects showed the need to develop a test case generation
strategy. Indeed a test generation tool can help the user, together with a model
checking activity, in the model validation; moreover, it can be used to strengthen
the relations between the model and the software: this can be done by testing
the same scenario on the model and the system and comparing the outputs. The
purpose is to reduce the time to define the test cases and increase the detection
of corner case scenarios. Therefore test case generation can be used to reduce the
execution time of the functional tests. For this purpose automatic procedures,
such as parallel execution of the model and the system with outputs compari-
son, will be investigated. An analysis of test generation tools as TNI’s STB or
T-VEC’s Test Generation for Simulink is also planned.

5.3 Code Generation from Stateflow Specifications

Automatic code generation is usually considered as a natural output of a soft-
ware formal specification because it can be easily obtained from a model using
a proper tool. This is true in several application domains, but not in railways,
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where code generation is viewed not less suspiciously than formal methods. In-
deed railways safety-related systems are based upon architectures designed with
safety more than performance targets in mind. Moreover, the operating soft-
ware is wrote down mainly to satisfy testing, synchronization and other safety
issues. Therefore, the application software needs to be written down following
strict constraints, to be seamlessly integrated with the hardware and the op-
erating software. Integration can be very hard, using the code generated from
a model: evaluating and understanding how much hard is the object of future
work. The evaluation could be done starting with a simple model and analysing
the code generated with tools such as ADI’s Beacon for Simulink/Stateflow, to
understand which language structures it uses and how readable and ”linked”
to the model it is.The idea is that only using a special precaution during the
model development is possible to generate a usable code that can be success-
fully integrated with the existing one. If the experiment gives good results, the
code generation could be used for development of some application functions.
For these functions, the effort could be shifted in the early phases of software
life cycle (the model development) and most bugs could be fixed during model
validation (test generation and model checking). Of course this will not replace
standard software testing activities, but will reduce the time of the software life
cycle and will guarantee the conformance of the software developed to the model
used as software requirements specification.

6 Lessons Learned and Conclusions

The industrial acceptance of formal methods has always been difficult; though
many success stories are reported, formally developed software is still a small
percentage of the overall installed software. Application domains where safety is
a major concern are the ones where industrial formal method applications are
more easily found; in particular, railway signaling is considered one of the most
successful area of formal methods diffusion. However, the choice among so many
different formal methods proposals is not an easy task for a company; the risk
of early choices of methods that are not suitable or are not widely accepted by
the company departments is high. The experience we have reported has profited
of many enabling factors that have in the end facilitated the choice:

– collaboration with academic experts;
– no time–to–market pressure (due to the longer time span of projects w.r.t.

other application domains), which has allowed a long experimental phase
before selection;

– European regulations asking for formal methods;
– a market evolution pushing for formal methods adoption;
– indications from the major clients about the preferred formalisms for speci-

fication.

However, even in this favourable setting for the growth of a formal method
culture and in spite of standard and customers indications, the choice was still
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not easy. Cost factors and company policies necessarily have driven, or even
imposed, the choice. In the story we have told, the final choice of Stateflow has on
one side followed a trend that has recently emerged in railway signaling, that is,
a shift towards behavioral, state-machine based formalisms; on the other hand,
this choice was favoured by the industrial quest for formalisms supported by
commercial integrated environments, which have a broader scope of application.
Tools that give the ability of simulating and model-checking specifications, and
of generating code from them provide an interesting added value. The current
stage of the adoption of Stateflow in GETS is that the tool is being used for
specification and simulation in several new projects. Still more experiments are
needed to better evaluate benefits and deficiencies of using model-checking, test
case generation and code generation in GETS’products life cycle, and to choose
industrial-strength tools offering such functionalities. Hence, it is too early to
draft a final balance of the experience: the return of the ongoing analysis will
actually be seen in several years.
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Abstract. Among researchers and practitioners, there are disputations
about whether, where, and to which degree formal methods worth their
cost. Based on our experiences of industrial software projects over the last
years, we develop an empirical approach of partially introducing formal
methods into object-oriented software development. Once an initial ar-
chitecture design is available, object-oriented metrics can be useful crite-
ria for selecting core parts of software systems for formal treatment. Case
studies of the application of our approach show that partially adopting
formal methods could achieve a satisfying balance between investment
and product quality in a cost-effective way.

1 Introduction

Formal methods use mathematically precise models to build software and hard-
ware systems, and therefore offer the promise of overall improvement of software
quality and reliability. Nevertheless, most companies have been unwilling to risk
using formal methods in their software development, mainly on the grounds that:

– High introductory costs associated with training and use of formal methods;
– Theoretical and practical limits of formal methods [1];
– Mighty advances of other software engineering methods which also contribute

greatly to software quality [2].

Since in most cases formal methods are not yet suitable for full-scale im-
plementation of large systems, an alternative is to partially introduce them to
where requirements justify their expense. Generally, formal methods can be cost-
effective if their use is limited to core parts of systems, which should be selected
under criteria of reliability, safety, availability, security, complexity, etc. However,
such criteria are often ambiguous, interrelated, and difficult to be expressed nu-
merically or accurately; therefore hard and fast rules do not exist on how to
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choose metrics, set baselines, and make decisions. Until now, other than provid-
ing some general principles (e.g., [3] and [4]), few research has been done to find
a practicable and measurable solution for partially adopting formal development
process.

The motivation for this paper derives from our experience on adopting formal
methods into software development practices over the last four years. After a
successful project full-implemented with the B-Method [5], the working group
hoped that some other projects with much more limited resources could also ben-
efit from formal techniques. Most of the projects would employ object-oriented
development (OOD), in which we believed that the metrics of the initial archi-
tecture designs could provide meaningful information for deciding which parts
of the system are worth the high cost of formal treatment. Thus we began to
develop a metrics-driven approach of partially introducing formal methods into
OOD. Our approach has become much more practicable after being tested and
improved through several projects.

The paper is structured as follows: Section 2 provides an overview of our
metrics-driven approach. Section 3 presents a case study of an experimental
project in a classroom environment, whose main purpose is to demonstrate the
feasibility of our approach. The next two case studies in Section 4 introduce
the approach into industrial projects: a commercial management information
system (MIS) and an embedded system. The last two case studies in Section
5 are projects dealing with software evolution, where we take full advantage of
recorded metrics of the old systems. Section 6 concludes with some discussions.
The definitions of metrics used in the paper are described in Appendix.

2 A Metrics-Driven Approach for Partially Adopting
Formal Methods

In this section we describe the empirical approach for adopting formal methods
into software development based on software quality metrics, an overview of
which is provided by the flowchart in Fig. 1.

2.1 Project Assessment

The first step is to determine the applicability of formal methods in the software
project. There are some principles and guidelines (e.g. in [6,7,8]) help to decide
whether formal methods are useful for certain projects. In general, we should
also carefully conduct investigations on the following aspects:

– Project content and history: Is the project from scratch, or an evolutionary
one? Are there any parts of the software artifacts with high requirements of
reliability, safety, availability, and security? Which experiences and lessons
can be obtained from similar projects?

– Project goals: How important is the project to the organization? To what
extent are reliability, quality, economics, and time to market of importance
to the success of the project?
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Fig. 1. The flowchart for adopting formal methods based on software quality metrics

– Alternatives: Are there alternative solutions such as using COTS (compo-
nents off-the-shelves) and subcontracts that can effectively deal with the
project requirements and risks?

Inevitably, the answers here are often highly influenced by the expectations
and pre-requisite knowledge of the decision-makers. In Addition, contractual
requirements may also play a key role in deciding whether a full-scale formal
development is mandatory.

2.2 Metrics Selection and Data Collection

After making the decision of partial formal development, we need to choose
quality models and metrics based on criteria including predictive validity, sim-
plicity, and quality of assumption [9]. For evolutionary projects, capability of the
models and accuracy of the metrics are very important, while in new projects
predictability of the models is more crucial. In both conditions, we should also
take data collection techniques and tools, and correlations between the metrics
and the models into consideration.

Ideally, the more the metrics and the data, the more effective the application
of formal methods will be. However, the effort and cost of data collection and
analysis are by no means trivial undertakings in large projects, and hence the
cost-effectivity is one of the major factors in metrics selection.
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2.3 Candidate Parts Selection

To select core parts of a complex object-oriented system, we suggest a “de-
escalatory” policy. That is, the selection process can be further divided into the
following sub-steps:

1. Along with analysis and design, pick out crucial components (if any exists)
whose failures may cause significant losses or catastrophic results.

2. Apply metrics to the remaining components to select candidates for formal
treatment.

3. Penetrate into the remaining components and apply metrics to select candi-
date classes for formal treatment.

4. Penetrate into the remaining classes and apply metrics to select candidate
methods for formal treatment.

Here the last sub-step may be omitted if the initial design is not detailed enough
or it is too difficult to collect data relevant to method overriding and invocation.

Finally, we should estimate the prospective cost, time, and other resources
that would be consumed by the introduction of formal methods, and go back to
adjust the baselines until affordable. There is no simple way to make an accurate
estimate required for software development. Some algorithmic models such as
the early design model and the post-architecture model of COCOMO II [10] can
be adapted to produce estimates for formal development and compare different
ways of investment (e.g., [11]). Since metrics selection and baseline setting may
be largely based on intuition, the process is always iterative.

3 A Feasibility Study

To study the feasibility and effectiveness of our approach, we ran this case study in
a classroomenvironment, which allowsnew concepts tobe testedbefore using them
with expensive developers from industry [12]. The project was a ticket-issuing sys-
tem, developed by students from the Academy of Armored Force Engineering.

The experimentation consisted of three stages. At the first stage, under the
guidance of the tutor, the class that had just completed two courses ”Cleanroom
Software Engineering” and ”MIS Development with J2EE” carried out the OOD
of the system, the result of which contained 46 classes: 35 classes to be developed
from scratch and 11 classes can be found in the standard library.

For 35 application-specific classes, we collected their design metrics of cou-
pling, cohesion, and inheritance, which were taken from [13,14,15]. We then chose
seven metrics to set baselines for selecting classes: those with any two metrics
beyond (worse than) the baselines were considered with high complexity and/or
reusability, and therefore were hypothesized to be worthwhile to apply formal
methods, as summarized in Table 1.

At the second stage, the class was equally divided into three groups, which
were then asked to implement the system independently: Group A developed all
35 classes using traditional (informal) object-oriented programming; Group B
developed 9 selected classes with the formal method that they had just learned,
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Table 1. Metrics applied and classes selected

Metrics Baseline Classes selected Percentage

CBO 5 6 17.1%
LCOM 10 4 11.4%
NOC 5 2 5.7%
NOD 15 0 0
RFC 50 10 28.6%
SIX 0.8 7 20%

WMC 40 11 31.4%
Total 2 metrics beyond 9 25.7%

i.e., an approach of Cleanroom specification and design techniques combined
with OO methodologies1, and other 26 classes with traditional OO programming;
Group C developed all 35 classes formally.

For each release of the system, we respectively performed a white-box testing,
whose purpose was to collect static fault data (measured by DDKLOC), and a
black-box testing, whose purpose was to collect dynamic fault data (measured
by MTTF) of the system. The errors found by the white-box testing were then
fed back to the corresponding groups for correction.

At the third stage, the three groups fulfilled the tasks of corrective mainte-
nance; afterwards the white-box and black-box testing were performed again for
the systems. The graph in Fig. 2 shows the comparative results of the experi-
mentation including the time of development and maintenance, as well as the
DDKLOC and MTTF metrics before and after the maintenance.

According to this study, in contrast to informal development, partial-formal
development offered about a 2210% dynamic quality improvement (in MTTF)
with only a 37% additional investment (in person-hours), which manifested that
the formal method was effectively introduced to core parts of the system. At
the same time, in contrast to partial-formal development, complete-formal de-
velopment achieved about a 390% dynamic quality improvement, but with an
88% additional investment. Based on the comparison of informal, partial-formal
and complete-formal development, we drew the conclusion that partially adopt-
ing formal development process could achieve a good, if not optimal, balance
between investment and product quality.

Furthermore, the case study revealed another interesting aspect that we had
not recognized at the beginning: Although the system with partial-formal devel-
opment may still be far less quality than that with complete-formal development,
in combined with intensive testing and corresponding corrective maintenance
(mainly on those informally developed), partially adoption of formal methods
may also be likely to achieve a quality level much closer to that of full-scale
formal implementation. In this case study, the first release of Group B achieved
1 That is, an object class without any implementation is first modeled as a black box,

which is refined to a state box by introducing data implementation, and then refined
to a clear box by introducing process implementation [16].
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Fig. 2. Development efforts and product qualities of the three groups

only 20% of the dynamic quality of Group C, its second release finally achieved
72%, with only 56% of total time invested2.

Inevitably, this case study was just a feasibility study that concerned with gen-
erating and testing some hypotheses about our approach and its usefulness. The
selected metrics were used to measure the complexity and significance of classes,
and some of them were also good indicators for prediction of fault-proneness
[17,18], but their expressiveness was neither comprehensive nor persuasive. Nev-
ertheless, the case study provided meaningful information as desired: our ap-
proach produced useful results that could be achieved in a cost-effective way.

4 Two Industrial Case Studies

After the feasibility study in the classroom environment, we introduced the ap-
proach into two industrial projects: one was a materiel management information
system, namely Prj1, which employed the Cleanroom techniques and object-
oriented specifications; the other was a ballistic computer system [19], namely
Prj2, which employed the B- Method and Toolkit [5].

In comparison with the first experimental project, we implemented the
metrics-driven approach for these two projects on a much larger scale. The met-
rics taken from [9,14,15,20] were applied to software elements from the compo-
nent (program assemble) level to the method level. For both the case studies, the
2 Here we did not take the testing time into consideration, which was believed to be

trivial when using automatic tools.
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de-escalatory policy was employed in the selection processes: At the component
level, three metrics were applied, and those with any two metrics beyond the
baselines were selected; at the class level, six metrics applied, and those with
three beyond were selected; at the method level, two metrics applied, and those
with both beyond were selected. For Prj1, only a small part of methods were an-
alyzed because that it was difficult to collect data relevant to method overriding
and invocation before system implementation.

Table 2, Table 3, and Table 4 summarize the selection steps at the level of
component, class, and method respectively.

Table 2. Metrics applied and components selected

Number of the components Prj1 Prj2

Total 54 19
Crucial components directly selected 4 5

Selected on TCSC 7 3
Selected on HCSC 4 3
Selected on HIC 4 0

Selected uniquely on three metrics 6 3
Total selected 10 8

Selection percentage 18.5% 42.1%

Table 3. Metrics applied and classes selected

Number of the classes Prj1 Prj2

Total 762 340
Selected along with components 112 141

Selected on CBO 42 42
Selected on LCOM 48 15
Selected on NOC 23 10
Selected on NOD 26 18
Selected on RFC 44 17
Selected on ICHC 155 63

Selected uniquely on the six metrics 86 52
Total selected 198 193

Selection percentage 26% 56.8%

For both the projects, we respectively selected two other projects which were
of similar domain and scale to compare their development effectiveness. Tow
comparative projects for Prj1 (namely Prj1A and Prj1B) both employed informal
program techniques. As illustrated in Fig. 3, through partially adopting formal
methods, Prj1 achieved about a 1520% dynamical quality improvement over
Prj1A and 520% over Prj1B, with only about a 33% additional cost over Prj1A
and 113% over Prj1B, or at the expense of a 24% productivity loss to Prj1A and
53% to Prj1B.
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Table 4. Metrics applied and methods selected

Number of the methods (K) Prj1 Prj2

Total 13.5 26.8
Selected along with class 2.1 10.9

Selected on NOOM 3.6 1.3
Selected on ICHM 1.9 4.1

Selected uniquely on the two metrics 1.3 3.7
Total selected 3.4 14.6

Selection percentage 25.2% 54.5%

Fig. 3. Comparison between Prj1 and two similar projects informally developed

For Prj2, one of its comparative project (namely Prj2A) was informally devel-
oped, and the other (namely Prj2B) was complete-formally developed. As shown
in Fig. 4, with nearly the same development cost and productivity, Prj2 achieved
great quality improvement over Prj2A. However, the improvement of Prj2B over
Prj2 was at the expense of a 77% additional cost and a 44% productivity loss.

Results of the case studies showed that our approach was successfully trans-
ferred form research phase to industry. Lessons learned from the studies in-
cluded:

– High quality analysis and design should be taken as prerequisites to the
application of our metrics-driven approach.

– For large projects, data collection and analysis are by no means trivial un-
dertakings; therefore relevant resource consumed and consequent influence
must be taken into consideration at the beginning of project planning.



198 Y. Zheng et al.

Fig. 4. Comparison between Prj2 and two similar projects, one informally and the
other complete-formally developed

– Controlled environments and automatic tools contribute greatly to the ef-
fectiveness of the adoption of formal methods.

– Since the selection criteria are rough and empirical in nature, a review should
be conducted on the outcome of selection and the final decision should be
made by customers, domain experts, and project managers together when
possible.

5 Two Evolutionary Projects

Rather than developed from scratch, the two case studies (namely Prj3 and
Prj4) in this section dealt with software evolution projects, in which recorded
metrics of system development and operation provided valuable information for
selecting elements to apply formal methods. Evolutionary tasks mainly included
adding and modifying functionalities, repairing software faults, and adapting
interfaces to changed environment. Selected parts were re-developed using UML
formalization and transformation [21].

Since data collection and analysis could be very expensive when analyzing
a broader set of metrics, we employed a “two-round-election” strategy when
applying the metrics. That is, we classified the baselines into two categories: one
used to extensively select “potentially worthwhile” candidates, and the other
used to eliminate “unworthwhile” candidates from first-round winners.

In the first round we extensively selected candidates with high failure rate
or high complexity based on product quality metrics from [14,15,22], as sum-
marized in Table 4. Afterwards, based on product, in process, and mainte-
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Table 5. Summary of the first-round selection

Perspective Item Prj3 Prj4

Failure rate Components selected on DDKLOC 7 5
Components selected on MTTF 6 2
Components selected on MTI 14 4
Components selected uniquely 19 9
Class selected with components 399 112

Complexity Components selected on TCSC 18 6
Components selected on HCSC 22 9
Components selected on HIC 30 8
Components selected uniquely 45 14
Class selected with components 773 110

Classes selected on WMC 528 106
Classes selected on NOC 212 39
Classes selected on RFC 135 21

Classes selected on LCOM 165 24
Classes selected uniquely 673 124

Total Components selected 64 18
Components selection percentage 27.1% 42.9%

Classes selected 1845 346
Classes selection percentage 39.4% 54.2%

nance quality metrics from [9,13,23], we stepwise eliminated candidates that fea-
tured low customer problems, minimal development efforts, and low maintenance
efforts, as summarized in Table 5. A comparative analysis on quality before and
after the evolutions is shown in Fig. 5.

Fig. 5. Comparison of evolutionary effects on software quality
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Table 6. Summary of the second-round selection

Perspective Item Prj3 Prj4

Customers Components analyzed 10 4
Components eliminated on PUM 2 2
Components eliminated on PDC 4 2
Components eliminated uniquely 5 3
Class eliminated with components 139 39

Developers Components analyzed 59 15
Components eliminated on SPS 13 2
Components eliminated on DRE 5 3
Components eliminated uniquely 16 4
Class eliminated with components 452 72

Classes analyzed 1254 235
Classes eliminated on SPS 365 33
Classes eliminated on DRE 152 21
Classes eliminated uniquely 440 39

Maintainers Components analyzed 43 11
Components eliminated on WBMI 6 3
Components eliminated on WPDF 3 2
Components eliminated on WRDI 4 2
Components eliminated uniquely 8 3
Class eliminated with components 182 50

Total Components eliminated 29 10
Components eliminated percentage 45.3% 55.6%

Classes eliminated 1213 200
Classes eliminated percentage 65.8% 57.8%

6 Conclusions and Future Work

Originally, Formal methods were perceived as mainly proof-of-correctness tech-
niques for program verification of safety-critical applications, but now they are
increasingly applied to develop systems of significant scale and importance and
in all other application fields [24]. Among researchers and practitioners, there
are disputations about whether, where, and to which degree the formal methods
worth their cost. Over large systems we prefer a compromise: partially introduc-
ing formal methods to where project requirements justify it.

In this paper we propose an approach of partially introducing formal methods
into OOD based on software quality metrics, which are believed to provide valu-
able information for deciding which parts of the system are worth the high cost
of formal development. Five case studies presented have shown the feasibility of
our metrics-driven approach.

Nevertheless, there are many criticisms over software metrics and statisti-
cal models from both the academic community and the industry. For example,
Mayer and Hall [25] validated against to directly use OOD metrics as complex-
ity metrics. In [26] Fenton and Neil also criticized multivariate statistical models
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produced in an attempt to find a single complexity metric that will account for
defects. Although metrics applied in our case studies are elaborately selected
and are believed to have strong relationships with complexity, fundamentality,
and fault-proneness of software artifacts [27], it is still not reasonable to try to
work out an all-around set of criteria.

As an empirical study, our approach needs to be tested and improved through
further research on larger body of experimental data and more kinds of projects.
Ongoing efforts include making the approach more firmly rooted in measure-
ment theory (e.g., conducting false positives and false negatives analysis on the
results of selection) and developing a cost-driven approach for introducing formal
methods in projects with fixed budgets and schedules.
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Appendix: Definitions of the Metrics used in the Paper

Table 7. The definitions of quality metrics used in the paper

Name Definition Expression
CBO Coupling between

object classes
The number of other classes to which a class is cou-
pled

DDKLOC Delivered defects
per thousand
source lines of
code

(ND + NF )/L, where ND denotes the number of
known delivered defects, NF the number of uniquely
new defects found after release, and L the size (in
KLOC)

DRE Defect removal ef-
fectiveness

R/L, whereR denotes the number of defects removed
during the development phase, and L the number of
defects latent in the product

HCSC Hybrid compo-
nent structural
complexity

n
i=1 (Si×Ri)2

n ,where n denotes the number of agent
classes (act as both servers and clients) in the com-
ponent, S the number of classes that consume the
service of a class, and R the number of classes that
provide services for the class.

HIC Hybrid inheri-
tance complexity

n
i=1 (Bi×Di)2

n ,where n denotes the number of hierar-
chy trees in a component, B the number of levels of
a given tree, and D the number of leaves in a given
tree

ICHM Information-flow-
based cohesion of
a method

∑n
i=1Hi,where n denotes the number of invocations

of other methods of the same class, and H the num-
ber of parameters of the invoked method

ICHC Information-flow-
based cohesion of
a class

∑n
i=1 Ii,where n denotes the number of methods in

a class, and I the Information-flow-based cohesion of
a given method

LCOM Lack of cohesion
on methods of a
class

The number of pairs of methods in a class using no
attribute in common

MTTF Mean time to fail-
ure

H/(I+1), whereH denotes the total CPU run hours,
and I the number of (unique) software failures

MTI Mean time to
unplanned initial
program loads

∑n
i=1Wi × ( Hi

Ii+1 ),where n denotes the number of
delivered releases that data collection has been per-
formed, H the total CPU run hours,W the weighting
factor, and I the number of (unique) unplanned IPLs
due to software failures

NOC Number of chil-
dren

The number of classes that directly inherit from a
class

NOD Number of descen-
dents

The number of classes that directly or indirectly in-
herit from a class

NOOM Number of over-
riding methods

The number of methods that directly override a
method

continued on the next page



204 Y. Zheng et al.

Table 7. (continued)

Name Definition Expression
PUM Problems per user

month

n
i=1 (Di+Pi)

n ,where n denotes the number of de-
livered releases that data collection has been per-
formed, D the number of true defects reported, and
P the number of non-defect-oriented problems re-
ported

PDC Percent of dissat-
isfied customers

(D + E)/N , where N denotes the number of cus-
tomers surveyed using a five-point scale (5-very
satisfied, 4-satisfied, 3-neutral, 2-dissatisfied, 1-very
dissatisfied), D and E the number of dissatisfied and
very dissatisfied customers respectively

FC Response for a
class

∑n
i=1 (mi +

∑mi

j=1 Cj),where n denotes the number
of message types the class can receive, m the number
of methods executed in response to a given message,
and C the number of methods directly called by a
given method

SIX Specialization in-
dex

NMO × DIT / (NMO + NMA + NMINH), where
NMO denotes the number of methods overridden in
a class, DIT the depth of the class in the inheri-
tance tree, NMA the number of methods added, and
NMINH the number of methods inherited

SPS Software produc-
tivity on single el-
ement

L/T , where L denotes the size of the software el-
ement (in LOC), and T the development time (in
PM)

TCSC Traditional com-
ponent structural
complexity

n
i=1 R2

i

n ,where n denotes the number of receiving
classes in a component, and R the number of classes
that consume the service of a given class

WBMI Worst backlog
management
index

MIN(NC

NA
× 100%),where NC denotes the number of

problems closed (during every month after release),
and NA the number of problem arrivals

WMC Weighted meth-
ods per class

∑n
i=1Wi,where n denotes the number of methods in

the class, andW the cyclomatic complexity of a given
method

WPDF Worst percent
delinquent fixes

MAX(ND

NS
× 100%),where ND denotes the number of

fixes delayed (during every month after release), and
NS the number of fixes delivered in a specified time

WRDI Worst real-time
delivery index

WRDI = MAX( ND

NB+NA
× 100%),where ND denotes

the number of fixes delayed (during every month af-
ter release), NB the number of problems backlogged,
and NA the number of problem arrivals
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Abstract. Object-Z allows coupling constraints between classes which,
on the one hand, facilitate specification at a high level of abstraction,
but, on the other hand, make class refinement non-compositional. The
consequence of this is that refinement is not practical for large sys-
tems. This paper overcomes this limitation by introducing a method-
ology for compositional class refinement in Object-Z. The key step is
an equivalence transformation of an arbitrary Object-Z specification to
one in which introduced constraints prohibit non-compositional refine-
ments. The methodology also allows the constraints which couple classes
to be refined yielding an unrestricted approach to compositional class
refinement.

1 Introduction

The need for modularity and reuse in software development has led to the dom-
inance of object-oriented programming languages in the software industry. The
benefits of an object-oriented approach can also apply to formal software de-
velopment. Formal languages such as Object-Z [8], OhCircus [1] and TCOZ [4]
support notions of classes and inheritance facilitating the development of speci-
fications which are readily understood and reasoned about in a modular fashion.

In Object-Z, operations in one class are able to restrict the outputs of opera-
tions in other classes with which they are composed. As discussed by Smith and
Derrick [10], this allows a more abstract level of specification when modelling
systems. In particular, consensus between objects can be readily specified inde-
pendently of the protocol used to obtain it. This can lead to specifications which
are both easier to understand and analyse.

As a result, however, if an object of an Object-Z class A exists in a specifi-
cation X (denoted here by X (A)), and A is refined to a concrete class C , then
the specification X (C ) is not necessarily a refinement of the specification X (A)
— class refinement is not compositional. The consequence of this is that refine-
ment is impractical when dealing with large systems, as the process cannot be
performed in a modular fashion.

This issue stems from a related issue in the Z specification language [11], upon
which Object-Z is based. The existence of a refinement relationship between
individual schemas in Z does not imply that refinement holds when the schemas
are composed together. Constructs such as schema conjunction, for example,
must be unfolded to form a single schema that may then be refined.

J. Misra, T. Nipkow, and E. Sekerinski (Eds.): FM 2006, LNCS 4085, pp. 205–220, 2006.
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The possible unfolding of such compositional operators is a sensible mitigation
to this problem in Z, but in Object-Z this is not usually a plausible option.
Object-Z classes encapsulate state and operations to form an abstract data type,
and compositional operators may be used to compose operations within different
classes. This feature is very useful for the purpose of specification, but prohibits
the unfolding of operations to form a single, refineable operation because they
may apply to different states. Furthermore, such unfolding would go against the
desire for modular refinement.

The non-compositionality of class refinement in Object-Z is discussed by Der-
rick and Boiten [2]. They demonstrate that compositionality can be achieved
under certain syntactic restrictions to the use of the language. However, they
do not suggest that these restrictions be adopted for Object-Z as they would
greatly inhibit the way Object-Z is used in practice.

The issue has also arisen in the context of integrating Object-Z and CSP
[7,3,4,9] for the specification of concurrent systems. In most of this work [3,4,9],
alternative semantics of Object-Z classes have been developed which disallow
the external restricting of outputs to enable compositional class refinement.

In this paper, we present a methodology for compositional refinement in
Object-Z that requires neither syntactic restrictions to the language, nor an alter-
native semantics of classes. The key step is an equivalence transformation of the
specification to one in which individual classes can be refined compositionally.
The transformation introduces constraints into class operations which prevent
non-compositional refinements. It also isolates the constraints that couple classes
together, and allows these coupling constraints to be refined independently of
the classes, and hence independently of the operations whose composition is the
cause of the coupling. This yields an unrestricted approach to compositional
class refinement.

In Section 2, we provide an overview of class refinement in Object-Z. In Sec-
tion 3, we motivate our work with an indicative example of where class refinement
is not compositional. In Section 4, we present a simple approach to transforming
Object-Z specifications to enable compositional class refinement. To overcome
the restrictions imposed on refinement by this simple approach, we present a
further transformation step in Section 5 which enables us to refine the coupling
constraints between classes. We conclude with a discussion of the approach and
future work in Section 6.

2 Class Refinement

The standard notion of class refinement used with Object-Z is data refinement.
Values of the state variables of a class are regarded as being internal so that
refinement can be used to change the representation of the state of a class. As
with Z, there are two forms of simulation rules which are together complete, i.e.,
all possible refinements can be proved with a combination of the rules. In this
paper, we consider the most common form, referred to as downward simulation.
Adapting our approach to upward simulation is left as future work.
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Downward simulation of Object-Z classes is defined as follows1 [2]:

Definition 1. An Object-Z class with state schema CState, initial state schema
CInit and operations COp1 . . .COpn is a downward simulation of an Object-
Z class with state schema AState, initial state schema AInit and operations
AOp1 . . .AOpn , if there is a retrieve relation R such that the following hold.

Initialisation. ∀CState • CInit ⇒ (∃AState • AInit ∧ R)
Applicability. ∀AState; CState; ?AOpi • R ⇒ (pre AOpi ⇔ pre COpi)
Correctness. ∀AState; CState; CState ′; ?AOpi ; !AOpi •

R ∧ COpi ⇒ (∃AState ′ • R′ ∧ AOpi)

where i ranges over 1 to n, and ?AOpi and !AOpi denote the declarations of
inputs and outputs respectively of AOpi (which must be the same as those of
COpi).

Note that the applicability condition does not allow the ‘enabledness’ of a re-
fined operation to be either weakened or strengthened. This is because Object-Z
possesses a blocking semantics where an operation’s precondition (which deter-
mines whether or not it is enabled) acts as a guard; if it is false, the operation
‘blocks’, i.e., cannot occur, and the same must be true for any refinement.

3 Motivating Example

In this section, we introduce an example that does not allow for compositional
refinement as defined by the downward simulation rules for refinement of Object-
Z classes. Such examples arise due to the fact that conjunction can be used to
combine operations from different classes. Conjunction manifests itself not only
in the conjunction operator, but also in the parallel and sequential composition
operators which are defined in terms of conjunction [8]. In each case, it is possible
for both operation schemas to restrict a particular post-state variable. When
there is unresolved non-determinism over such a post-state variable, refining one
of the schemas may result in the conjunction becoming false.

3.1 Bargaining Example

Our example models the simple negotiation of a sale. In the specification below2,
the buyer has a certain amount of cash and is prepared to spend all of it, but the
vendor will only sell at a price that is between the reserve price and the asking
price (inclusively). The specification abstracts away the details of the negotiation
process to leave the actual price paid as a non-deterministically chosen amount.
This amount is implicitly agreed upon by both the vendor and the buyer via

1 Note that the state variables of a schema S after each operation are denoted by S ′.
2 We assume some familiarity with Object-Z. Details of the notation can be found

in [8].
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the shared post-state variable price!. After the Transaction, the buyer’s cash
decreases as much as the vendor’s takings increase; this is the price paid.

Buyer

cash : N

Buy
Δ(cash)

price! : N

price! ≤ cash
cash ′ = cash − price!

Vendor

takings, reserve, asking : N

Sell
Δ(takings)
price! : N

reserve ≤ price! ≤ asking
takings ′ = takings + price!

Market

buyer : Buyer
vendor : Vendor

Transaction =̂ buyer .Buy ∧ vendor .Sell

The problem with refining class Buyer or Vendor is that such a refinement may
render it impossible to select and agree upon a price – thus the precondition
of the Transaction operation in Market becomes false. For example, consider
Vendor1 below as a refinement of Vendor and the question of whether Market1
is a refinement of Market .

Vendor1
Vendor

Sell
price! = asking

Market1

buyer : Buyer
vendor : Vendor1

Transaction =̂

buyer .Buy ∧ vendor .Sell

Here, Vendor1 takes advantage of inheritance in Object-Z to derive its definition
from Vendor . Inheritance is defined primarily in terms of conjunction in Object-
Z [8], such that the state schema of Vendor1 is exactly that of Vendor , but the
operation Sell , since it appears in both Vendor1 and Vendor , is interpreted as
the conjunction of Vendor1.Sell3 and Vendor .Sell .

Since the vendor insists upon accepting only the asking price, the Transaction
operation in Market1 is not enabled when the buyer has only enough cash to meet
the reserve price. Although the refinement of Vendor has not altered the pre-
condition of Sell , the precondition of operation Market1.Transaction is stronger
3 We use the notation C .Op to refer to the operation Op of class C .
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than Market .Transaction in the case that vendor .asking �= vendor .reserve. We
can observe this by calculating and comparing the preconditions4.

pre Buyer .Buy = cash ∈ N
pre Vendor .Sell = reserve ∈ N ∧ reserve ≤ asking ∧ asking ∈ N ∧

takings ∈ N
pre Market .Transaction = pre Buyer .Buy ∧ pre Vendor .Sell ∧

buyer .cash ≥ vendor .reserve

pre Vendor1.Sell = pre Vendor .Sell
pre Market1.Transaction = pre Buyer .Buy ∧ pre Vendor1.Sell ∧

buyer .cash ≥ vendor .asking

The predicate that couples the preconditions of the Buy and Sell operations in
the precondition of Transaction relates the amount of cash the buyer has to the
reserve and asking prices of the vendor. This is necessary because an agreement
must be made over the binding of the post-state variable price!. Clearly when
vendor .asking �= vendor .reserve the preconditions of Market .Transaction and
Market1.Transction differ; thus Market is not refined by Market1.

4 Enabling Compositional Refinement

Throughout the remainder of this paper, given an operation A, say, we will
let AState denote the state schema of A’s class together with A’s inputs, and
AState ′ the state schema of A’s class together with both A’s inputs and outputs.

Suppose that we have the conjunction of operations A ∧ B in an Object-Z
specification, where A and B are from different classes (and hence operate on
different states). If we refine A to C , under what circumstances is C ∧ B not a
refinement of A ∧ B?

When C is a downward simulation of A, via the correctness condition we have

∀AState; CState; CState ′ • R ∧ C ⇒ (∃AState ′ • R′ ∧ A)

where R is the retrieve relation for the simulation.
Since P ⇒ (∃ x • P), it follows from this that

∀AState; CState; CState ′; BState; BState ′ • R ∧ C ∧ B ⇒
(∃AState ′; BState ′ • R′ ∧ A ∧ B)

Hence, correctness will always hold between A ∧ B and C ∧ B .
When C is a downward simulation of A, via the applicability condition we

have

∀AState; CState • R ⇒ (pre A ⇔ pre C )

4 In Object-Z the precondition is defined by existentially quantifying the post-state
variables (outputs included) over the predicate of the operation [2].
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which expands to [2]

∀AState; CState • R ⇒ ((∃AState ′ • A)⇔ (∃CState ′ • C ))

The applicability condition between A ∧ B and C ∧ B is

∀AState; CState; BState • R ⇒
((∃AState ′; BState ′ • A ∧ B) ⇔ (∃CState ′; BState ′ • C ∧ B))

This follows from the above when BState ′ does not overlap with AState ′ and
CState ′. When there is overlap, as was the case in the example of Section 3, the
applicability condition can fail.

By definition, state variables of distinct classes are themselves distinct [8],
hence such an overlap is only possible over output variables. Since output vari-
ables cannot be added or removed under data refinement (since they are not part
of the class’s internal state), the output variables of AState ′ will be identical to
those of CState ′. Hence, refinement of A to C can only fail to be compositional
when A and B have shared output variables.

We require an approach that prevents us from performing refinements that will
add constraints on shared outputs. Our methodology achieves this by equating
such output variables to fresh shared input variables. Input variables are part of
the precondition of an operation and hence constraints cannot be added to them
during refinement. Consequently, constraints cannot be added to the output
variables equated to them.

For each conjunction A ∧ B in a specification, where A and B are from
different classes, we begin by determining the common-named output variables
in the operations5. Let the declaration of these output variables be denoted by
�v ! : �T .

We then introduce an operation ΘAB which equates the shared output vari-
ables of A and B with fresh input variables �u? (these do not appear in either A
or B).

ΘAB =̂ [ �u? : �T ; �v ! : �T | �v ! = �u? ]

We then extend the class of operation A with an additional operation AB =̂
A ∧ ΘAB . We similarly extend the class of operation B with an additional op-
eration BA =̂ B ∧ΘAB .

The conjunction A ∧ B is then replaced with the conjunction of the new
operations, but with the fresh shared input variables hidden.

(AB ∧ BA) \ { �u?}

Thehiding of the inputvariablesmakes this process an equivalence transformation.

Theorem 1. Equivalence transformation

(AB ∧ BA) \ { �u?} ≡ (A ∧ B)

5 In a well-formed specification, such output variables will also necessarily have the
same type [8].
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Proof

(AB ∧ BA) \ { �u?}
≡ ∃ �u? : �T • AB ∧ BA definition of hiding [8]
≡ ∃ �u? : �T • A ∧ B ∧ ΘAB operation definitions
≡ A ∧ B ∧ (∃ �u? : �T • ΘAB ) since �u? do not appear in A and B
≡ A ∧ B one-point rule (�v ! = �u?)

�

When an Object-Z specification is transformed in this manner, compositional
class refinement is then possible.

Theorem 2. Compositional refinement

AB � C under retrieve relation R


(AB ∧ BA) \ { �u?} � (C ∧ BA) \ { �u?} under R

Proof

Applicability: The downward simulation proof obligation for applicability is:

∀AState; BState; CState •
R ⇒ (pre ((AB ∧ BA) \ { �u?})⇔ pre ((C ∧ BA) \ { �u?}))

For all pairs of states from AState and CState for which R does not hold, the
quantified expression becomes true owing to the implication. For all other pairs
of states (i.e., those where R holds), we need to show the following is true for
all states from BState.

pre ((AB ∧ BA) \ { �u?})⇔ pre ((C ∧ BA) \ { �u?})

Since AB � C , for pairs of states related by R the applicability condition gives
us pre AB ⇔ pre C for all �u? : �T . Hence,

(pre AB ∧ pre BA) \ { �u?} ⇔ (pre C ∧ pre BA) \ { �u?}

Therefore by Lemma 1 (see Appendix), we have

pre ((AB ∧ BA) \ { �u?})⇔ pre ((C ∧ BA) \ { �u?}) �

Correctness: The downward simulation proof obligation for correctness is:

∀AState; BState; CState; BState ′; CState ′ •
R ∧ (BA ∧ C ) \ { �u?} ⇒ (∃AState ′; BState ′ • R′ ∧ (BA ∧ AB) \ { �u?})

Since AB � C , the correctness condition gives us

∀AState; CState; �u? : �T ; CState ′ • R ∧ C ⇒ (∃AState ′ • R′ ∧ AB )
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Since P ⇒ (∃ x • P),

∀AState; BState; CState; �u? : �T ; BState ′; CState ′ •
R ∧ BA ∧ C ⇒ (∃AState ′ • R′ ∧ AB ) ∧ (∃BState ′ • BA)

Following the reasoning of Lemma 2 (see Appendix) with the fact that R′ does
not refer to variables of BA,

∀AState; BState; CState; �u? : �T ; BState ′; CState ′ •
R ∧ BA ∧ C ⇒ (∃AState ′; BState ′ • R′ ∧ AB ∧ BA)

Since P ⇒ Q 	 (∃ x • P)⇒ (∃ x • Q) and �u? do not appear in R,

∀AState; BState; CState; BState ′; CState ′ •
R ∧ (BA ∧ C ) \ { �u?} ⇒ (∃AState ′; BState ′ • R′ ∧ (BA ∧ AB) \ { �u?})

�

4.1 Example

The operation Transaction in Market is defined as the composition of Buyer .Buy
and Vendor .Sell , which share the output variable price!. In Section 3.1 we at-
tempted to refine Transaction but failed owing to the fact that the precondition
is altered. We transform the operations Buyer .Buy and Vendor .Sell as described
above. Our new specification (Market2) is illustrated below, where the new op-
erations have been named TransactionBuy and TransactionSell , and where the
fresh input variable is agreed?.

Buyer2
Buyer
TransactionBuy =̂ Buy ∧

[ agreed? : N | price! = agreed? ]

Vendor2
Vendor
TransactionSell =̂ Sell ∧

[ agreed? : N | price! = agreed? ]

Market2

buyer : Buyer2
vendor : Vendor2

Transaction =̂ (buyer .TransactionBuy ∧ vendor .TransactionSell) \ {agreed?}

When we calculate the preconditions for TransactionBuy and TransactionSell
in this version of the specification, we find that they include constraints over
the shared input variable agreed?, and the operations include similar constraints
over the shared output variable price!.
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pre Buyer2.TransactionBuy = pre Buyer .Buy ∧ agreed? ∈ N ∧
agreed? ≤ cash

pre Vendor2.TransactionSell = pre Vendor .Sell ∧ agreed? ∈ N ∧
reserve ≤ agreed? ≤ asking

If we attempt to refine Vendor2 in the same manner as Vendor1 was proposed to
refine Vendor (refer to Section 3.1), by adding the constraint price! = asking to
Vendor2.TransactionSell , we find now that this is prohibited as the precondition
would be strengthened by the additional constraint on agreed?. In essence, the
process of transforming the specification has restricted the possible refinements
of the classes representing the buyer and vendor to only those allowable by their
context.

5 Refinement of Coupling Constraints

Whilst the transformation of Section 4 enables compositional refinement, af-
ter the transformation we are forever restricting possible valid implementations
(refinements) of the specification. This limitation was alluded to in the previ-
ous section: specifically, we cannot further narrow non-determinism over shared
output variable bindings where previously such a refinement may have been pos-
sible. For instance, if a more generous vendor were substituted into the market
example in Section 4.1 that insisted upon accepting only the reserve price, this
would result in a valid compositional refinement. Since proving even this refine-
ment would be impossible after the transformation, it is clearly too restrictive
an approach.

To counteract this limitation we introduce a further transformation that re-
sults in a new operation CouplingAB for each conjunction A ∧ B , where A and B
are in different classes. This operation is responsible for establishing the bindings
for the fresh input variables in the composition. Two properties of CouplingAB

are certainly crucial: it must be compositionally refineable itself; and it must
not interfere with the fact that the operations are already compositionally re-
fineable under Theorems 1 and 2. We define CouplingAB as the conjunction of
the preconditions of the two respective operations after the first transformation.
The inputs �u? introduced by the first transformation, however, are renamed to
outputs.

CouplingAB =̂ [ pre AB ∧ pre BA ][�u!/ �u?]

The Object-Z operator that facilitates the introduction of CouplingAB into the
specification is the parallel composition operator (‖) [8]. This operator equates
(through renaming) outputs in one operation with inputs in the other that share
the same basename, and hides the equated variables. It is intended to model
communication between the two operands. Given that the inputs �u? are renamed
to outputs, the parallel operator allows those outputs to be fed into the inputs
of the composition we are working with:
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Theorem 3. Introduce coupling operation

(AB ∧ BA) \ { �u?} ≡ CouplingAB ‖ (AB ∧ BA)

Proof

(AB ∧ BA) \ { �u?}
≡ ([pre AB ∧ pre BA] ∧ AB ∧ BA) \ { �u?} Op ⇒ [pre Op]
≡ ([pre AB ∧ pre BA][�u!/ �u?] ∧ (AB ∧ BA)[�u!/ �u?]) \ {�u!}
≡ [pre AB ∧ pre BA][�u!/ �u?] ‖ (AB ∧ BA) definition of parallel [8]
≡ CouplingAB ‖ (AB ∧ BA) definition of CouplingAB

�

Since CouplingAB is the conjunction of the preconditions of the operands in-
volved in the original composition, and those preconditions were strengthened
to include the constraints on the shared output variables, it represents the en-
tirety of the coupling constraints of the two operands. The fact that the in-
put variables �u? which are affected by those constraints are renamed to output
variables means that the coupling predicates may be strengthened via normal
refinement processes, which is desirable. The parallel operator hides the com-
municating variables, and thus relaxes the requirement to explicitly hide them
as mandated by Theorem 1. The CouplingAB operation is itself capable of being
compositionally refined, and does not affect the ability of the other operations
to be compositionally refined.

Theorem 4. Compositionally refine coupling

CouplingAB � C under retrieve relation R


CouplingAB ‖ (AB ∧ BA) � C ‖ (AB ∧ BA) under R

Proof
Applicability: The downward simulation proof obligation for applicability is (not-
ing that the pre-state of CouplingAB is AState; BState):

∀AState; BState; CState •
R ⇒ (pre (CouplingAB ‖ (AB ∧ BA)) ⇔ pre (C ‖ (AB ∧ BA)))

For all pairs of states from AState; BState and CState for which R does not
hold, the quantified expression becomes true owing to the implication. For all
other pairs of states (i.e., those where R holds), we need to show the following
is true.

pre (CouplingAB ‖ (AB ∧ BA))⇔ pre (C ‖ (AB ∧ BA)))

Since CouplingAB � C , for pairs of states related by R the applicability condition
gives us

pre CouplingAB ⇔ pre C
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Hence,

pre CouplingAB ∧ pre CouplingAB ⇔ pre C ∧ pre CouplingAB

By definition of pre [2] and noting that the only post-state variables are �u!,

(∃ �u! : �T • CouplingAB ∧ CouplingAB )⇔ (∃ �u! : �T • C ∧ CouplingAB )

By definition of CouplingAB ,

(∃ �u! : �T • CouplingAB ∧ [pre AB ∧ pre BA][�u!/ �u?])
⇔
(∃ �u! : �T • C ∧ [pre AB ∧ pre BA][�u!/ �u?])

Let P ′ and Q ′ be the declarations of the post-state variables of AB and BA

respectively. By the definition of pre [2],

(∃ �u! : �T • CouplingAB ∧ (∃P ′ • AB ∧ ∃Q ′ • BA)[�u!/ �u?])
⇔
(∃ �u! : �T • C ∧ (∃P ′ • AB ∧ ∃Q ′ • BA)[�u!/ �u?])

By Lemma 2 (see Appendix),

(∃ �u! : �T • CouplingAB ∧ (∃P ′; Q ′ • AB ∧ BA)[�u!/ �u?])
⇔
(∃ �u! : �T • C ∧ (∃P ′; Q ′ • AB ∧ BA)[�u!/ �u?])

Since variables declared in P ′; Q ′ do not appear in CouplingAB and C ,

(∃ �u! : �T ; P ′; Q ′ • CouplingAB ∧ (AB ∧ BA)[�u!/ �u?])
⇔
(∃ �u! : �T ; P ′; Q ′ • C ∧ (AB ∧ BA)[�u!/ �u?])

By the definition of ‖ [8],

(∃P ′; Q ′ • CouplingAB ‖ (AB ∧ BA))⇔ (∃P ′; Q ′ • C ‖ (AB ∧ BA))

By the definition of pre [2] (noting that �u! is hidden by the parallel operator),

pre (CouplingAB ‖ (AB ∧ BA))⇔ pre (C ‖ (AB ∧ BA)) �

Correctness: The downward simulation proof obligation for correctness is (noting
that the only post-state variables of CouplingAB and C are the outputs �u!):

∀AState; BState; CState •
R ∧ (C ‖ (AB ∧ BA))⇒ (∃ �u! : �T • R′ ∧ (CouplingAB ‖ (AB ∧ BA)))
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Since CouplingAB � C , the correctness condition gives us

∀AState; BState; CState; �u! : �T • R ∧ C ⇒ (∃ �u! : �T • R′ ∧ CouplingAB )

Hence,

∀AState; BState; CState; �u! : �T •
R ∧ C ∧ (AB ∧ BA))[�u!/ �u?]⇒

(∃ �u! : �T • R′ ∧ CouplingAB ) ∧ (AB ∧ BA)[�u!/ �u?]

Since �u! do not appear free in R′,

∀AState; BState; CState; �u! : �T •
R ∧ C ∧ (AB ∧ BA))[�u!/ �u?]⇒

R′ ∧ (∃ �u! : �T • CouplingAB ) ∧ (AB ∧ BA)[�u!/ �u?]

Since (AB ∧ BA)[�u!/ �u?]⇒ CouplingAB and P ⇒ (∃ x • P),

∀AState; BState; CState; �u! : �T •
R ∧ C ∧ (AB ∧ BA))[�u!/ �u?]⇒

R′ ∧ CouplingAB ∧ (AB ∧ BA)[�u!/ �u?]

Since P ⇒ Q 	 (∃ x • P)⇒ (∃ x • Q),

∀AState; BState; CState •
(∃ �u! : �T • R ∧ C ∧ (AB ∧ BA))[�u!/ �u?])⇒

(∃ �u! : �T • R′ ∧ CouplingAB ∧ (AB ∧ BA)[�u!/ �u?])

Since �u! do not appear free in R and R′, by definition of ‖ [8],

∀AState; BState; CState •
R ∧ (C ‖ (AB ∧ BA))⇒ R′ ∧ (CouplingAB ‖ (AB ∧ BA))

Since P ⇒ Q 	 P ⇒ (∃ x • Q),

∀AState; BState; CState •
R ∧ (C ‖ (AB ∧ BA))⇒ (∃ �u! : �T • R′ ∧ (CouplingAB ‖ (AB ∧ BA)))

�
Theorem 5. Compositional refinement with coupling

AB � CB under retrieve relation R


CouplingAB ‖ (AB ∧ BA) � CouplingAB ‖ (CB ∧ BA) under R

Proof

CouplingAB ‖ (AB ∧ BA)
≡ (AB ∧ BA) \ { �u?} Theorem 3
� (CB ∧ BA) \ { �u?} Theorem 2
≡ CouplingCB ‖ (CB ∧ BA) Theorem 3

Since AB � CB , the applicability condition stipulates that preAB ⇔ pre CB ,
therefore CouplingCB ≡ CouplingAB . �
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5.1 Example

To demonstrate the effectiveness of introducing and performing refinements of
a Coupling operation, we augment the Transaction operation from the Market
example with the coupling operation Bargain.

Market3

buyer : Buyer2
vendor : Vendor2

Bargain
agreed ! : N

agreed ! ≤ buyer .cash
vendor .reserve ≤ agreed ! ≤ vendor .asking

Transaction =̂ Bargain ‖ (buyer .TransactionBuy ∧ vendor .TransactionSell)

Bargain is defined using the preconditions of the Buy and Sell operations, but
the typing constraints are not included in the predicate of the operation because
they are implicitly enforced in the declarations [8].

There is one problem that arises as a result of introducing the Bargain opera-
tion to the specification (and Coupling operations in general to any specification)
— it necessitates direct access to state variables of external classes. This imme-
diately prohibits future data refinements of any externally referenced variables
in these classes [2]. The solution to this problem is to introduce a dedicated
accessor operation, local to the external class, to insulate the state from this
dependency. Buyer3 and Vendor3 include such operations6.

Buyer3
Buyer2
GetCash =̂ [ cash! : N | cash! = cash ]

Vendor3
Vendor2
GetAsking =̂ [ asking ! : N | asking ! = asking ]
GetTakings =̂ [ takings! : N | takings! = takings ]
GetReserve =̂ [ reserve! : N | reserve! = reserve ]

We can now replace the references to the state variables with input variables
to match the output variables of the accessor operations. Using parallel, we
communicate the values of these variables into the Bargain operation.
6 We take the view that the interface of a class can be widened under refinement [5].
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Market4

buyer : Buyer3
vendor : Vendor3

Bargain
cash?, asking?, takings?, reserve? : N
agreed ! : N

agreed ! ≤ cash?

reserve? ≤ agreed ! ≤ asking?

Transaction =̂ ((buyer .GetCash ∧ vendor .GetAsking ∧ vendor .GetTakings
∧ vendor .GetReserve) ‖ Bargain) ‖ (buyer .Buy ∧ vendor .Sell)

There is no possibility of compositionality problems arising through the introduc-
tion of these accessor operations, as these operations cannot possibly be refined.
This is due to the fact that, by equating the output variable directly to a state
variable, there is no non-determinism.

The refinement that was disallowed at the beginning of Section 5 can now
be applied to Bargain; that is, the refinement where the vendor always acts
generously by only accepting the reserve price.

Market5
Market4
Bargain =̂ [ reserve? = agreed ! ]

Since this is a valid refinement of Bargain, our theory has shown that this will
result in a valid refinement of the entire system.

6 Conclusion and Future Work

In this paper, we have introduced a methodology for compositional class re-
finement in Object-Z. In general, class refinement is not compositional due to
the possibility of constraints on shared outputs when operations from different
classes are conjoined. To overcome this, our methodology transforms an Object-Z
specification into an equivalent one in which all class refinements are composi-
tional.

The methodology considers only conjunction between operations from differ-
ent classes. It is shown in [8], that all binary operation operators in Object-Z but
one can be rewritten in terms of conjunction, or in terms of Z constructs which
can be rewritten in terms of conjunction [11]. The exception is the choice oper-
ator. This operator does not cause compositionality problems, however, since it
requires only one of the combined operations be satisfied for the entire operation
itself to be satisfied. Hence, the methodology is general enough to use with any
Object-Z specification.
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Our goal is to combine the methodology with previous work on structurally
transforming Object-Z specifications to resemble object-oriented designs [5,6].
The combination will enable us to refine Object-Z specifications to the exact
structure of an object-oriented program; so that there is a direct mapping, not
only between classes, but also between each operation in the specification and
program. This will encourage refinement to a low-level of abstraction and make
the final step from specification to code less error-prone.
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Appendix

Lemma 1. Distribution of pre

pre ((AB ∧ BA) \ { �u?}) ≡ (pre AB ∧ pre BA) \ { �u?}
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Proof
Let P ′ and Q ′ be the declarations of the post-state variables of AB and BA

respectively.

pre ((AB ∧ BA) \ { �u?})
≡ ∃ �u? : �T • (∃P ′; Q ′ • AB ∧ BA) definition of pre [2] and hiding [8]
≡ ∃ �u? : �T • (∃P ′ • AB) ∧ (∃Q ′ • BA) Lemma 2
≡ (pre AB ∧ pre BA) \ { �u?} definition of pre [2] and hiding [8]

�

Lemma 2. Distribution of ∃

∃P ′; Q ′ • AB ∧ BA ≡ (∃P ′ • AB) ∧ (∃Q ′ • BA)

where P ′ and Q ′ are the declarations of the post-state variables of AB and BA

respectively.

Proof
Let S ′ and T ′ be the declarations of post-state variables of AB and BA respec-
tively, other than the shared output variables �v !.

∃P ′; Q ′ • AB ∧ BA

≡ ∃ �v ! : �T • ∃S ′; T ′ • AB ∧ BA

≡ ∃ �v ! : �T • (∃S ′ • AB) ∧ (∃T ′ • BA)
≡ (∃P ′ • AB) ∧ (∃Q ′ • BA) �v ! = �u? in AB and BA

�
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Abstract. The B method is a well known approach to the formal specifi-
cation and development of sequential computer programs. Inspired by ac-
tion systems, the B method has evolved to incorporate system modelling
and distributed system development. This extension is called Event-B.
Even though several of the structuring mechanisms of the original B
method are absent from Event-B, the desire to define and maintain struc-
tured data persists. We propose the introduction of records to Event-
B for this purpose. Our approach upholds the refinement principles of
Event-B by allowing the stepwise development of records too.

1 Introduction

The Praxis1 case study of the RODIN project is a (subset of a) VDM devel-
opment of an air traffic control display system (CDIS) undertaken by Praxis in
1992. One of the objectives of the case study is to drive the RODIN methodology,
including Event-B itself [7]. CDIS is currently being redeveloped using Event-B
and existing B tool support. The motivating feature of the case study is its size,
and the challenge is to develop techniques for constructing large specifications
in general so that the functionality of the overall system can be understood by
everyone involved in a project of this kind (a criticism of the original CDIS
specification).

Although the case study does not aim to construct a translation from VDM
to Event-B, there are several advantages to preserving the VDM record struc-
ture. In particular, it serves to organise a vast amount of structured data. So
it is worthwhile investigating how records (with arbitrary field types) can be
incorporated in Event-B. More generally, however, we have identified the bene-
fits of incorporating additional subtyping/inheritance-like properties of records
to enable their stepwise development through refinement, and to allow better
conceptual modelling during the early stages of an Event-B development. In
order to address the challenges of CDIS, this allows us to start with a very
abstract/generic view of the system and, through refinement, introduce airport-
specific details later in the development. Hence, the project members can choose
a suitable level of abstraction to view the system.
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Our proposal does not require any changes to the semantics of Event-B, al-
though we propose an extension to its syntax.

After we have given an introduction to Event-B, we give a brief overview of
records (composites) in VDM. We then show how records can be modelled using
existing B constructs, namely SETS, CONSTANTS and PROPERTIES.
Along the way, we propose some syntactic sugar to make such definitions more
succinct. Our intention is to incorporate this syntax into the Event-B language,
thereby eliminating the need to define an unsugared version manually. We then
introduce two forms of record refinement: record extension and record subtyping.
An example is given to illustrate the use of record refinement in a development,
which includes a novel use of record refinement to enable the interface extension
of an event. Finally, we discuss other issues that arise from our approach. This
example demonstrates the refinement techniques currently being used in the
CDIS case study.

Note that open source tools supporting Event-B are currently under construc-
tion as part of the RODIN project. However, by writing stylised specifications,
existing B tools such as Atelier B [3] and the B Toolkit [5] can be applied to
Event-B specifications.

2 Event-B

An abstract Event-B specification comprises a static part called the context, and
a dynamic part called the machine. The machine has access to the context via
a SEES relationship. All sets, constants, and their properties are defined in
the context. The machine contains all of the state variables. The values of the
variables are set up using the INITIALISATION clause, and values can be
changed via the execution of events. Ultimately, we aim to prove properties of the
specification, and these properties are made explicit using the INVARIANT
clause. The tool support generates proof obligations which must be discharged
to verify that the invariant is maintained.

Events are specialised B operations [1]. In general, an event E is of the form

E =̂ WHEN G(v) THEN S (v) END

where G(v) is a Boolean guard and S (v) is a generalised substitution (both of
which may be dependent on state variable v)2. The guard must hold for the
substitution to be performed (otherwise the event is blocked). There are three
kinds of generalised substitution: deterministic, empty, and non-deterministic.
The deterministic substitution of a variable x is an assignment of the form
x := E (v), for expression E , and the empty substitution is skip. The non-
deterministic substitution of x is defined as

ANY t WHERE P(t , v) THEN x := F (t , v) END

Here, t is a local variable that is assigned non-deterministically according to the
predicate P , and its value is used in the assignment of x via the expression F .
2 The guard is omitted if it is trivially true.
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Note that in this paper we abuse the notation somewhat by allowing events to
be decorated with input and output parameters (and preconditions to type the
input parameters) in the style of classical B [1].

In order to refine an abstract Event-B specification, it is possible to refine
the model and context separately. Refinement of a context consists of adding
additional sets, constants or properties (the sets, constants and properties of the
abstract context are retained).

Refinement of existing events in a model is similar to refinement in the B
method: a gluing invariant in the refined model relates its variables to those of
the abstract model. Proof obligations are generated to ensure that this invariant
is maintained. In Event-B, abstract events can be refined by more than one
concrete event. In addition, Event-B allows refinement of a model by adding new
concrete events on the proviso that they cannot diverge (i.e. execute forever).
This condition ensures that the abstract events can still occur. Since the concrete
events operate on the state variables of the refined model, they must implicitly
refine the abstract event skip.

3 VDM Composites

A composite type consists of a name followed by a list of component (field)
names, each of which is accompanied by its type. In general, this looks like:

type name :: component name1 : component type1

...
component namen : component typen

One can see that this resembles record declarations in many programming lan-
guages. However, it is possible to constrain the type of a composite further by
including an invariant for the values of the components. Note that the nature of
invariants in VDM is different from invariants in Event-B: invariants in Event-B
have to be proven, whilst in VDM they are enforced. State in VDM is declared
as a special kind of record whose components are the state variables which can
be accessed and modified via operations (functions having side effects on the
state).

Even though we have focused on VDM composite types specifically, record-
like structures are also present in other formal notations (for example, composite
data types in Z schemas [12], or signatures in Alloy [2]).

4 A Set-Based Approach in Event-B

This approach attempts to mimic the record type definitions of VDM by using
the SETS, CONSTANTS and PROPERTIES clauses of an Event-B context.
One of the motivations of this work is to enable a stepwise development of
complex record structures (in the spirit of refinement) by introducing additional



224 N. Evans and M. Butler

CONTEXT Func
SETS R ; A ; B
CONSTANTS r1 , r2
PROPERTIES

r1 ∈ R → A ∧
r2 ∈ R → B ∧
r1 ⊗ r2 ∈ R →→ A × B

END

Fig. 1. A simple record type

fields as and when they become necessary. This is also comparable to inheritance
in object-oriented programming in which classes are restricted or specialised by
introducing additional attributes.

Consider the following VDM composite type declaration R

R :: r1 : A
r2 : B

That is, R is a record with two fields, named r1 and r2, of type A and B
respectively. In B, we can model this by declaring three deferred sets R, A and
B in the SETS clause. This is shown in Figure 1 in a context named Func.
The sets A and B correspond to the types A and B in the declaration and,
as such, these could be replaced by specific B types (such as NAT ), or could
themselves be other record types. Note that recursive record types are not part
of this proposal, although we are investigating this for future work.

The set R represents the record type that we are trying to specify. We can
think of this set as representing all of the potential models of the record type.
Since we are unaware of the appropriate model for the record, because we may
want to refine it during later stages, this set remains deferred until we are sure
that we do not want to refine it any further. Instead, we can specify properties
of the set within the PROPERTIES clause.

Two accessor functions are declared in the CONSTANTS clause to retrieve
the fields of an R record instance: r1 retrieves the value of the field of type A, and
r2 retrieves the value of the field of type B . The properties of these functions are
given in the PROPERTIES clause. In particular, note that for every pair of
values from A and B there is a record instance (i.e. a member of R) whose fields
have these values. This is expressed succinctly using Event-B’s direct product
operator ⊗ and the surjective mapping →→, where

r1⊗ r2 = { (x , (y, z )) | (x , y) ∈ r1 ∧ (x , z ) ∈ r2 }

This approach to modelling composites is quite verbose for a two-field record.
Instead, we propose some syntactic sugar. Within the SETS clause, we propose
composite-like declarations for records. Hence, for this example, we would allow an
equivalent context as shown in Figure 2. We choose to put such definitions in the
SETS clause because this clause is most closely associated with type definitions.
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CONTEXT Func
SETS

R :: r1 : A,
r2 : B

END

Fig. 2. Syntactic sugar for record types

A machine that SEES this context may contain state variables of type R.
Such variables hold an instance of the record, and events can be defined to
update the values of their fields using the accessor functions. The structure of
these events follows a definite pattern: non-deterministically choose an instance
of the record type such that its fields have certain values. For example, consider
the event in Figure 3 that changes the r1 field of a variable r of type R with a
value x . The new value y is chosen so that its r1 value is equal to x , and its r2
value remains unchanged. It is important to state explicitly which fields do not
change, otherwise they will be assigned non-deterministically.

Update r1 of r ( x ) =̂
ANY y WHERE

y ∈ R ∧
r1 ( y ) = x ∧
r2 ( y ) = r2 ( r )

THEN
r := y

END

Fig. 3. A record update operation

Before we proceed to consider refinement, it is worth mentioning an alternative
approach which, under suitable conditions, individual state variables are used
to model the fields of a record directly. The approach in [4] uses the structuring
mechanisms of classical B (in particular, the INCLUDES mechanism) and
naming conventions to model the record structure. Their approach resulted from
an attempt to construct a translation from VDM to B. A shortcoming of their
approach is that it would be impossible to perform parallel updates of ‘fields’ that
reside in the same machine (a constraint imposed by INCLUDES). Although
renaming can be employed to re-use such definitions, we feel that our approach
(with its syntactic sugar) gives a representation that is more suitable at an
abstract level; and it is also amenable to parallel updates. More fundamentally,
however, renaming and machine inclusion are not available in Event-B.

It would be possible to use variables instead of constants to model accessor
functions. In some way this would simplify the approach as updates to a field
could be specified more succinctly. For example, if r1 and r2 were specified as
variables, then the update in Figure 3 could be specified as

Update r1 of r(x ) =̂ r1(r) := x
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The variable r2 is not modified by this assignment. The problem with using vari-
ables rather than constants for accessor functions is that it does not work in a dis-
tributed setting. In a distributed development we wish to avoid designs in which
variables are globally available since maintaining a consistent global view of vari-
ables is too much effort. Constants, on the other hand, can easily be globally agreed
since they never change. Using constants as accessor functions means we specify
a fixed way of accessing fields of a record that is globally agreed.

5 Refining Record Types

We now investigate the effect of refining the record type R defined in Section 4
by introducing a new accessor function. There are two ways of doing this: we can
either ‘extend’ R by adding the accessor function directly, or we can declare a
new subtype of R (which we call Q), on which the accessor function is declared.
Since the latter refinement will add further constraints to R, Q ’s set of potential
models will be a subset of R’s. In this example, both kinds of refinement have
an additional field r3 of type C . For a simple record extension, we propose a
syntax as follows:

EXTEND R WITH r3 : C

For subtyping, we propose the following syntax:

Q SUBTYPES R WITH r3 : C

Their verbose definitions are shown in Figures 4 and 5 respectively. The pro-
posed syntax means that the developer does not have to interact with the verbose
definitions directly. Notice that these definitions are both refinements of the con-
text machine given in Figure 1. Hence, the properties declared in the refinement
are in addition to those of the original machine. The final property in Figure 4
states that all possible field combinations are still available in R, and the cor-
responding property in Figure 5 states that all possible field combinations are
available in Q (without adding any further constraints to R).

Subtyping of this kind can be seen in programming languages such as Niklaus
Wirth’s Oberon [11], and specification languages such as Alloy [2]. The accessors
r1 and r2 can still be applied to objects of type Q in Figure 5, but r3 can only
be applied to objects of type Q (and any of its subtypes).

CONTEXT FuncR
REFINES Func
SETS C
CONSTANTS r3
PROPERTIES

r3 ∈ R → C ∧
( r1 ⊗ r2 ⊗ r3 ) ∈ R →→ A × B × C

END

Fig. 4. An extended record type
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CONTEXT FuncR
REFINES Func
SETS C
CONSTANTS Q , r3
PROPERTIES

Q ⊆ R ∧
r3 ∈ Q → C ∧
( r1 ⊗ r2 ⊗ r3 ) ∈ Q →→ A × B × C

END

Fig. 5. A record subtype

Depending on whether extension or subtyping is used, a certain amount of
care is required when refining the events associated with the records. The event
Update r1 of r shown in Figure 3 is still applicable in the refined context
of Figure 4, even though it would assign r ’s new r3 field non-deterministically.
Refinement could then be used to assign something meaningful to this field.
However, using the refined context of Figure 5, if the model is refined so that
r is defined to be of type Q then this event is no longer applicable without
modification because the quantified variable y ranges over Q ’s superset R. The
ANY clause would need to be strengthened so that it chooses an element of
Q (rather than R). Note that the surjectivity constraints of a record extension
are consistent with the constraints of the original record definition. Indeed, the
original constraints follow from those of the extension, i.e.:

(r1⊗ r2⊗ r3) ∈ R →→ A× B × C ⇒ (r1⊗ r2) ∈ R →→ A× B

5.1 Other Possible Refinement Combinations

In addition to a single chain of record refinements, which is most easily achieved
by record extension, the subtyping of record types presented above permits other,
less restrictive, kinds of development.

The diagrams shown in Figure 6 give two possible extension hierarchies. Each
of these is meaningful, and we would like them to be available in Event-B. Hence,
records should not constrain the structuring of context machines.

R

Q Q’

(i)

X

Z

Y Y’

(ii)

Fig. 6. Possible Record Hierarchies
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In Figure 6(i), two different sets, Q and Q ′, subtype the same record type
R. That is, Q and Q ′ have the common ancestor R, and both are defined to be
subsets of R. (The relationship between Q and Q ′ in this case is left unspecified,
but we can impose an extra property to ensure they are disjoint if necessary.) In
(ii), the record type Z combines the record subtypes Y and Y ′. In this situation,
the model for Z must be a model for both Y and Y ′, and the accessor functions
of both Y and Y ′ can be applied to objects of type Z . The least constrained set
of models that fulfils this relationship is the intersection of Y and Y ′. Hence,
they should not be disjoint. Syntactically, the fields belonging to a record of type
Z (prior to any extensions to Z ) are the union of the fields of Y and Y ′ 3.

6 One-Field Variables

In section 5, we have seen how existing record types can be refined to give
new record types with more complex structure. At the most abstract level, the
specifier might be unaware that a simple (non-record) state variable requires
a record structure at a later stage in the development. For example, we may
declare a variable v to be of type VALUE , but then decide that for every value
we need to associate some other characteristic (say, a format). We would then
need to define a record type

FVALUE :: val : VALUE ,
format : FORMAT

and declare a concrete variable fv of type FVALUE . In order to link the variables
v and fv in a refinement, the gluing invariant must link the val component of fv
with v . In this case, we have

v = val(fv)

Hence, at the most abstract level, we are not expected to identify all record
types. These can be introduced during the refinement stages.

7 Extension Example

In order to motivate the use of record types, we present an example to show how
a very simple abstract specification can be refined into a model with structured
objects. We consider an electronic mail delivery system in which users (with
identities) can send and receive messages. We begin with a very abstract view
of the system. The context (which we call Context) declares two sets User and
Message, and one record type Send interface. This is shown in Figure 7.

The corresponding machine (which we call Email) declares a variable mailbox ,
which maps users to their respective set of messages. We specify two events: send
and read. These are shown in Figure 8. At this stage, the send event requires
two parameters that represent the message to be sent and the intended recipient.
3 We assume there are no name clashes between the accessors of Y and Y ′.
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CONTEXT Context
SETS

User ; Message ;
Send interface :: dest : User ,

mess : Message
END

Fig. 7. The Abstract Context

However, during the refinement stages send will require additional parameters.
Interface extension is not possible in the current B tools, but by using record
types instead we can extend the interface of send via record extension. The
record type Send interface is declared for this purpose. Note that this is a very
abstract representation of the system because the send operation magically
deposits the message in the appropriate user’s mailbox. Subsequent refinements
will model how this is actually achieved. The read event non-deterministically
retrieves a message from the input user’s mailbox and returns it as an output.

As a first refinement we begin to introduce more detail in the form of a more
realistic architecture. This is depicted in Figure 9. Each user is associated with a
mail server that is responsible for forwarding mail and retrieving mail from the
middleware. As part of this refinement, we introduce a record type to structure
the data passing from senders to receivers via the communications medium. The
record type called Package is declared using our proposed syntax in the context

MACHINE Email
SEES Context
VARIABLES mailbox
INVARIANT mailbox ∈ User → P ( Message )
INITIALISATION mailbox := User × { ∅ }

OPERATIONS
send ( ii ) =̂
PRE ii ∈ Send interface THEN

mailbox ( dest ( ii ) ) := mailbox ( dest ( ii ) ) ∪ { mess ( ii ) }
END ;

mm ←− read ( uu ) =̂
PRE uu ∈ User THEN

ANY xx WHERE
xx ∈ Message ∧ xx ∈ mailbox ( uu )

THEN
mm := xx

END
END

END

Fig. 8. The Abstract Machine
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MAIL SERVER MAIL SERVER

MIDDLEWARE

...................................

Fig. 9. Architecture for the e-mail system

CONTEXT Context2
REFINES Context
SETS

Server ;
Package :: destination : Server ,

recipient : User ,
contents : Message ;

EXTEND Send interface WITH source : User
CONSTANTS

address
PROPERTIES

address ∈ User → Server
END

Fig. 10. First refined context

refinement named Context2. This is shown in Figure 10. Note that in addition to
Package we declare a new set Server which represents the different mail servers,
and we declare a function address that returns the (unique) server hosting a
particular user. We also extend Send interface by adding a new field source
that contains the identities of the senders.

The refined state comprises new variables sendbuf , receivebuf and middleware.
The variable middleware holds the packages on the communications medium,
and each mail server has separate buffers for messages waiting to be sent and
messages waiting to be read (i.e. mappings from Server to P ( Package )). The
refined event send constructs packages and adds them to the server associated
with the sender. The event read selects packages from a user’s server and out-
put’s their contents. These are shown in Figure 11.

As part of this Event B refinement, we introduce two new events forward
(which passes packages from servers to the middleware) and deliver (which takes
packages from the middleware and adds them to the appropriate server’s receive
buffer). Note that these events (also shown in Figure 11) will not collectively
diverge because only a finite number of packages will be waiting to be transferred.

The gluing invariant that links the refined state with the abstract state is
dictated by the need to preserve outputs. Since we are refining from simple mes-
sages to packages, we use the technique given in Section 6. In the abstract model,
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send ( ii ) =̂
PRE ii ∈ Send interface THEN

ANY ss , pp WHERE
ss ∈ Server ∧ pp ∈ Package ∧
ss = address ( source ( ii ) ) ∧
destination ( pp ) = address ( dest ( ii ) ) ∧
recipient ( pp ) = dest ( ii ) ∧
contents ( pp ) = mess ( ii )

THEN
sendbuf ( ss ) := sendbuf ( ss ) ∪ { pp }

END
END ;

mm ←− read ( uu ) =̂
PRE uu ∈ User THEN

ANY ss , pp WHERE
ss ∈ Server ∧ pp ∈ Package ∧
ss = address ( uu )
pp ∈ receivebuf ( ss ) ∧
recipient ( pp ) = uu

THEN
mm := contents ( pp )

END
END ;

forward =̂
ANY ss , pp WHERE

ss ∈ Server ∧ pp ∈ Package ∧
pp ∈ sendbuf ( ss )

THEN
sendbuf ( ss ) := sendbuf ( ss ) − { pp } ‖
middleware := middleware ∪ { pp }

END ;

deliver =̂
ANY ss , pp WHERE

ss ∈ Server ∧ pp ∈ Package ∧
pp ∈ middleware ∧
destination ( pp ) = ss

THEN
middleware := middleware − { pp } ‖
receivebuf ( ss ) := receivebuf ( ss ) ∪ { pp }

END

Fig. 11. First refinement events

the output from read is obtained from the input user’s mailbox, whereas it is
retrieved from receivebuf in the refined model. We link the contents field of the
packages in receivebuf with mailbox . Hence, we introduce the following invariant
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∀ s , u, p.(s ∈ Server ∧ u ∈ User ∧ p ∈ Package ⇒
p ∈ receivebuf (s) ∧ recipient(p) = u ⇒ contents(p) ∈ mailbox (u))

This fulfils the proof obligation derived from the output of read but, since the
event deliver adds packages to receivebuf , we must strengthen the invariant as
follows

∀ u, p.(u ∈ User ∧ p ∈ Package ⇒
p ∈ middleware ∧ recipient(p) = u ⇒ contents(p) ∈ mailbox (u))

That is, in addition to the contents of the packages in receivebuf , the contents
of the packages on the medium must also be elements of mailbox . By attempt-
ing to discharge the proof obligations once more, we discover that we have to
strengthen the invariant further

∀ s , u, p.(s ∈ Server ∧ u ∈ User ∧ p ∈ Package ⇒
p ∈ sendbuf (s) ∧ recipient(p) = u ⇒ contents(p) ∈ mailbox (u))

This is sufficient to discharge all of the proof obligations. Hence, we have shown
that the contents of any package in transit must be an element of the correspond-
ing abstract mailbox. Of course, it would be possible to strengthen the invariant
further by stating other properties of the system, but this is not pursued here.

As a second refinement, we extend Package with a priority field. In addition,
we extend Send interface with a field pri . These refinements are shown (using
our proposed notation) in Figure 12.

CONTEXT Context3
REFINES Context2
SETS

EXTEND Package WITH priority : BOOL ;
EXTEND Send interface WITH pri : BOOL

END

Fig. 12. The second context refinement

This refinement specifically affects the order in which packages are moved onto
the middleware: packages with priority TRUE take precedence over packages
with priority FALSE . In order to model this, we refine the events send and
forward (as shown in Figure 13). The send event is refined because we have
extended its interface to incorporate a priority field (named pri). Using this
extension to Send interface, we can assign priorities to the refined packages.
The refinement of forward is an example of the refinement of a single event into
two events. The first refined event (also called forward) only selects packages
with high priority (i.e. those packages whose priority field is TRUE ). The second
event, called forward2 selects low priority packages, but only if there are no high
priority packages at the same server. Hence, high priority packages are forwarded
before low priority packages. Since this refinement does not introduce any new
variables, no gluing invariant is required.
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send ( ii ) =̂
PRE ii ∈ Send interface THEN

ANY ss , pp WHERE
ss ∈ Server ∧ pp ∈ Package
ss = address ( source ( ii ) ) ∧
destination ( pp ) = address ( dest ( ii ) ) ∧
recipient ( pp ) = dest ( ii ) ∧
contents ( pp ) = mess ( ii ) ∧
priority ( pp ) = pri ( ii )

THEN
sendbuf ( ss ) := sendbuf ( ss ) ∪ { pp }

END
END ;

forward =̂
ANY ss , pp WHERE

ss ∈ Server ∧
pp ∈ Package ∧
pp ∈ sendbuf ( ss ) ∧
priority ( pp ) = TRUE

THEN
sendbuf ( ss ) := sendbuf ( ss ) − { pp } ‖
middleware := middleware ∪ { pp }

END ;

forward2 =̂
ANY ss , pp WHERE

ss ∈ Server ∧
pp ∈ Package ∧
pp ∈ sendbuf ( ss ) ∧
∀ qq . ( qq ∈ sendbuf ( ss ) ⇒ priority ( qq ) = FALSE )

THEN
sendbuf ( ss ) := sendbuf ( ss ) − { pp } ‖
middleware := middleware ∪ { pp }

END

Fig. 13. The second refinement

8 Subtyping Refinement

The example could be refined further by specialising Package using subtyping.
Using this technique, it is possible to refine Package in more than one way (see
Figure 6(i)) so that different kinds of packages are dealt with in different ways.
For example, consider the following subtype declarations

AirportPackage SUBTYPES Package WITH ...
RunwayPackage SUBTYPES Package WITH ...

It would then be possible to specialise the servers to meet the needs of the
different kinds of package. On the other hand, we would be able to continue
to use the middleware unaltered because it would simply treat both subtypes
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uniformly (i.e. as objects of type Package). In the CDIS case study, this technique
is being used to model VDM union types in Event-B.

9 Wider Issues

Although we have not set out with the aim of addressing object oriented mod-
elling or programming approaches, there is a link between our work and various
formal approaches to object oriented modelling and programming. Directly rele-
vant to our work is the UML-B approach of Snook and Butler [10] which defines
a mapping from a UML profile to B. In UML-B, class attributes and associations
are modelled in B as accessor functions on object instance identifiers, i.e., if a
is an attribute of type A of class C , then a is modelled in the B notation as a
function a ∈ C → A. UML-B effectively combines our form of subtyping with
extension to represent class inheritance. In our approach accessor functions are
represented as constants whereas in UML-B attributes and associations can be
declared as either constant or variable and the corresponding accessor functions
are in turn either constants or variables.

Naumann’s work [8] is a good example of a relevant formal framework for
reasoning about object oriented programs. This uses records and record sub-
typing to represent objects in an object oriented programming language. There
are two significant differences from our work. Firstly, Naumann allows record
fields to be methods thus modelling method overriding and dynamic dispatch
of method calls, an important feature of object oriented programming. We do
not address overriding of events rather we focus on refinement. Secondly, Nau-
mann uses record constructors and a rich notion of subtyping for record types as
is commonly found in formal approaches to object oriented programming. Our
notion of subtyping is simply subsetting of the deferred B type used to model
records and is independent of any subtyping of the fields. This means we avoid
having to address the issue of covariance versus contravariance of method ar-
guments [6]. Naumann’s language is influenced by Oberon [11] which provides
inheritance through record extension.

10 Conclusion

Without changing its semantics, we have proposed a method of introducing
record types in Event-B that is amenable to refinement. Our experience in the
redevelopment of CDIS has identified the benefits of such an approach. In partic-
ular, it allows us to start with a very abstract model and defer the introduction
of airport-specific information until later in the development.

Our example has demonstrated how it is possible to specify an abstract view
of a system with a very abstract representation of the data that it handles. In
addition to the existing refinement techniques of Event-B, our refinements show
how it is possible to introduce structured data in a stepwise manner in order to
progress towards the formal design and implementation of the system.
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During the implementation phase of a B development, it may be necessary
to describe how records are to be implemented. Since a record is defined as a
deferred set, a decision must be made to give an explicit representation of the
set. In addition, fields of such records are declared as constant functions whose
algorithmic behaviour must be given as part of the implementation.

Of course, it is not the case that the records within a B development will
necessarily be implemented as records in program code - for example, a record
could be used to model structured data such as XML messages. However, there
is provision for the implementation of record-like structures using existing B
technology: SYSTEM definitions of BASE machines are macros for the imple-
mentation (using B libraries) of database style structures. (See [9] for a detailed
description of BASE machines and the common B libraries.) The similarities be-
tween our proposed syntax and the syntax of BASE machines suggest that they
provide a natural progression from the specification and refinement of records
to their implementation, although this has yet to be investigated.
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Abstract. The standard operation refinement ordering is a kind of “meet of op-
posites”: non-determinism reduction suggests “smaller” behaviour while increase
of definition suggests “larger” behaviour. Groves’ factorization of this ordering
into two simpler relations, one per refinement concern, makes it more mathe-
matically tractable but is far from fully exploited in the literature. We present a
pointfree theory for this factorization which is more agile and calculational than
the standard set-theoretic approach. In particular, we show that factorization leads
to a simple proof of structural refinement for arbitrary parametric types and ex-
ploit factor instantiation across different subclasses of (relational) operation. The
prospect of generalizing the factorization to coalgebraic refinement is discussed.

Keywords: Theoretical foundations, refinement, calculation, reusable theories.

1 Introduction

Suppose a component s of some piece of hardware fails and needs to be replaced.
Should no exact match be found off the shelf, the maintenance team will have to look
around for compatible alternatives. What does compatibility mean in this context?

Let r be a candidate replacement for s and let the behaviour of both s and r be de-
scribed by state-transition diagrams indicating, for each state a, the set of states reach-
able from a. So both s and r can be regarded as set-valued functions such that, for
instance, component smay step from state a to state b iff b ∈ (s a), failing (or behaving
unexpectedly) wherever s a is the empty set.

The intuition behind r being a safe replacement for s — written s 
 r — is that not
only r should not fail where s does not,

〈∀ a : ∅ ⊂ (s a) : ∅ ⊂ (r a)〉

but also that it should behave “as s does”. Wherever (s a) is nonempty, there is some
freedom for r to behave within such a set of choices: r is allowed be more deterministic
than s. Altogether, one writes

s 
 r def= 〈∀ a : ∅ ⊂ (s a) : ∅ ⊂ (r a) ⊆ (s a)〉 (1)

This definition of machine compatibility is nothing but a simplified version of that
of operation refinement [22], the simplification being that one is not spelling out inputs
and outputs and that, in general, the two machines s and r above need not share the
same state space. This refinement ordering is standard in the discipline of programming
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from specifications [17] and can be found in various guises in the literature — see eg.
references [22,6,23,10] among many others. Reference [6] should be singled out for its
detailed discussion of the lattice-theoretical properties of the 
 ordering.

Despite its wide adoption, this definition of 
 is not free from difficulties. It is a
kind of “meet of opposites”: non-determinism reduction suggests “smaller” behaviours
while increase of definition suggests “larger” behaviours. This “anomaly” makes this
standard notion of refinement less mathematically tractable than one would expect. For
instance, Groves [10] points out that the principal operators in the Z schema calculus
[23] are not monotonic with respect to 
-refinement 1. As a way of (partly) overcoming
this problem, he puts forward an alternative characterisation of refinement based on the
decomposition of 
 into two simpler relations,

s 
 r ≡ 〈∃ t : : s 
pre t ∧ t 
post r〉 (2)

one per refinement concern: 
pre caters for increasing definition while 
post deals with
decreasing non-determinism.

The same partition of the refinement relation is addressed in [14], where previous
work by Frappier [9] on the 
pre ordering is referred to 2. One of the aims of the current
paper is to extend and consolidate the work scattered in [6,10,14], where some results
are presented without proof and others are supported by either sketchy or convoluted
arguments. The idea is to address the subject by reasoning in the pointfree relational
calculus which is at the core of the algebra of programming [5,3]. It should be noted
that both [6,10] already use some form of relational notation, somewhat mixed with the
Z notation in the case of [10] or interpreted in terms of set-valued functions in [6]. The
reasoning, however, is carried out at point-level, either involving predicate logic [10] or
set-theory [6].

We follow [14] in resorting to the pointfree relational calculus (which we will refer to
as the pointfree (PF) transform, see Section 2) all the way through, benefiting from not
only its notation economy but also from its elegant reasoning style. It turns out that the
theory becomes more general and simpler. Elegant expressions replace lengthy formulæ
and easy-to-follow calculations replace pointwise proofs based on case analyses and
natural language explanations.

Groves’ factorization (2) — which is stated in [14] at PF-level simply by writing


pre · 
post = 
 = 
post · 
pre (3)

— is central to our approach. Thanks to this factorization — which we calculate and
justify in a way simpler than in [10] 3 — we are able to justify facts which are stated

1 According to [10,8], the literature is scarce in formally approaching this failure of monotonic-
ity, which seems to be well-known among the Z community since the 1980s. See [8] for recent
work in the area.

2 The �pre/�post factorization was suggested around the same time by one of the authors of the
current paper [20], but the underlying theory was left unexplored.

3 No proofs support the factorization in [14], where it is stated in two steps, under the headings:
reduction of nondeterminism commutes with domain extension and combination of domain
extension and reduction of nondeterminism is refinement.
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but not proved in [6]. Among these, we present a detailed analysis, across the binary
relation taxonomy, of the lattice of specifications proposed by [6].

As will be explained in the conclusions, this research is part of a broader research
initiative aiming at developing a PF-theory for coalgebraic refinement integrating earlier
efforts already reported in [16,4].

Paper Structure. This paper is laid out as follows. Concerning background, Section
2 provides some motivation on the PF-transform and Section 3 presents an overview
of (pointfree) relation algebra. The PF-transformation of (1) is addressed in Section 4.
Groves factorization (3) is calculated in sections 5 and 6. Benefits from such a factor-
ization and a proof of structural refinement based on it are presented in Section 7. The
paper closes by drawing conclusions which lead to plans for future work.

2 On the PF-Transform

The main purpose of formal modelling is to identify properties of real-world situations
which, once expressed by mathematical formulæ, become abstract models which can
be queried and reasoned about. This often raises a kind of notation conflict between
descriptiveness (ie., adequacy to describe domain-specific objects and properties, inc.
diagrams or other graphical objects) and compactness (as required by algebraic reason-
ing and solution calculation).

Classical pointwise notation in logics involves operators as well as variable symbols,
logical connectives, quantifiers, etc. in a way which is hard to scale-up to complex
models. This is not, however, the first time this kind of notational conflict arises in
mathematics. Elsewhere in physics and engineering, people have learned to overcome
it by changing the “mathematical space”, for instance by moving (temporarily) from
the time-space to the s-space in the Laplace transformation. Quoting [15], p.242:

The Laplace transformation is a method for solving differential equations (...) The pro-
cess of solution consists of three main steps:

1st step. The given “hard” problem is transformed into a “simple” equation
(subsidiary equation).

2nd step. The subsidiary equation is solved by purely algebraic manipula-
tions.

3rd step. The solution of the subsidiary equation is transformed back to ob-
tain the solution of the given problem.

In this way the Laplace transformation reduces the problem of solving a differential
equation to an algebraic problem.

The pointfree (PF) transform adopted in this paper is at the heels of this old reasoning
technique. Standard set-theory-formulated refinement concepts — such as eg. (1) —
are regarded as “hard” problems to be transformed into “simple”, subsidiary equations
dispensing with points and involving only binary relation concepts. As in the Laplace
transformation, these are solved by purely algebraic manipulations and the outcome is
mapped back to the original (descriptive) mathematical space wherever required.

Note the advantages of this two-tiered approach: intuitive, domain-specific descrip-
tive formulæ are used wherever the model is to be “felt” by people. Such formulæ are
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transformed into a more elegant, simple and compact — but also more cryptic — alge-
braic notation whose single purpose is easy manipulation.

3 Overview of the Relational Calculus

Relations. Let B A
R�� denote a binary relation on datatypes A (source) and B

(target). We write bRa to mean that pair (b, a) is in R. The underlying partial order
on relations will be written R ⊆ S, meaning that S is either more defined or less
deterministic than R, that is, R ⊆ S ≡ bRa⇒ bSa for all a, b. R ∪ S denotes the
union of two relations and is the largest relation of its type. Its dual is⊥, the smallest
such relation. Equality on relations can be established by ⊆-antisymmetry: R = S ≡
R ⊆ S ∧ S ⊆ R, or indirect equality: R = S ≡ 〈∀ X : : X ⊆ R ≡ X ⊆ S〉.

Relations can be combined by three basic operators: composition (R · S), converse
(R◦) and meet (R ∩ S). R◦ is such that a(R◦)b iff bRa holds. Meet corresponds to
set-theoretical intersection and composition is defined in the usual way: b(R ·S)c holds
wherever there exists some mediating a ∈ A such that bRa ∧ aSc. Everywhere T =
R·S holds, the replacement of T byR·S will be referred to as a “factorization” and that
of R · S by T as “fusion”. (Equation (3) is thus an example of a factorization.) Every

relation B A
R�� admits two trivial factorizations, R = R · idA and R = idB · R

where, for everyX , idX is the identity relation mapping every element ofX onto itself.

Coreflexives and Orders. Some standard terminology arises from the id relation: a

(endo) relation A A
R�� (often called an order) will be referred to as reflexive iff

idA ⊆ R holds and as coreflexive iff R ⊆ idA holds. As a rule, subscripts are dropped
wherever types are implicit or easy to infer.

Coreflexive relations are fragments of the identity relation which model predicates
or sets. The meaning of a predicate p is the coreflexive [[p]] such that b[[p]]a ≡ (b =
a) ∧ (p a), that is, the relation that maps every awhich satisfies p (and only such a) onto
itself. The meaning of a set S ⊆ A is [[λa.a ∈ S]], that is, b[[S]]a ≡ (b = a) ∧ a ∈ S .
Wherever clear from the context, we will omit the [[ ]] brackets.

Preorders are reflexive, transitive relations, whereR is transitive iffR·R ⊆ R. Partial
orders are anti-symmetric preorders, whereR being anti-symmetric meansR∩R◦ ⊆ id.
A preorder R is an equivalence if it is symmetric, that is, if R = R◦.

Taxonomy. Converse is of paramount importance in establishing a wider taxonomy of
binary relations. Let us first define the kernel of a relation, kerR = R◦ ·R and its dual,
imgR = ker (R◦), called the image of R. Since converse commutes with composition,
(R · S)◦ = S◦ ·R◦ and is involutive, (R◦)◦ = R, one has imgR = R · R◦.

Kernel and image lead to the following terminology: a relation R is said to be entire
(or total) iff its kernel is reflexive; or simple (or functional) iff its image is coreflex-
ive. Dually, R is surjective iff R◦ is entire, and R is injective iff R◦ is simple. This
terminology is recorded in the following summary table:

Reflexive Coreflexive

ker R entire R injective R

img R surjective R simple R

(4)
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A relation is a function iff it is both simple and entire. Functions will be denoted by
lowercase letters (f , g, etc.) and are such that bfa means b = f a. Function converses
enjoy a number of properties of which the following is singled out because of its rôle in
pointwise-pointfree conversion [2] :

b(f◦ · R · g)a ≡ (f b)R(g a) (5)

The pointwise definition of kernel of a function f , b(ker f)a ≡ f b = f a , stems
from (5), whereby it is easy to see that  is the kernel of every constant function,

1 A
!�� included (! is the unique function of its type, where 1 denotes the singleton

type).
Isomorphisms are functions which are surjective and injective at the same time. A

particular isomorphism is the identity function id, which also is the smallest equivalence
relation on a particular data domain. So, b id a means the same as b = a.

Functions and Relations. The interplay between functions and relations is a rich part of
the binary relation calculus. In particular, given two preorders≤ and �, one may relate
arguments and results of pairs of functions f and g in, essentially, two ways:

f · � ⊆ ≤ · g (6)

f◦· � = ≤ · g (7)

As we shall see shortly, (6) is equivalent to � ⊆ f◦ · ≤ · g . For f = g, this establishes
� to≤monotonicity, thanks to (5). Both f, g in the other case (7) are monotone and said
to be Galois connected, f (resp. g) being referred to as the lower (resp. upper) adjoint
of the connection. By introducing variables in both sides of (6) via (5), we obtain

(f b) � a ≡ b ≤ (g a) (8)

For further details on the rich theory of Galois connections and examples of appli-
cation see [1,2]. Galois connections in which the two preorders are relation inclusion
(≤,� := ⊆,⊆) are particularly interesting because the two adjoints are relational com-
binators and the connection itself is their universal property. The following table lists
connections which are relevant for this paper:

(f X) ⊆ Y ≡ X ⊆ (g Y )

Description f g Obs.

Converse ( )◦ ( )◦

Shunting rule (f ·) (f◦·) NB: f is a function

“Converse” shunting rule (·f◦) (·f) NB: f is a function

Left-division (R·) (R \ ) read “R under . . . ”

Right-division (·R) ( / R) read “. . . over R”

range ρ (·) lower ⊆ restricted to coreflexives

domain δ (·) lower ⊆ restricted to coreflexives

(9)

The connection associated with the domain operator will be particularly useful later on,
whereby we infer that it is monotonic and commutes with join

δ (R ∪ S) = (δ R) ∪ (δ S) (10)
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(as all lower-adjoints do 4) and can be switched to so-called conditions [12]

δ R ⊆ δ S ≡ ! ·R ⊆ ! · S (11)

wherever required, since  = ker !.
Left-division is another relational combinator relevant for this paper, from whose

connection in (9) not only the following pointwise definition can be inferred [3],

b (R \ Y ) a ≡ 〈∀ c : c R b : c Y a〉 (12)

but also the following properties which will be useful in the sequel, for Φ coreflexive:

(R ∪ T ) \ S = (R \ S) ∩ (T \ S) (13)

(R · Φ \ S) ∩ Φ = (R \ S) ∩ Φ (14)

4 Warming Up

According to the PF-transformation strategy announced in Section 2, our first task will
be to PF-transform (1). We first concentrate on transforming the test for non-failure
states, which occurs twice in the formula, (s a) ⊃ ∅ and (r a) ⊃ ∅. A set is nonempty
iff it contains at least one element. Therefore,

(s a) ⊃ ∅ ≡ 〈∃ x : : x ∈ (s a)〉
≡ { idempotence of ∧ }

〈∃ x : : x ∈ (s a) ∧ x ∈ (s a)〉
≡ { (5) twice and converse }

〈∃ x : : a(∈ · s)◦x ∧ x(∈ · s)a〉
≡ { introduce b = a ; composition }

b = a ∧ b((∈ · s)◦ · (∈ · s))a
≡ { introduce kernel }

b = a ∧ b(ker (∈ · s))a

Then we address the whole formula:

s 
 r
≡ { (1) }

〈∀ a : (s a) ⊃ ∅ : ∅ ⊂ (r a) ⊆ (s a)〉
4 All f and g are monotonic by definition, as Galois adjoints. Moreover, the fs commute with

join and the gs with meet. Thus we obtain monotonicity and (10) for free, whose proof as law
3.2 in [10] is unnecessary. It should be mentioned that some rules in table (9) appear in the
literature under different guises and usually not identified as Galois connections. For instance,
the shunting rule is called cancellation law in [23].
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≡ { expand ∅ ⊂ (r a) ⊆ (s a) }

〈∀ a : (s a) ⊃ ∅ : ∅ ⊂ (r a) ∧ (r a) ⊆ (s a)〉
≡ { expand tests for non-failure state and replace (r a) by (r b), cf. b = a }

〈∀ a, b : b = a ∧ b(ker (∈ · s))a : b = a ∧ b(ker (∈ · r))a ∧ (r b) ⊆ (s a)〉
≡ { δ R = ker R ∩ id is a closed formula for the domain operator [5,3] }

〈∀ a, b : b(δ (∈ · s))a : b(δ (∈ · r))a ∧ (r b) ⊆ (s a)〉
≡ { expand set-theoretic inclusion }

〈∀ a, b : b(δ (∈ · s))a : b(δ (∈ · r))a ∧ 〈∀ c : c ∈ (r b) : c ∈ (s b)〉〉
≡ { (5) twice ; then introduce left-division (12) }

〈∀ a, b : b(δ (∈ · s))a : b(δ (∈ · r))a ∧ b((∈ · r) \ (∈ · s))a〉
≡ { remove points ; relational inclusion and meet }

δ (∈ · s) ⊆ δ (∈ · r) ∩ ((∈ · r) \ (∈ · s))
≡ { remove membership by defining R = ∈ · r and S = ∈ · S }

δ S ⊆ δ R ∩ (R \ S)

Function s (resp. r) can be identified with the power-transpose [5,19] of binary rela-
tion S (resp. R). Since transposition is an isomorphism, we can safely lift our original
ordering on set-valued state-transition functions to state-transition relations and estab-
lish the relational PF-transform of (1) as follows:

S 
R ≡ δ S ⊆ (R \ S) ∩ δ R (15)

which converts to

S 
R ≡ (δ S ⊆ δ R) ∧ (R · δ S ⊆ S) (16)

once Galois connections of meet and left-division (9) are taken into account.
Most definitions of the refinement ordering in the literature — eg. [22,6,23,10] —

are pointwise variants of (16). The calculations above show these to be equivalent to
our starting version (1), which instantiates a “coalgebraic pattern” favoured in automata
theory and coalgebraic refinement [16].

It is easy to see that the target types of both S,R in (16) need not be the same:

A

R ���
��

��
��

A
δ S��

S����
��

��
�

B

So, PF-transformed S 
R covers other refinement situations, namely that of an implicit
specification [13] S being refined by some function f ,

S 
 f ≡ δ S ⊆ f◦ · S
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whereby — back to points and thanks to (5) — we obtain, in classical “VDM-speak”

∀a. pre-S(a)⇒ post-S(f a, a)

which is nothing but the implicit function specification proof-rule given by [13].
It is in this (wider) context that the 
 ordering is presented in [6], where it is called

the less-defined relation on specifications and is shown to be a semi-lattice universally
lower-bounded by the empty specification ⊥. The proof that it is a partial order is
telegram-like in the paper. By contrast, the existence of a greatest lower bound (glb)
is the subject of a proposition proved in typical invent & verify style — a glb defini-
tion is guessed first, which is then shown to be a lower bound and finally proved to be
maximal among all lower bounds.

To illustrate the shift from verification to calculation brought forth by the
PF-transform, we will calculate the glb of 
 (denoted ") as the (unique) solution to
universal property

X 
 R " S ≡ X 
R ∧ X 
 S (17)

Let us solve this equation for unknown ":

X 
 R " S
≡ { (17) }
X 
 R ∧ X 
 S

≡ { (15) twice; composition of coreflexives is intersection }

δ X ⊆ ((R \X ∩ S \X)) ∩ δ R · δ S
≡ { (13) }

δ X ⊆ (R ∪ S) \X ∩ δ R · δ S
≡ { (14) for R,S, Φ := R ∪ S, X, δ R · δ S }

δ X ⊆ (((R ∪ S) · δ R · δ S) \X) ∩ (δ R · δ S)

≡ { δ ((R ∪ S) · δ R · δ S) = δ R · δ S (coreflexives) ; (15) }

X 
 ((R ∪ S) · δ R · δ S)

:: { indirect equality (Section 3) on partial order � [1,3] }

R " S = (R ∪ S) · δ R · δ S

Thus we have deduced

R " S = (R ∪ S) · δ R · δ S (18)

which, back to points (1), will look like

(r " s)a ≡ if (r a) = ∅ ∨ (s a) = ∅ then ∅ else (r a) ∪ (s a) (19)

where r (resp. s) is the power-transpose ofR (resp.S). (The reader is invited to calculate
(19) as solution to (17) by directly resorting to pointwise 
 (1) instead of (15).)
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5 Refinement Sub-relations

Recall the two conjuncts of (16), δ S ⊆ δ R and R · δ S ⊆ S . Groves [10] freezes the
former in defining a sub-relation 
post of 
,

S 
post R ≡ S 
R ∧ δ R ⊆ δ S (20)

where extra clause δ R ⊆ δ S prevents definition increase (by antisymmetry). Similarly,
he puts forward another sub-relation 
pre of 
,

S 
pre R ≡ S 
 R ∧ S ⊆ R · δ S (21)

where extra clause S ⊆ R · δ S prevents from increasing determinacy.
How useful are these sub-orderings? We will devote the remainder of the paper to

exploiting the underlying theory and showing them to be useful beyond their original
context of definition [10]. First of all, facts


pre ⊆ 
 , 
post ⊆ 
 (22)

follow immediately from the definitions (20,21) above. That both 
pre and 
post can
be expressed independently of 
 is simple to calculate, first for 
pre,

S 
pre R

≡ { (21) and (16) ; antisymmetry }
R · δ S = S ∧ δ S ⊆ δ R

≡ { switch to conditions (11) }
R · δ S = S ∧ ! · S ⊆ ! ·R

≡ { substitution of S by R · δ S }
R · δ S = S ∧ ! ·R · δ S ⊆ ! · R

≡ { δ S is coreflexive (δ S ⊆ id) ; monotonicity of composition }
R · δ S = S ∧ TRUE

≡ { trivia }
R · δ S = S

and then for 
post:

S 
post R

≡ { (20) and (16) }
R · δ S ⊆ S ∧ δ R = δ S

≡ { substitution of δ S by δ R }
R · δ R ⊆ S ∧ δ R = δ S

≡ { R · δ R = R }
R ⊆ S ∧ δ R = δ S
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Let us record these results, which are the PF-counterparts to laws 4.3 and 4.4 in [10],
respectively,

S 
pre R ≡ R · δ S = S (23)

S 
post R ≡ R ⊆ S ∧ δ R = δ S (24)

noting that (24) can be written in less symbols as PF-equality


post = ⊆◦ ∩ ker δ (25)

Thus, by definition, 
post is a partial order, since the meet of a partial order (⊆◦) with
an equivalence (ker δ) is a partial order. (The proof that 
pre is also a partial order is
elementary, see eg. [21].)

What does it mean to impose 
pre and 
post at the same time? We calculate:

S 
pre R ∧ S 
post R

≡ { (23), (24) }
R · δ S = S ∧ δ S = δ R ∧ R ⊆ S

≡ { substitution of δ S by δ R }
R · δ R = S ∧ δ R = δ R ∧ R ⊆ S

≡ { property R = R · δ R }
R = S ∧ R ⊆ S

≡ { R = S ⇒ R ⊆ S }
R = S

This result (law 4.7 in [10]) PF-transforms to 
pre ∩ 
post = id , whose “antisymmet-
ric pattern” captures the opposition between the components 
pre and 
post of 
: to
increase determinism only and definition only at the same time is contradictory. This
relative antisymmetry between 
pre and 
post can also be inferred from facts

S 
post R⇒ R ⊆ S (26)

S 
pre R⇒ S ⊆ R (27)

the former arising immediately from (24) and the latter holding by transitivity: S
preR
implies S ⊆ R · δ S and R · δ S ⊆ R holds.

6 Factorization of the Refinement Relation

We proceed to showing that the sequential composition of subrelations 
pre and 
post

is — in any order — the refinement relation 
 itself. As we shall briefly see, this is
where our calculational style differs more substantially from that of [10].
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That 
pre and 
post are factors of 
— that is, 
post · 
pre ⊆ 
 and 
pre ·
post⊆ 

— is obvious, recall (22) and composition monotonicity. So we are left with facts


 ⊆ 
pre · 
post (28)


 ⊆ 
post · 
pre (29)

to prove. As earlier on, instead of postulating the decompositions and then proving
them, we will calculate (deduce) them. Two auxiliary results will be required:

S 
post S ∩R ≡ δ S = δ (R ∩ S) (30)

S 
pre S ∪R ≡ R · δ S ⊆ S (31)

The proof of (30) immediate from the definition of 
post (24). That of (31) follows:

S 
pre S ∪R
≡ { definition of �pre }

(S ∪R) · δ S = S

≡ { (·δ S) is a lower adjoint (9) }

(S · δ S) ∪ (R · δ S) = S

≡ { S · δ S = S }
S ∪R · δ S = S

≡ { A ∪ B = B ≡ A ⊆ B }
R · δ S ⊆ S

We are now ready to calculate (28):

S 
R
≡ { (16) }
R · δ S ⊆ S ∧ δ S ⊆ δ R

≡ { A ∪ B = B ≡ A ⊆ B }

R · δ S ⊆ S ∧ (δ S) ∪ (δ R) = δ R

≡ { (10) }

R · δ S ⊆ S ∧ δ (S ∪R) = δ R

≡ { (30), since R = R ∩ (S ∪ R) }

R · δ S ⊆ S ∧ (S ∪R) 
post R ∩ (S ∪R)

≡ { (31) and R = R ∩ (S ∪ R) }

(S 
pre S ∪R) ∧ (S ∪R) 
post R

⇒ { logic }
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〈∃ T : : S 
pre T ∧ T 
post R〉
≡ { composition }

S(
pre · 
post)R

Concerning (29):

S 
R
⇒ { since S � R ⇒ δ S = δ (S ∩ R) [21]; (16) }

δ S = δ (S ∩R) ∧ R · δ S ⊆ S

≡ { ∩-universal and δ S is coreflexive }

δ S = δ (S ∩R) ∧ R · δ S ⊆ S ∩R
≡ { substitution }

δ S = δ (S ∩R) ∧ R · δ (S ∩R) ⊆ S ∩R
≡ { (31) }

δ S = δ (S ∩R) ∧ (S ∩R) 
pre (S ∩R) ∪R
≡ { (30) and S ∩ R ⊆ R }

(S 
post S ∩R) ∧ (S ∩R) 
pre R

⇒ { logic }

〈∃ T : : S 
post T ∧ T 
pre R〉
≡ { composition }

S(
post · 
pre)R

In summary, we have the two alternative ways to factor the refinement relation an-
nounced in (3). This embodies laws 4.8 and 4.9 of [10], where they are proved in first-
order logic requiring negation and consistency 5. These requirements, which have no
counterpart in our calculations above, should be regarded as spurious.

7 Taking Advantage of the Factorization

Factorizations such as that given by (3) are very useful in mathematics in general. For
our purposes, the rôle of (3) is three-fold. On the one hand, properties of the composition
— eg. transitivity, reflexivity — can be easily inferred from similar properties of factors

pre and 
post [21]. On the other hand, one can look for results with hold for the
individual factors 
pre and/or 
post and do not hold (in general) for 
. For instance,
meet (R ∩ S) is 
pre-monotonic but not 
-monotonic (law 5.1 in [10]). This aspect of

5 In [10,6], two relations R and S are regarded as consistent iff δ (R∩S) = (δ R)∩(δ S) holds.
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the factorization is of practical value and in fact the main motivation in [10]: complex
refinement steps can be factored in less big a gap ones involving only one factor 
pre

(resp. 
post) and 
pre (resp. 
post) monotonic operators.
Space restraints prevent us from presenting our calculation of monotonicity laws 5.1

and 5.4 of [10], respectively

S 
pre R ∧ T 
pre U ⇒ S ∩ T 
pre R ∩ U (32)

S 
post R ∧ T 
post U ⇒ S ∪ T 
post R ∪ U (33)

which the interested reader will find in [21]. We anticipate that, unlike [10], pointfree
calculation doesn’t require negation.

Last but not least, there is another practical outcome of factorization (3) which was
left unexploited in [10]: the fact that it makes it easy to analyse the (semi-)lattice of oper-
ations ordered by 
 [6], in particular concerning the behaviour of factors 
pre and 
post

for some of the relation subclasses studied in Section 3. For instance, if by construction
one knows that the operation under refinement is simple (vulg. a partial function), one
can safely replace 
 by the appropriate factors tabulated in

Binary relation sub-class 
post 
pre 

Entire relations ⊆◦ id ⊆◦ (a)
Simple relations id ⊆ ⊆ (b)

Functions id id id (c)

(34)

Let us justify (34): 
pre = id in case (34a) follows directly from (23), in which
case equation (3) yields 
 = 
post. Moreover, 
post = ⊆◦ holds since domain (δ) is
a constant function within the class of entire relations and thus ker δ =  in (25). The
proof of (34b) is immediate in the case of 
post = id, since (24) restricted to simple
relations establishes equality at once. Concerning 
pre =⊆, our calculation to follow
will rely on relaxing function f to a simple relation S in the shunting rules in (9),
leading to rules [18]

S ·R ⊆ T ≡ (δ S) ·R ⊆ S◦ · T (35)

R · S◦ ⊆ T ≡ R · δ S ⊆ T · S (36)

which, however, are not Galois connections. We reason:

S 
pre R

≡ { (23) ; anti-symmetry }
R · δ S ⊆ S ∧ S ⊆ R · δ S

≡ { shunt on simple R (35) and S (36) ; S = S · δ S }

δ R · S◦ ⊆ R◦ ∧ S · δ S ⊆ R · δ S
≡ { converses }
S · δ R ⊆ R ∧ S · δ S ⊆ R · δ S

≡ { δ S ⊆ δ R, cf. (27) and monotonicity of δ }
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S ⊆ R ∧ S · δ S ⊆ R · δ S
≡ { first conjunct implies the second (monotonicity) }
S ⊆ R

Finally, (34c) follows from functions being entire and simple at the same time.
A comment on the glb of 
pre restricted to simple relations, ie. deterministic but

possibly failing operations (partial functions): pointfree calculation yields R " S =
R ∩ S in this case, which agrees with ⊆ in (34b) but contrasts to factor R ∪ S in (18).
It can be easily calculated that simplicity of R"S (18) is equivalent to both R,S being
simple and R · S◦ ⊆ id, which is equivalent, thanks to (36), to R · δ S ⊆ S, itself
equivalent to S · δ R ⊆ R. From these we calculate (R ∪ S) · δ R · δ S ⊆ R ∩ S. Since
R ∩ S ⊆ (R ∪ S) · δ R · δ S, we obtain " = ∩ for simple relations.

Structural Refinement. We close the technical part of the paper by presenting a law
which is particularly useful in modular (structural) refinement and whose proof relies
heavily on factorization (3):

S 
R ⇒ FS 
 FR (37)

This law expresses 
-monotonicity of an arbitrary parametric type F. Technically, the
parametricity of F is captured by regarding it as a relator [1,5], a concept which extends
functors to relations: FA describes a parametric type while FR is a relation from FA
to FB providedR is a relation fromA to B. Relators are monotonic and commute with
composition, converse and the identity.

Fact (37) is another example of a property of operation refinement whose proof uses
the strategy of promoting 
post/
pre properties to 
. We need the auxiliary result that
every relator F is both 
pre/
post-monotonic:

F · 
post ⊆ 
post · F (38)

F · 
pre ⊆ 
pre · F (39)

The PF-calculations which support (38,39) are omitted for space economy and can be
found in [21]. Then the calculation of (37) is an easy task:

TRUE

≡ { (38) }

F · 
post ⊆ 
post · F

⇒ { monotonicity of composition }

F · 
post · 
pre ⊆ 
post · F · 
pre

⇒ { (39) and ⊆-transitivity }

F · 
post · 
pre ⊆ 
post · 
pre · F

≡ { (3) }
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F · 
 ⊆ 
 · F

≡ { shunt over F (9) and then go pointwise on S and R }

R 
 S ⇒ FR 
 FS

8 Conclusions and Future Work

Refinement is among the most studied topics in software design theory. An extensive
treatment of the subject can be found in [7]. It is, however, far from being an easy-to-use
body of knowledge, a remark which is mirrored on terminology — cf. downward, up-
ward refinement [11], forwards, backwards refinement [11,23,16], S,SP,SC-refinement
[8] and so on.

Boudriga et al [6] refer prosaically to the refinement ordering (denoted 
 in the
current paper) as the less defined ordering on pre/post-specifications. “Less defined”
has a double meaning in this context: smaller domain-wise and vaguer range-wise. But
such a linguistic consensus is not found in the underlying mathematics: 
 merges two
opposite orderings, one pushing towards “smaller” specs and another to “larger” ones.

With the purpose to better understand this opposition, we decided to take advantage
of a factorization of the refinement ordering which we found in [10,14] but does not
seem to have attracted much attention henceforth. Our approach to this result, which is
calculational and pointfree-relational, contrasts with the hybrid models usually found
in the literature, which typically use relational combinators to express definitions and
properties but perform most reasoning steps at point-level, eg. using set-valued func-
tions. A similar concern for pointfree relational reasoning can be found in [14], which
we would like to study more in depth concerning the demonic calculus of relations.

The work reported in this paper should be regarded as a step towards a broader re-
search aim: that of developing a clear-cut PF-theory of coalgebraic refinement. The
intuition is provided by formula (1) once again, whose set-valued functions can be re-
garded both as power-transposes of binary relations [19] and coalgebras of the powerset
functor. Instead of favouring the former view as in the current paper, we want to exploit
the latter and follow the approach of [16], who study refinement of software compo-
nents modelled by coalgebras of functor FX = (O × (BX))I , where I and O model
inputs and outputs and B is a monad describing the component’s behaviour pattern.

The approach has already been treated generically in the pointfree style [4], whereby
set inclusion in (1) is generalized to a sub-preorder of F-membership-based inclusion.
There is, however, no coalgebraic counterpart to the 
pre/
post factorization studied in
the current paper. Such a generalization is a prompt topic for future research.
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Abstract. Design patterns are usually described in terms of instances.
Templates describe sentences of some language with a particular form,
generate sentences upon instantiation, and can be used to describe those
commonly occurring structures that make a pattern. This paper presents
FTL, a language to express templates, and an approach to proof with
templates. This enables reuse at the level of formal modelling and ver-
ification: patterns of models are captured once and their structure is
explored for proof, so that patterns instances can be generated mechan-
ically and proved results related with the pattern can be reused in any
context. The paper uses templates to capture the Z promotion pattern
and metaproof to prove properties of Z promotion. The proved properties
are applicable directly to Z promotions built by template instantiation.

Keywords: patterns, templates, proof, Z, formal development.

1 Introduction

Design patterns [1] have had an impact in software engineering. There is also
a growing interest in patterns for formal development (e.g. [2,3,4,5]). Patterns,
however, are usually described in terms of instances, making their mechanical
adaption to a context impossible. We faced this problem while using and build-
ing patterns for Z [4,6,7,8], and so we resorted to templates to describe structural
patterns. Templates capture the form (or shape) of sentences of some language,
generate, upon instantiation, sentences whose form is as prescribed by the tem-
plate, and can be used to describe those commonly occurring structures that
make a pattern. This paper presents the formal template language (FTL), a lan-
guage to express templates, a calculus for the instantiation of FTL templates,
and an approach to proof with FTL templates of formal models.

Templates of some form appear often in the computer science literature. For
example, a popular Z book [9, p. 150] introduces the Z schema with a template:

Name == [ declaration | predicates ]

This is an informal template, it says that a schema has a name, a set of
declarations and a set of predicates. Intuitively, we guess that the names of
the template are to be substituted by values, which is confirmed by a template
instance:
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Bank == [accs : ACCID ; accSt : ACCID �→ Account | dom accSt = accs ]

The problem with informal templates is that it is difficult to distinguish the
template from the instance, and is difficult to know what instantiations are
valid, making it impossible to reason rigorously with them. FTL can represent
templates of any formal language precisely; it is used here with Z. The informal
template given above in FTL is:

Name == [ declaration | predicate ]

A variable within denotes a placeholder, which is substituted by a value
when the template is instantiated; a term within denotes a list, which is
replaced by many occurrences of the term in the instantiation.

1.1 Metaproof

The form of Z sentences can be represented as FTL templates. It is also possible
to explore templates of Z for reasoning (or proof). This has practical value:
template developers can establish metatheorems for templates that are applicable
to all instantiations of the templates involved. This is motivated with an example.

In Z, the introduction of a state space definition of an abstract data type
(ADT), such as Bank above, into a specification, entails a demonstration that the
description is consistent: at least one state satisfying the description should exist.
This normally involves defining the initial state of the ADT (the initialisation)
and proving that the initial state does exist (the initialisation theorem). The
Bank is initialised assuming that in the initial state there are no accounts:

BankInit == [ Bank ′ | accs ′ = ∅ ∧ accSt ′ = ∅ ]

The consistency of Bank is demonstrated by proving the Z conjecture,

? ∃BankInit • true. A proof-sketch of this conjecture is (see appendix A for
the Z inference rules used):


 ∃ BankInit • true
≡ [By ∃ Sc (twice)]

 ∃ accs ′ : ACCID ; accSt ′ : ACCID �→ Account • accs ′ = ∅ ∧ accSt ′ = ∅

≡ [By one-point]

 dom∅ = ∅ ∧ ∅ ∈ ACCID ∧ ∅ ∈ ACCID �→ Account
≡ [By set theory and propositional calculus]
true

This is proved automatically in the Z/Eves [10] theorem prover.
The Bank schema is an instance of a common structure of Z specifications:

the state of a promoted ADT [9,4]. The theorem proved above applies to the
Bank ADT, but does it apply also to all promoted ADTs that are similar in
form to Bank? If it does, can this result be proved once and for all?
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Bank was generated from a template, but that template is too general and
not useful for the kind of investigation that we want to do. Instead, we use a
more restricted template representing a promoted Z ADT, of which Bank is an
instance. A promoted ADT comprises a set of identifiers, a function mapping
identifiers to state, a predicate restricting the mapping function, and a predicate
representing an optional state invariant:

P == [ ids : ID ; st : ID �→ S |
dom st = ids ∧ I ]

(Promoted ADT’s without the optional invariant, such as Bank above, are in-
stantiated from this template by instantiating I with the value true.)

Likewise, we represent as templates the empty initialisation of a promoted
ADT, and the initialisation conjecture:

P Init == [ P ′ | ids ′ = ∅ ∧ st ′ = ∅ ]

? ∃ P Init • true

We can reason with these templates by analysing their welformed instanti-
ations. In those cases, P , id and st hold names, ID and S are sets, and I is
a predicate. By expanding the template schemas using the laws of the schema
calculus, and apply the one-point rule (see proof above), we get the formula,


 dom ∅ = ∅ ∧ ∅ ∈ ID ∧ ∅ ∈ ID �→ S
∧ I ′[ ids ′ := ∅, st ′ := ∅]

which reduces to, I ′[ ids ′ := ∅, st ′ := ∅]. If I is instantiated with
true, then the formula reduces to true. This establishes two metatheorems, where
the latter is a specialisation (or a corollary) of the former, that are applicable to
all promoted ADTs instantiated from these templates. The specialised metathe-
orem gives the nice property of true by construction: whenever these templates
are instantiated, such that I is instantiated with true, then the initialisation
conjecture is simply true. Even when I is not instantiated with true, the
formula to prove is simpler than the initial one.

The argument outlined above is rigorous and valid, but it is not formal. To
work towards formal metaproof, so that tool support is possible, a formal se-
mantics for the template language is required.

In the following, FTL is given a brief introduction followed by an overview of
its formal definition. Then, the instantiation calculus of FTL, a calculus for the
partial instantiation of templates, is presented. Finally, a metaproof approach
for Z based on FTL is developed and illustrated for the rigorous proof above.

2 A Short Introduction to FTL

FTL expresses templates that can be instantiated to yield sentences of some
language (the target language). FTL is general in the sense that it can capture
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the form (or shape) of sentences of any formal language, and although designed
with Z in mind, it is not tied to Z or to any other language.

FTL’s abstraction mechanism is based on variables, which allow the repre-
sentation of variation points in structures. Variables have, in FTL, their usual
mathematical meaning: they denote some value in a scope. Template instantia-
tion is, essentially, substitution of variables by values.

As FTL is general, it is possible to instantiate a template so that the resulting
sentence is meaningless. FTL templates assist the author; they do not remove
the obligation to check that what the author writes is sensible.

The following illustrates the main constructs of FTL.

Text. A template may contain text of the target language, which is present in
every instance. For example, the trivial template, true, always yields, true, when
instantiated. Usually, templates comprise text combined with other constructs.

Placeholder. A placeholder is represented by enclosing one variable within .
Placeholders, when not within lists, denote one variable occurrence, and they
are substituted by the value assigned to the variable when the template is in-
stantiated. The template, x : t ; y : t , includes four placeholders
and three variables, x , t and y; this can be instantiated with the substitution
set, {x �→ “a”, t �→ “ ”, y �→ “b”}, to yield: a : ; b : .

List. A list comprises one list term, a list separator (the separator of the instan-
tiated list terms) and a string representing the empty instantiation of the list,
and it is represented by enclosing the list term within . The list term is a
combination of text, parameters and possibly other lists. Often, the abbreviated
form of lists, without separator and empty instantiation, is used.

A placeholder within a list denotes an indexed set of variable occurrences. This
means that x and x actually denote different variable occurrences;

x denotes an occurrence of the variable x , but x denotes the occurrence
of the indexed set of variables, {x1, . . . , xn}.

The template, x : t (“; ”,“{}”), can be instantiated with the sequence
of substitution sets, 〈{x �→ “a”, t �→ “ ”}, {x �→ “b”, t �→ “ ”}〉. This yields:
a : ; b : . Lists can be instantiated with an empty instantiation, 〈 〉; here
this gives {}, the list’s empty instantiation.

Choice. The FTL choice construct expresses choice of template expressions.
That is, only one of the choices is present in the instantiation. There are two
kinds of choice: optional and multiple. In optional, the single expression may be
present in the instantiation or not. In multiple, one of the choices must be present
in the instantiation. Choices are instantiated with a choice-selection, a natural
number, indicating the selected choice; non-selection takes the value zero.

The template x : t ? can be instantiated with (1, {x �→ “a”, t �→
“ ”}), to yield: a : . To avoid the presence of the expression in the instantiation,
the template can be instantiated with (0, {}), which simply yields the empty
string. In the multiple-choice template,
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x : t [] x : t1 �→ t2

the first choice is instantiated with (1, {x �→ “a”, t �→ “ ”}) to yield: a : ; the
second with (2, {x �→ “f ”, t1 �→ “ ”, t2 �→ “ ”}) to yield: f : �→ .

3 The Formal Definition of FTL

FTL has a denotational semantics [11] based on its abstract syntax. The instan-
tiation of an FTL template should give sentences in some target language, and
this is naturally represented in the domain of strings (the semantic domain).

FTL is fully specified in Z elsewhere [12]. Here, we present its definitions in
a form that is easier to read, which combines Z sets and operators, the BNF
(Backus-Naur form) notation and an equational style.

3.1 Syntax

This section defines the syntactic sets of the language. The set of all identifiers
(I ) gives variables to construct placeholders. The set of all text symbols (SYMB)
is used to construct the set of all strings, which are sequences of text symbols:

[I ,SYMB ] Str == seq SYMB

The remaining syntactic sets are defined by structural induction, using the
BNF notation. The set of template expressions comprises objects that are either
an atom (A), a choice (C ), or either of these followed by another expression:

E ::= A | C | A E | C E

The set of choices comprises optional and multiple choice; optional is formed
by one expression, and multiple by a sequence of expressions (set CL):

C ::= E ? | CL CL ::= E1 [] E2 | E [] CL

The set of atoms, A, comprises placeholders, text (T), and lists (L); a place-
holder is formed by an identifier, the name of a variable:

A ::= I | T | L

The set of lists, L, comprises two forms of list: normal and abbreviated. A
normal list comprises a list term (set LT , a sequence of atoms), a list separator
(SEP) and the empty instantiation of the list (EI ); the abbreviated form just
includes the list term:

L ::= LT (SEP ,EI ) | LT LT ::= A | A LT

List separators, list empty instantiations and text are just strings:

SEP ::= Str EI ::= Str T ::= Str
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3.2 Semantics

Fig. 1. Templates and the
sets of strings they denote
(all possible instances)

A template denotes a set of strings, corresponding
to all its possible instances (Fig. 1).1 The semantics
of FTL could be specified by calculating all possi-
ble instances of a template. That is, given the set of
template expressions (E ) defined above, the mean-
ing of a template would be given by the function:

M : E → Str

But this does not explain instantiation, that is, how
users generate sentences from templates.

The same meaning of templates as denoting a set
of strings, can be achieved by considering instanti-
ation, which consists of substitutions for the tem-
plate’s variables and selections for the template’s
choices. A template has a set of all possible instan-

tiations; by instantiating a template with these instantiations we get the set of
all strings denoted by the template.

So, instead, the semantics is defined by an instantiation function, which cal-
culates the string (sentence) generated by instantiating a template with an in-
stantiation. That is:

M : E → TInst �→ Str

The semantic functions are defined by structural induction on the syntax
of FTL. The following presents the semantics for atoms and expressions; the
complete definitions are given in [12].

Semantics of Atoms. Atoms are instantiated with substitutions for the vari-
ables that occur within placeholders, which may stand-alone or be within lists.

The environment structure (Env), defined as a partial function from identifiers
(variables) to strings (values), represents a set of variable substitutions:

Env == I �→ Str

This allows the instantiation of placeholders that are not within lists. For
example, the template x : t is instantiated with, {x �→ a, t �→ }, an
instance of Env , to yield x : . As a placeholder within a list denotes an indexed
set of variable occurrences, it seems natural to instantiate these variables with
a sequence of substitution sets (seq Env), but this does not work with nested
lists. So, a recursive structure is required, the environment tree:

TreeEnv ::= tree 〈〈Env × seq TreeEnv〉〉

1 But only a subset of these strings has a meaning in the target language.
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TreeEnv comprises one environment, to instantiate the placeholders that stand
alone in the current scope, and a sequence of TreeEnv to instantiate the place-
holders that are within the lists of the current scope. See [12] for further details.

The semantic function extracts the required substitutions from this structure;
it takes an atom (A) and a TreeEnv , and returns a string (Str):

MA : A → TreeEnv �→ Str

This is defined by the equations (where e ∈ Env and ste ∈ seq TreeEnv):

MA( T )(tree(e, ste)) = T

MA( I )(tree(e, ste)) =
{

e(I ) if I ∈ dom e
undefined otherwise

MA( L )(tree(e, ste)) =ML( L ) ste

If the atom is a piece of text (a string), then the text is returned. If the atom
is a placeholder, then either there is a substitution for the placeholder’s variable
in the current environment (e) and the substitution is returned, or otherwise
and the function is undefined. If the atom is a list, then the list instantiation
function is called in the current sequence of environment trees (ste).

Semantics of Expressions. The global environment (GEnv) structure, which
represents a total template instantiation, builds on the TreeEnv structure; ; it
comprises a sequence of natural numbers, the selections of the template’s choices,
and a TreeEnv structure, the substitutions of the template’s variables:

GEnv == seq × TreeEnv

The semantic function for template expressions takes an expression (E ) and
a GEnv and returns a string:

ME : E → GEnv �→ Str

The equation definitions for expressions made up of atoms (see [12] for choice)
is (where chs ∈ seq and te ∈ TreeEnv):2

ME( A )(chs , te) = MA( A ) te
ME( A E )(chs , te) = MA( A ) te ++ ME( E )(chs , te)

If the expression is an atom, then the atom is instantiated in the environment tree
(call toMA with te). If the expression is an atom followed by another expression,
then the instantiation of the atom (call to MA with te) is concatenated with
the instantiation of the rest of the expression (recursive call to ME).

2 The operator ++ denotes string concatenation (defined as sequence concatenation).
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3.3 Illustration: Instantiating Templates Using the Semantics

The language definition can be used to instantiate templates. This is illustrated
here for the template of the promoted Z ADT:

TPADT == P == [ ids : ID ; st : ID �→ S |
dom st = ids ∧ I ]

First, the substitution set for the template is specified in the environment e:

e == {P �→ “Bank”, ids �→ “accs”, st �→ “accst”, ID �→ “ACCID”,
S �→ “Account”, I �→ “true”}

The environment tree and the global environment build upon e. As there are
no lists or choices, the sequences of trees and choice selections are empty:

t == tree(e, 〈〉) g == (〈〉, t)

The template is now instantiated by applying the semantic functions:

ME(TPADT )(g)
≡ [By defs of TPADT , ME and g]
MA( P )(t) ++ ME(== [ ids : ID ; st : ID �→ S |

dom st = ids ∧ I ])(g)
≡ [by defs of MA and ME ]
e(P) ++ MA(“ == [ ”)(t) ++ ME( ids : ID ;

st : ID �→ S | dom st = ids ∧ I ])(g)

≡ [by defs of e, ++ , MA, ME ]
“Bank == [ ” ++ MA( ids )(t) ++ ME(: ID ;

st : ID �→ S | dom st = ids ∧ I ])(g)

By applying the semantic functions in this way, we obtain:

“Bank == [ accs : ACCID ; accSt : ACCID �→ Account |
dom accSt = accs ∧ true]”

3.4 Testing

FTL’s semantics has been tested using the Z/Eves theorem prover, based on its Z
definition. The proved theorems demonstrate that the semantic functions when
applied to sample templates and instantiations yield the expected Z sentence.
Test conjectures were chosen to give a good coverage of all FTL constructs and all
possible instances of templates containing those constructs (see [12] for details).

The derivation presented above is demonstrated by proving the conjecture:


? ME(TPADT )(g)
= “Bank == [ accs : ACCID ; accSt : ACCID �→ Account |

dom accSt = accs ∧ true]”

And this conjecture is proved automatically in the Z/Eves prover.
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4 The Instantiation Calculus

The semantics of FTL is defined by calculating the string (sentence) that is
generated from a template given an instantiation. The instantiations of the se-
mantics are total, that is, there must be substitutions for all the template’s
variables and selections for all the template’s choices. Sometimes, however, we
may be interested in partially instantiating a template, for example, substituting
just one variable in a template and leaving the rest of the template unchanged.

The instantiation calculus (IC) of FTL is an approach to transform templates
by taking instantiation decisions on a step-by-step basis. In this setting, a tem-
plate has been fully instantiated when there no placeholders, choices or lists left;
all instantiation decisions have been resolved.

To have a better idea of the calculus, consider a transformation of the pro-
moted ADT template where the variable P is substituted with “Bank”:

Bank == [ ids : ID ; st : ID �→ S |
dom st = ids ∧ I ]

This is a more refined template, one in which the decision of substituting the
variable P has been taken. By applying a similar sequence of transformations,
the Bank schema would be reached.

Fig. 2. Templates transformed with
the instantiation calculus and the
sets of strings they denote

The calculus is defined by instantiation
functions, which take a template expression
(E ) and a partial instantiation, and return
the template resulting from the partial in-
stantiation of the given template:

I : E → PInst → E

Templates refined with the IC are just
like any other FTL template: they denote a
set of strings. As templates are refined with
the calculus, the sets of strings they denote
become smaller and smaller, until they can-
not be refined any further and just denote
a singleton set of strings (Fig. 2).

The IC is divided into placeholders, lists and choice. The IC functions, like
in the semantics, are defined by structural induction on the syntax of FTL. The
complete definitions are given elsewhere [12]. The IC was tested, in a similar
fashion to the semantics (see above), by using its Z definition and the Z/Eves
prover. The following presents part of the definition of the IC for placeholders.

4.1 Placeholders

The IC function simply replaces placeholders by a substitution of their variables,
provided that a substitution has been provided. To represent a set of variable
substitutions, the Env structure (see above) is reused.
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The instantiation function for atoms takes an atom (A) and an environment,
and returns another atom:

IPA : A → Env → A

This is defined by the equations (where e ∈ Env):

IPA(T ) e = T

IPA( I ) e =
{

e(I ) If I ∈ dom e
I otherwise

IPA(L) e = L

If the atom is text then the text is returned. If the atom is a placeholder, then
either there is a substitution for the variable in the environment (e) and instan-
tiation takes place, or otherwise and the placeholder is returned uninstantiated.
If the atom is a list then the list is returned; lists have their own function.

The instantiation function for expressions takes an expression (E ) and an
environment, and returns an expression:

IPE : E → Env → E

The equations for expressions made up of atoms are:

IPE(A) e = IPA (A) e
IPE(A E )e = (IPA (A) e) (IPE (E ) e)

Essentially, the atoms that make the template expression are instantiated recur-
sively for the given set of substitutions (e).

5 Metaproof

The formal definition of FTL and the IC can be used to support metaproof.
The approach presented here is developed for Z, but it is more general; the same
ideas can be applied to any language with a proof logic.

Metaproof with Z is a proof on a generalisation of a commonly occurring Z
conjecture. First, the setting for metaproof with Z is presented, by discussing
the link between FTL and Z for metaproof, and by considering generalisation
and the concept of characteristic instantiation. Then, the approach is illustrated
for the initialisation conjecture of promoted ADTs.

5.1 Linking FTL with Z

FTL is a general language: it captures the form of sentences and makes no
assumptions in terms of meaning from the target language. Metaproof, how-
ever, requires FTL to be linked with the target language, so that reasoning
with template representations makes sense. So, metaproof with Z considers only
those templates that yield Z sentences and instances that are welformed. In Z,
welformed means that the sentence is type-correct.
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Fig. 3. FTL-Z templates denote
sets of Z specifications

Formally, given the syntactic and semantic
definitions above, the set of all possible instances
of a template is given by the function:

S == (λ t : E • {gi : GEnv • ME(t) gi})

The function ZT C tells whether the given string
is a type-correct Z specification:

ZT C : Str
ZT C s ⇔ s is type correct

Then, the set of all welformed Z instances of a
template, a subset of all possible instances, is

given by:

WFS == (λ t : E • {s : S (t) | ZT C s})

Essentially, this is how FTL is linked with Z for metaproof: through the
welformed instances of Z templates. A Z template denotes a set of Z specifi-
cations (Fig. 3), the set of all possible type-correct instances.

5.2 Characteristic Instantiation and the Rule of Generalisation

In the process of reasoning with Z templates, there is a point where a switch
from the world of templates into the world of Z occurs: a general template
formula becomes an instance. This involves a characteristic instantiation. For
example, in the template formula, ∅ ∈ ID , it is clear that ID must hold
a name referring to a set; the sentence would not be type-correct otherwise.
So, here, a characteristic instantiation is required: let X be an arbitrary set,
instantiate ID with X to give, ∅ ∈ X , which is trivially true. The set X
is a characteristic instantiation of that formula. In this simple case, only one
characteristic instantiation needs to be considered. Other cases require induction
(for lists) or case analysis (for choice).

But, when is it safe to conclude the truth of the template statement from the
proof of its instance? In formal logic there is a similar problem. Suppose a set
A and a predicate P , the truth of the predicate logic statement, ∀ x : A • P ,
implies that it is true for every value in A. But how can such a statement be
proved? We could prove that it is true for each value in A, but this is not practical
because it may involve a large or even infinite number of proofs. This is solved
by proving that P holds for an arbitrary member of A: if no assumptions about
which member of A is chosen in order to prove P , then the proof generalises
to all members. This is, in fact, a known inference rule of predicate logic called
generalisation (or universal introduction) [9]:

Γ 
 ∀ x : A • P [∀-I]
Γ ; x ∈ A 
 P [x �∈ FV (Γ )]
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The is the principle behind characteristic instantiation. An arbitrary instan-
tiation of a template formula is introduced so that the proof of the instance
generalises to the proof of the template.

5.3 A Logic for Template-Z

If we just use characteristic instantiation, all we can do with templates in proofs
is instantiation. Only when everything has been instantiated can other inference
rules be applied in proofs (see [12] for examples of this).

A better approach is to build a logic (a set of inference rules) for proof with
template formulas, which extends the logic of the target language. These infer-
ence rules are proved in the logic of the target language. [12] defines a draft logic
for proof with Z templates.

Fig. 4. A Z template denotes one
meta-Z object and a set of Z spec-
ifications. A meta-Z object denotes
a set of Z specifications

In the template-Z logic, the inference rules
of characteristic instantiation are, for now,
axioms (unproved), which could be proved by
considering a meta-world of Z (Fig. 4), where
its objects represent FTL templates of Z and
denote sets of Z specifications. For example,
the formula, ∅ ∈ ID , can be proved in
meta-Z; suppose that in meta-Z there is a
universal set, U, of which all sets in a Z spec-
ification are a subset of.3 That formula is in-
terpreted in meta-Z as:


 ∀ ID : U • ∅ ∈ ID

Now, by the law of universal introduction,

ID ∈ U 
 ∅ ∈ ID

which is trivially true.
The following illustrates metaproof with

the template-Z logic, using the initialisation
conjecture of the promoted ADT.

5.4 Proof with the Template-Z Logic

We now go back to the proof of the initialisation of the promoted ADT to
illustrate proof with the template-Z logic.

First, there is an inference rule for characteristic instantiation, which allows
a variable to be replaced with a name referring to a set. This transformation
uses the IC to replace all occurrences of a variable in a template formula with
its substitution. For now, it is an axiom (unproved) of the template-Z logic:

3 In fact, this is precisely the case in the ISO standard semantics of Z [13].
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Γ 
 E1 S E2 [I-S]
S ∈ U; (IPE(Γ 
 E1 S E2){S �→ “S”}) [S �∈ FV (Γ )]

An inference rule for Z templates for the schema calculus inference rule ∃ Sc
(appendix A), is also required; given a template representation of a Z schema,

Sc == [ ScD | ScP ]

then the template inference rule is:4

Γ ; Sc == [ ScD | ScP ] 
 ∃ Sc • P [T ∃ Sc]
Γ ; Sc == [ ScD | ScP ] 
 ∃ ScD • P ∧ ScP

We also need the one-point rule (appendix A) for templates:

Γ 
 ∃ x : t • P ∧ x = v [T one-point]
Γ 
 P [ x := v ] ∧ v ∈ t [ x �∈ FV ( v )]

These two inference rules are easily proved by using the axiom rules of the
template-Z logic and the logic of Z (see [12]).

The metaproof of, 
? ∃ P Init • true, using these rules is:

≡ [by T ∃ Sc]
P == [ ids : ID ; st : ID �→ S |

dom st = ids ∧ I ];
P Init == [ P ′ | ids ′ = ∅ ∧ st ′ = ∅ ]


 ∃ P ′ • ids ′ = ∅ ∧ st ′ = ∅ ∧ true
≡ [by T ∃ Sc; sequent calculus; propositional calculus]

 ∃ ids ′ : ID ; st ′ : ID �→ S •

ids ′ = ∅ ∧ st ′ = ∅ ∧ dom st ′ = ids ′ ∧ I
≡ [by T one − point ]

 ∅ ∈ ID ∧ ∅ ∈ ID �→ S ∧ dom ∅ = ∅

∧ I ′[ ids ′ := ∅, st ′ := ∅]
≡ [by I-S twice and set theory]
ID ∈ U; S ∈ U

 ∅ ∈ ID ∧ ∅ ∈ ID �→ S ∧ I ′[ ids ′ := ∅, st ′ := ∅]
≡ [by set theory and propositional calculus]

I ′[ ids ′ := ∅, st ′ := ∅]

And if I is instantiated with true, then the formula reduces to true.

6 Discussion

The Z language supports generic structures, but these are not a substitute for
templates. Z generics only allow parameterisation with sets. This makes it im-
possible, for instance, to represent the templates presented here with Z generics.
4 Template inference rules are preceeded by T .
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FTL was defined formally with the aim of mechanical metaproof. However,
the language became much clearer, we gained a better understanding of what
templates are, what can be done with them, and of metaproof, and it also makes
the construction of an FTL tool a simple extension of our work so far.

Testing the FTL semantics and IC with the Z/Eves prover helped to uncover
many errors. Placeholders are simple and easy to get right, but more complex
constructs (such as lists) required a lot more testing to get their definitions right.
The consistency between the calculus and the semantics was tested, and a full
proof of consistency was not yet done at this stage. In fact, both the IC and the
actual semantics give the semantics of FTL: the actual semantics does it in terms
of total instantiations, whereas the IC does it in terms of partial instantiations.

As said above, inference rules related with characteristic instantiation are, for
now, axioms (unproved) of the template-Z logic, which would have to be proved
for the logic to be claimed sound. We believe that this is proved by applications
of the generalisation rule in a proper meta-world of Z (as discussed in sec. 5).
metatheorems capture our experience in proving theorems with instances of some
structure; they formalise something done and perceived in practice.

As the example shows, templates may need to be constrained so that useful
results can be extracted. So, template design needs to consider what is to be de-
scribed, and the results to be proved. The most attractive aspect of metaproof
is the property true by construction. Often, however, metaproof gives a simplifi-
cation of the original conjecture, which, in many cases, is sufficient to allow the
prover to discharge the remaining formula automatically.

Metaproof has been applied to proofs that are more complex than the one
presented here. For example, metatheorems for our object-oriented (OO) style
for Z [6], such as, initialisation of the whole system (built as composition of
components), promoted operations, and composite system operations [12].

The approach presented here was used to build a catalogue of templates and
metatheorems for a framework to construct UML-based models [12,14]. Tem-
plates capture the form of OO Z models [6], metatheorems capture model-
consistency results, so that UML models are represented in Z by instantiating
templates, and required consistency conjectures simplified with metatheorems.

7 Related Work

Catalysis [15] proposes templates and hints at variable substitution for instan-
tiation, but this is defined informally. Moreover, its template notation has fewer
features than FTL (Catalysis has only placeholders; FTL has lists and choice).

Patterns have been used in the setting of temporal logic [2,3]. These works
use schematic representations of patterns (similar to logical inference rules);
instantiation is variable substituion. However, this has less abstraction contructs
than FTL (placeholders only), and mechanisation is not addressed.

The approach behind FTL and the IC is akin to term-rewriting systems [16],
which are methods for replacing subterms of a formula with other terms based on
rewriting rules. In our approach, the FTL semantics and IC define rules for the
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substitution of placeholders, lists and choice. Term-rewriting is used to capture
the form of objects; L-Systems [17], for instance, is a string rewriting system
designed to capture the form of plant growth, which has many application in
computer graphics. FTL captures the form of formal language sentences.

The term template is sometimes used to refer to generics (e.g. C++ tem-
plates), which allow parameterisation based on types, and may involve subtyping
and polymorphism. Generics are more restricted than FTL templates.

8 Conclusions and Future Work

This paper presents FTL, a language to express templates, a calculus of instan-
tiations for FTL templates and an approach that explores templates of formal
models for proof. FTL allows the representation of structural patterns of mod-
elling and proof and their mechanical instantiation. This enables reuse in formal
development, which contributes to reduce the effort involved in formal modelling
and verification. In our experience, the use of modelling patterns allow us to con-
centrate more on the problem and less on formalisation issues, and metaproof
helps to reduce the proof overhead associated with formal development.

Our approach tries to address several requirements. We want to capture the
form of sentences of any language, trying to separate form from content, and
use templates for reasoning. So, FTL has a very general semantics, and requires
further work to be integrated with some target language for reasoning. There
is a separation of concerns: on one side the language to describe form, on the
other the approach to reason with those representations. This constitutes a prag-
matic and non-intrusive approach, rather than extending a language to support
templates, we designed a general language to capture form.

Formal development requires expertise in the use of proof tools. Our approach
allows experts to build templates and prove metatheorems (perhaps assisted by
proof tools), so that software developers who are not experts in formal-methods
can still build formal models that are proved consistent.

Future work will look at completing the proof logic for template-Z, by proving
the inference rules that are now laid as axioms of the logic. We also want to add
more features to FTL, such as, naming of templates and conditional instantia-
tion. It would be interesting to apply FTL to another formal-method, and then
plug a template-logic to enable formal metaproof.

This work lays the ground for tool support for FTL and metaproof. So that
users can automatically generate models by instantiating templates of a cata-
logue, and to simplify conjectures by instantiating metatheorems. It would also
be interesting to define a theory for template-Z logic in a prover, such as Proof-
power [18], to enable mechanical theorem proving with template-Z.
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A Z Inference Rules [9]

Γ � ∃ Sc • P [∃ Sc]

Γ � ∃ScD • P ∧ ScP

Sc is any schema; ScD is its declarations
and ScP its predicate. P is any predicate.

Γ � ∃ x : A • P ∧ x = v [one-point]

Γ � P [x := v ] ∧ v ∈ A [x �∈ FV (v)]
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Abstract. This paper addresses the frame problem for programming
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In contrast, other approaches introduce a number of restrictions to the
programs to ensure soundness.
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1 Introduction

When specifying a piece of computation, we should also specify its frame, i.e.
the part of the state that it operates upon. Without framing, our specification
language is not very useful. For example, suppose that we want to specify that a
computation C increments program variable x by 1. In a relational setting like
[9], the specification would be

x′ = x+ 1 (1)

where the primed identifier x′ represents the final value of program variable
x and the plain identifier x its initial value. The specification (1) says how C
changes x but it says nothing about the effect of C on other program variables.
A client which uses more program variables will have trouble using C.

In a non-modular setting like [9], we know all the program variables. We can
use this knowledge to add framing requirements to (1). For example, if x, y, z
are all the program variables, then the specification becomes

x′ = x+ 1 ∧ y′ = y ∧ z′ = z (2)

Modular programming makes it impossible to write such assertions: we do not
know all the variables of the program at the time that we specify a computa-
tion. In modular programming theories, it is standard to separate the framing
specification from the functional specification like that:

ensures x′ = x+ 1 modifies x (3)

J. Misra, T. Nipkow, and E. Sekerinski (Eds.): FM 2006, LNCS 4085, pp. 268–283, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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The above specification says that the value of x is increased by 1 and that
the computation only modifies the program variable x. Its translation into a
relational specification depends on the client. For example, if a client introduces
variables y, z then (3) is translated to (2) for that client.

Now, let us add encapsulation to the picture: we want modules to support
private program variables. We also want them to support public specification
variables. Specification variables are abstract representations of the encapsulated
state that are visible to the client. Their exact relation with the private program
variables is known only to the implementer of the module.

One standard example of using specification variables is the specification and
implementation of a module that formalizes sets of integers. The module provides
an operation that inserts elements into the set and an operation that queries
whether an element is in the set. The specification of the module uses a public
specification variable S to represent the value of the set. This is the specification
of the module as the client sees it:

module ASpec
spec var S ⊆ Z

insert(x ∈ Z) ensures S′ = S ∪ {x}
find(x ∈ Z) ensures S′ = S ∧ return′ = (x ∈ S)

end module

The client knows nothing about the internal representation of S and how it
relates to its private variables.

The implementer’s job is to refine the module ASpec using concrete program
variables and concrete programs. A possibility is to use a private array L to hold
all the elements of S. The exact representation of S is given in terms of the
private program variable L. The refinement looks like this1:

module AImpl
prog var L ∈ Z∗

spec var S = {x ∈ Z · ∃i ∈ N · x = L i}

insert(x ∈ Z) ensures L′ = [x]	L
find(x ∈ Z) ensures L′ = L ∧ return′ = (∃i ∈ N · L i = x)

end module

Framing specifications in this new setting cannot mention the private pro-
gram variables, which are unknown to the client. They must instead mention
public specification variables, like S. For example, the framing specification of
the method insert should be

modifies S (4)
1 Of course, this is not yet an implementation, because the operations are not imple-

mented. Further refinements will give an implementation, but this is not the point
of this example.
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which means that the computation is allowed to change S and all specification
and program variables on which S depends. In our example, this means that the
computation changes S and L. As in the case without specification variables, if
a client introduces specification or program variables y, z, the specification (4)
is translated to:

y′ = y ∧ z′ = z (5)

since S is not known to depend on y, z. Thus the reasoning on the level of
specifications expects that a computation that satisfies (4) preserves y, z.

Unfortunately, in the presence of pointers, the translation may be unsound.
This is because, the representation of y may actually share heap locations
with the representation of S. For example, y could be given by the following
representation:

prog var p ∈ pointerTo (Z∗)
y = (contentOf p)0

and the pointer p might happen to point to the private array L of module AImpl .
When that happens, changes to L may change the value of y, contrary to what
is predicted by the theory. In our example, our implementation of insert will
change the value of y, unless the parameter x is equal to the initial value of y.
This situation is called abstract aliasing [18].

To avoid the problem, existing solutions [18, 20, 16] impose a series of program-
ming restrictions, which guarantee absence of abstract aliasing: if two variables are
not known to be dependent then they can be assumed independent. Unfortunately,
these solutions come at a price. One problem is formal complication: the theories ei-
ther introducenew formalisms (universes in [20], packing and unpacking in [16] or a
big collection of ad hoc rules [18]). Another problem is inflexibility: the restrictions
imposed rule out several useful implementation patterns. These patterns have to
do with objects that cross encapsulation boundaries and with sharing.

The contribution of this paper is a formal theory that supports specification
variables and pointers without any programming restriction. The basic idea is
to make the specification language strong enough to express the property “at
the present state the values of x and y are independent”, i.e. absence of abstract
aliasing. Because this property is expressible as a state predicate, it can be
asserted and assumed by the user of the theory at any point where it is needed.
This means that it is not necessary for the programming theory to ensure that it
is always true and thus to impose any restriction whatsoever. Furthermore, our
approach is very simple in that it does not introduce any new formal concept:
dynamic frames are a special case of specification variables and they are handled
in exactly the same way by the user of the theory.

2 Theory of Dynamic Frames

2.1 Notation

Here we introduce some of the notation to be used in the rest of the paper.
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Equality. The operator = has the same semantics as = but lowest precedence.
It is used to reduce the number of parentheses in expressions.

Sets and Set Notation. The set of booleans { ,⊥} is denoted B. Set compre-
hension is denoted {x ∈ D · P} where D is a set and P is a boolean expression
with free occurrences of variable x.

If i, j are integers, then the sets {i, ..j} and {i, .., j} are defined as follows:

{i, ..j} = {x ∈ Z · i ≤ x < j}
{i, .., j} = {x ∈ Z · i ≤ x ≤ j}

Functions. Functions are introduced using syntax λx ∈ D · B where D is the
domain and B is the body of the function. Operator Dom extracts the domain
of a function. Function application is denoted by juxtaposition. The domain
restriction operator � and the one-point update �→ | operator are defined by:

f � D = λx ∈ D ∩Dom f · f x
y �→ z | f = λx ∈ {y} ∪Dom f · if x = y then z else f x

Lists. A list L is a function whose domain is {0, ..i} for some natural number i
called the length of L and denoted #L. We can use syntax [x; y; ...] to construct
lists. The concatenation of lists L and M is denoted L	M . Notation L[i; ..j]
extracts the part of the list between indices i (incl.) and j (excl.). The predicate
disjoint takes a list of sets L and asserts that the sets in L are mutually disjoint.
Formally:

disjoint L = ∀i ∈ {0, ..#L} · ∀j ∈ {0, ..#L} · i = j ∨ L i ∩ L j = ∅

Open Expressions. In this paper, some identifiers stand for expressions that
may contain free variables. We may say e.g. that E is an expression on variables
x, y, .... We call such identifiers “open expressions”. Although use of open expres-
sions is practiced in some influential formal theories, like for example [10, 1, 9],
some people are not comfortable with them. Readers who do not like open ex-
pressions, may consider the occurrence of an expression E on variables x, y, ...
as a purely syntactical abbreviation of E x y ... where E is a function.

Let E, t be expressions and x a variable. Then E(t/x) denotes expression E
with all free occurrences of x substituted by t.

2.2 Basic Definitions

State and Variables. There is an infinite set of locations Loc. Any subset of Loc is
called a region. A state σ is a finite mapping from locations to values. A location
in Dom σ is used or allocated in σ. The set of all states is denoted Σ.

A specification variable is an expression that depends on the state (i.e. with
free occurrences of variable σ ∈ Σ). Two important specification variables are
the set of all allocated locations Used and the set of all unallocated locations
Unused, defined as follows:

Used = Dom σ Unused = Loc \Used
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For any specification variable v, the expression v′ is defined by:

v′ = v(σ′/σ)

The expression v′ is called the final value of v.
A program variable x is a special case of specification variable whose value is

the content of the state at a constant location addr x , called the address of x:

x = σ(addr x)

Imperative Specifications. An imperative specification is a boolean expression on
the state-valued variables σ ∈ Σ and σ′ ∈ Σ. The state σ is called the pre-state
and the state σ′ is called the post-state. Programming constructs are defined as
imperative specifications. The program ok leaves the state unchanged:

ok = σ′ = σ

If x is a program variable and E is an expression on σ, then the program x := E,
called concrete assignment, is defined by:

x := E = σ′ = addr x �→ E | σ

If l is a location-valued expression on σ and E is an expression on σ, then the
program ∗l := E, called pointer assignment, is defined by:

∗l := E = σ′ = l �→ E | σ

If P and Q are imperative specifications, then the specification P ;Q, called the
sequential composition of P and Q is defined by:

P ;Q = ∃σ′′ · P (σ′′/σ′) ∧Q(σ′′/σ)

If P is an imperative specification, then the specification var x · P , called local
program variable introduction, is defined by:

var x · P = ∃addr x ∈ Unused · P

In P , occurrences of the identifier x are abbreviations of expression σ(addr x).
More programming constructs can be introduced; here we present only those
used in this paper.

Modules. A module is a collection of name declarations and axioms. We introduce
a module using syntax module N , where N is the name of the module and we
conclude its definition using syntax end module . Keywords spec var and
prog var declare specification variables and program variables respectively.
Syntax import M is used to import all names and axioms of module M into
the module in which it appears. A module M refines (or implements) a module
N if its axioms imply the axioms of N .
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2.3 Dynamic Frames and Framing Specifications

A dynamic frame f is a specification variable whose value is a set of allocated
locations, i.e. f ⊆ Used. For any dynamic frame f , we define three new imper-
ative specifications. The preservation Ξf is satisfied by every computation that
does not touch region f . The modification Δf is satisfied by every computation
that only touches region f or at most allocates new memory. Finally, the swing-
ing pivots requirement Λf does not allow f to increase in any way other than
allocation of new memory. The formal definitions are:

Ξf = σ′ � f = σ � f Δf = Ξ(Used \ f) Λf = f ′ ⊆ f ∪Unused

Let f be a dynamic frame. Let v be a specification variable. The state condi-
tion f frames v is defined as follows:

f frames v = ∀σ′ · Ξ f ⇒ v′ = v

In a state σ in which this condition is true, we say that f frames v or that f is
a frame for v. When that happens, v depends only on locations in f , i.e. leaving
those locations untouched preserves the value of v. There can be more than one
variable to the right of frames :

f frames (x, y, ...) = f frames x ∧ f frames y ∧ ...

Framing properties are usually introduced as axioms in a module. The imple-
menter of the module is then obliged to provide a definition for the specification
variables and their frames such that the framing property is always true. For
example, in the following definitions, Module CImpl refines Module C.

module C
spec var x ∈ Z , f ⊆ Used
f frames x
end module

module CImpl
prog var y ∈ Z , z ∈ Z
spec var x = y + z , f = {addr y , addr z}
end module

Independence of two variables (absence of abstract aliasing) is expressible as
disjointness of dynamic frames. In particular, if f is the frame of x and g is the
frame of y and the f, g are disjoint, then the specification variables x and y are
independent. If we want to change only variable x, then we frame on f , which
guarantees preservation of y (and all other known and unknown specification
variables that are independent of x):

f frames x ∧ g frames y ∧ disjoint [f ; g] ∧ Δf ⇒ y′ = y

Disjointness of frames is an important property and therefore one we want
to preserve. To do that, dynamic frames need to be framed too. We usually
axiomatize a dynamic frame to frame itself, i.e. f frames (f, x, ...). Given self-
framing dynamic frames, a way to preserve disjointness is the conjunction of
framing on f with the swinging pivots requirement on f . Suppose that g is a
self-framing frame disjoint from f . Then Δf ∧ Λf preserves the disjointness:

disjoint [f ; g] ∧ Δf ∧ Λf ⇒ disjoint [f ′; g′] (6)
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Intuitively, the reason is that Δf preserves g while Λf ensures that f only grows
with previously unallocated locations, i.e. with locations that are not in g. The
formal proof is found in [14]. Notice that the implementer of Δf ∧ Λf does
not even have to know g, which makes the property (6) very useful for modular
reasoning.

The combination of Δ and Λ is very useful. It is a good idea to give it its own
notation. Suppose that:

f frames (f, x, y, z, ...)

is given as an axiom. Then, we define abstract assignment to specification vari-
able x (and similarly for the other specification variables y, z, ...) as follows:

x := E = Δf ∧ Λf ∧ x′ = E ∧ y′ = y ∧ z′ = z ∧ ...

2.4 Objects

Basics. The theory of dynamic frames has already been exposed and it is or-
thogonal to object oriented programming. However, the examples that we use
are based on object orientation so we need some formal support for objects. This
section is by no means a complete formalization of object orientation.

There is a set O. The elements of O are called object references. The special
value null denotes the null reference. It is not included in O.

A specification attribute is an expression with free occurrences of the identifiers
σ ∈ Σ and self ∈ O. A program attribute x is a special case of specification
attribute such that

x = σ(addr x)

for some location addr x that depends on self but not on σ. The location addr x
is called the address of x. The keyword spec attr introduces specification at-
tributes. The keyword prog attr introduces program attributes. The defini-
tions for concrete assignment and abstract assignment are valid for program and
specification attributes as well

The following abbreviation is introduced to facilitate the access of attributes
of object references other than self :

p.E = E(p/self )

for object reference p and any expression E that depends on self . The notation
(.) can be generalized to apply many times: (for any k ∈ N)

[E]0 = self [E]k+1 = [E]k.E

We use three specification attributes, the initialization constraint init , the
invariant inv and the representation region rep. These specification attributes
obey the following axioms for all object references and states:

init ∈ B inv ∈ B init ⇒ inv inv ⇒ rep ⊆ Used (7)
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For our convenience we specify that the representation region of the null reference
is empty:

null.rep = ∅

If o is an object reference, l is an identifier and x, y, ... are values, then
o.l(x; y; ...) is an imperative specification called method invocation of l on o with
parameters x; y; ....

Class Specifications. A class is a set of object references. The specification of
class C is a collection of axioms that begins with class C and ends with keyword
end class . In each axiom, the identifier self is implicitly universally quantified
over C, and the identifiers σ, σ′ are implicitly universally quantified over Σ.
Within the specification of C, the identifier self represents the current object
reference. There are usually two kinds of axioms in a class specification: the
attribute specifications and the method specifications.

Attribute Specifications. The attribute specifications axiomatize the specifica-
tion and program attributes of a class. In a class implementation, the attribute
specifications have the form a = E, where a is a specification attribute and E is
an expression.

Framing properties are attribute specifications. Frequently we assert that
the representation region frames itself, the invariant and other specification at-
tributes, i.e.:

inv ⇒ rep frames (rep , inv , ...)

There are cases, like IteratorSpec of Sect. 3.3, where we do not use such framing.

Method Specifications. Method specifications have the form:

∀x · ∀y · ... self .l(x; y; ...) ⇒ S (8)

where l is an identifier, x, y, ... are data-valued identifiers and S is an imperative
specification, called the body of method l. The expression (8) is abbreviated by

method l(x; y; ...) · S

In a class implementation, S must be a program.

Object Creation. To create a new object of class C, we allocate fresh memory for
its representation region and we ensure that its initialization condition is met.
This is all done by the specification x := new C defined as follows:

x := new C
= Δ{addr x} ∧ x′ ∈ C ∧ (x.init)′ ∧ (x.rep)′ ⊆ Unused \ {addr x}

where x is a program variable.
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3 Examples

In this section, we present some examples of specification and implementation
in our theory. Proofs of correctness are omitted for lack of space; the reader is
instead referred to [13] and [14]. Also, for the sake of brevity, we have omitted all
queries from the class specifications, because they add nothing to the examples.

3.1 Lists

This example concerns the specification and implementation of a class List that
formalizes lists of integers. The specification comes in a module named ListSpec.
It introduces the class List and a specification attribute L whose value is the
represented list. The frame rep frames itself, the invariant and L. The initial
value of L is the empty list.

module ListSpec
class List
spec attr L
inv ⇒ L ∈ Z∗ ∧ rep frames (rep, inv , L)
init ⇒ L = []

The method insert inserts an item at the beginning of the list:

method insert(x) · inv ∧ x ∈ Z ⇒ (L := [x]	L)

The method cut takes two parameters, an address l and an integer pos . It
breaks the list in two (at the point where pos is pointing). The first part of the
old list is returned as a result (the address l serves as returning address). The
second part is the new value of the current list. The specification of cut allows
this method to be implemented by pointer operations: in particular, it allows
the representation region of the returned list to contain memory that used to
belong to the representation region of self . The final representation regions of
the two lists are disjoint:

method cut(l; pos)·
inv ∧ l ∈ Loc \ rep ∧ pos ∈ {0, ..,#L}

⇒ Δ({l} ∪ rep) ∧ L′ = L[pos ; ..#L] ∧ inv ′ ∧ Λrep
∧ σ′l ∈ List ∧ (σl.L)′ = L[0; ..pos ] ∧ (σl.inv)′

∧ (σl.rep)′ ⊆ rep ∪Unused ∧ disjoint [rep ; σl.rep ; {l}]

Finally, the method paste concatenates a list to the beginning of the cur-
rent list. The initial representation regions of the two lists must be disjoint.
The specification says that the representation region of the parameter may be
“swallowed” by the representation region of the current list object. This allows
implementation with pointer operations:
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method paste(p)·
inv ∧ p ∈ List ∧ p.inv ∧ rep ∩ p.rep = ∅

⇒ Δ(rep ∪ p.rep) ∧ L′ = p.L	L ∧ inv ′

∧ rep′ ⊆ rep ∪Unused ∪ p.rep
end class

end module

To implement ListSpec, we define a new module ListImpl . We use a standard
linked list implementation. The nodes are object references with program at-
tributes val and next , where val stores a list item and next refers to the next
node in list (or is equal to null if there is no next node). The list object has a
reference head to the first node.

module ListImpl
class Node
prog attr val , next
init = next = null ∧ val ∈ Z
rep = {addr val , addr next}

end class

class List
prog attr head

The specification attributes and the methods for linked lists are implemented
as follows:

spec attr len = min{i ∈ N · head .[next ]i = null}
spec attr L = λi ∈ {0, ..len} · head .[next ]i.val
rep = {addr head} ∪

⋃
i ∈ {0, ..len} · head .[next ]i.rep

inv = (∀i ∈ {0, ..len} · head .[next ]i.val ∈ Z)
∧ disjoint ( [{addr head}]

	 λi ∈ {0, ..len} · head .[next ]i.rep )
init = head = null

method insert(x) · var n·
n := new Node ; n.val := x ; n.next := head ; head := n

method cut(l; pos)·
∗l := new List

; if pos = 0 then ok
else (var q · σl.head := head ; q := head .[next ]pos−1

; head := q.next ; q.next := null )
method paste(p)·
if p.head = null then ok
else (var q·

q := p.head .[next ]p.len−1 ; q.next := head ; head := p.head )
end class

end module
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3.2 Sets

This example presents the specification SetSpec of a class Set that formalizes
sets of integers. The class supports an insertion method insert and a method
paste that performs the union of the current set to its parameter. Like its List
counterpart, the method paste allows the current set object to “swallow” part
of the representation region of the parameter:

module SetSpec
class Set
spec attr S
inv ⇒ S ⊆ Z ∧ rep frames (S, rep, inv)
init ⇒ S = ∅

method insert(x) · inv ∧ x ∈ Z ⇒ (S := S ∪ {x})
method paste(p)·

inv ∧ p ∈ Set ∧ p.inv ∧ rep ∩ p.rep = ∅
⇒ Δ(rep ∪ p.rep) ∧ S′ = p.S ∪ S ∧ inv ′

∧ rep′ ⊆ rep ∪Unused ∪ p.rep
end class

end module

We can implement the class by using an internal list object:

module SetImpl
import ListSpec

class Set
spec attr S
prog attr contents
inv = contents ∈ List ∧ contents.inv

∧ addr contents �∈ contents.rep
init = inv ∧ contents.init
rep = {addr contents} ∪ contents.rep
S = {x ∈ Z · ∃i ∈ {0, ..#(contents.L)} · contents.L i = x}

method insert(x) · contents.insert(x)
method paste(p) · contents.paste(p.contents)

end class
end module

3.3 Iterators

This example shows how the theory handles sharing and friend classes. We spec-
ify iterators in a module IteratorSpec which imports the ListSpec module. An
iterator has a list attached to it, given by the value of the program attribute attl .
It also points to an item in the list, or perhaps to the end of the list. The index
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of the pointed item is given by the value of the specification attribute pos . The
representation region of an iterator is disjoint from that of the attached list.

module IteratorSpec
import ListSpec

class Iterator
prog attr attl
spec attr pos

inv
⇒ (attl = null ∨ (attl ∈ List ∧ attl.inv))
∧ disjoint [rep; attl.rep] ∧ rep frames (attl , rep)
∧ (rep ∪ attl.rep) frames inv

inv ∧ attl �= null
⇒ pos ∈ {0, .., attl.(#L)} ∧ (rep ∪ attl .rep) frames pos

init ⇒ attl = null

The class of iterators supports methods for attachment and traversal:

method attach(l)·
inv ∧ l ∈ List ∧ l.inv

⇒ Δrep ∧ inv ′ ∧ pos ′ = 0 ∧ attl ′ = l ∧ Λrep
method next()·

inv ∧ pos < attl .(#L)
⇒ Δrep ∧ inv ′ ∧ pos ′ = pos + 1 ∧ attl ′ = attl ∧ Λrep

end class
end module

The implementation of iterators imports ListImpl . This means that the im-
plementer of the Iterator class has access to the implementation of the List
class. This makes Iterator a friend of List . Compare that to the implementation
of the Set class which imports ListSpec and therefore does not have access to
the implementation of List : the class Set is not a friend of List . Iterators are
implemented as pointers to list nodes:

module IteratorImpl
import ListImpl

class Iterator
prog attr attl , currentNode
spec attr pos

inv = (attl = null ∨ (attl ∈ List ∧ attl.inv))
∧ (attl �= null ⇒ pos ∈ {0, .., attl.(#L)}) ∧ rep ⊆ Used
∧ disjoint [rep ; attl.rep]

pos = min{i ∈ N · attl.head .[next ]i = currentNode}
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rep = {addr attl , addr currentNode}
init = attl = currentNode = null

method attach(l) · attl := l ; currentNode := l.head
method next() · currentNode := currentNode.next

end class
end module

4 Discussion

The theory of Dynamic Frames is part of the more general theory of object ori-
ented refinement that appears in [14]. It is an application of the design principles
of decoupling and unification as advertised in [11, 12]: it decouples the feature
of alias control from other formal constructs, like the class, the module or even
the object and it unifies frame specifications with functional specifications.

The two important merits of the theory are simplicity and generality. It is
formally simple because it solves the problem without introducing any new con-
cept, formalism or axiomatization (dynamic frames are a special case of specifi-
cation variables). It is general because, unlike competing theories, to guarantee
its soundness we do not need to enforce any programming restrictions.

One objection to the theory of Dynamic Frames is that specifications in it
may become too verbose. This is always a danger when designing a more flexible
system: the extra generality provides more options to the user; thus more things
to say. However, there are good ways to deal with this problem. For example,
common specification cases may be given their own notation and reasoning laws.
Such specifications include the swinging pivots requirement and the abstract
assignment. Further notational and reasoning conveniences are found in [14].

4.1 Related Work

Older Approaches. Leino and Nelson’s work [18] is a big collection of rules that
deal with some of the most frequent cases of the problem. The approach has
considerable complexity and it does not address all cases uniformly. Its most
drastic restriction is that it forces each method to obey the swinging pivots
requirement. This, even in its less restrictive version [5], rules out the implemen-
tation for paste in Sect. 3.1. In a variant [19], the authors use data groups [15]
instead of variables in frame specifications. However, absence of abstract aliasing
is still not expressible in the specification language and thus the swinging pivots
requirement together with other restrictions similar to those in [18] are enforced.

The Universes type system [20] is a much simpler and more uniform approach
to the problem, also adopted by the JML language [21, 6]. It too imposes restric-
tions that have to do with objects travelling through encapsulation boundaries.
Our implementation for List is possible in [20], although somewhat awkwardly,
by declaring the node objects “peers” to their containing list object. Our im-
plementation of the paste method for Set is impossible, because for the peer
solution to work, Set and List should be declared in the same module.
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Boogie. A less restrictive variant of Universes is the Boogie methodology [2,
16, 4, 17] used in Spec# [3]. Its most important improvement over Universes is
that it allows objects to cross encapsulation boundaries. However, the Boogie
methodology has the same visibility restriction concerning “peer” objects as
the Universes type system: a class of shareable objects must be aware of all its
sharing clients. This causes a modularity problem: the creation of a new sharing
client of a class C means that the specification of C must be revised. Moreover, if
C happens to be a library class whose specification and implementation cannot
be modified, the creation of new sharing clients is not even possible [16].

The Dynamic Frames theory imposes no such restriction and therefore it is
more flexible than Boogie. The Iterator example of Sect. 3.3 shows an example
of sharing. In this particular example, the class Iterator happens to be a friend
of the class List . This is a coincidence. An example of sharing without friendship
appears in the treatment of the Observer pattern in [14].

Separation Logic. The development of separation logic [7, 23] attacks the framing
problem from a different more low-level perspective. The idea is to extend the
condition language of Hoare logic with a separating conjunction operator �, with
the following intuitive semantics: condition P �Q is true if and only if P and Q
hold for disjoint parts of the heap. Framing is handled by the following frame
rule:

{P}C{Q}
{P � R}C{Q � R}

where R is a condition that has none of the variables modified by C. The idea
is that the implementer of a program C proves the local property P{C}Q and
the client uses the frame rule to prove the wider property {P �R}C{Q�R} that
the client needs. Separation logic handles well many intricate low-level examples
with pointers, even with pointer arithmetic, but until recently it has not been
considered in the presence of information hiding.

O’Hearn et al.’s work [8] is a first attempt to deal with information hiding
in separation logic. The solution does not scale to dynamic modularity, i.e. it
deals only with single instances of a hidden data structure [22]. Thus, it is not
suitable for the dynamic modularity of object orientation in which the solution
must usually be applied to arbitrarily many objects.

Parkinson and Bierman [22] provide a much more complete treatment based
on their introduction of abstract predicates (very similar to our notion of invari-
ant). However, this work is heavily based on the Frame Rule, which insists on
complete heap-separation of the client predicate R from the implementer’s pred-
icates P,Q. This is inappropriate in the case of sharing, like the example of Sect.
3.3. A client of the IteratorSpec module may hold two iterators attached to the
same list object. The representation of their pos specification attribute depends
on their representation regions as well as the representation region of the shared
list object. Thus, the representations of these two specification attributes are
not heap-separated. The dynamic frames theory can show that invoking next on
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one of them preserves the value of the other. It is unclear how to do that using
the frame rule of separation logic.

5 Conclusion

This paper has introduced Dynamic Frames, a simple and flexible solution to
the frame problem for programming theories that support both specification
variables and pointers. The solution is simple in that it uses the already existing
and well-understood formalism of specification variables. It is more flexible than
other approaches because it does not introduce any methodological restrictions
for the programmer. Dynamic Frames is part of the object oriented theory of
[14]. The reader is referred to [14] for further notational and methodological
conventions, metatheorems and examples.
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Abstract. A two-level data transformation consists of a type-level transforma-
tion of a data format coupled with value-level transformations of data instances
corresponding to that format. Examples of two-level data transformations include
XML schema evolution coupled with document migration, and data mappings
used for interoperability and persistence.

We provide a formal treatment of two-level data transformations that is type-
safe in the sense that the well-formedness of the value-level transformations with
respect to the type-level transformation is guarded by a strong type system. We
rely on various techniques for generic functional programming to implement the
formalization in Haskell.

The formalization addresses various two-level transformation scenarios, cov-
ering fully automated as well as user-driven transformations, and allowing trans-
formations that are information-preserving or not. In each case, two-level
transformations are disciplined by one-step transformation rules and type-level
transformations induce value-level transformations. We demonstrate an example
hierarchical-relational mapping and subsequent migration of relational data in-
duced by hierarchical format evolution.

Keywords: Two-level transformation, Program calculation, Refinement calculus,
Strategic term rewriting, Generalized abstract datatypes, Generic programming,
Coupled transformation, Format evolution, Data mappings.

1 Introduction

Changes in data types call for corresponding changes in data values. For instance,
when a database schema is adapted in the context of system maintenance, the persistent
data residing in the system’s database needs to be migrated to conform to the adapted
schema. Or, when the grammar of a programming language is modified, the source code
of existing applications and libraries written in that language must be upgraded to the
new language version. These scenarios are examples of format evolution [12] where a
data structure and corresponding data instances are transformed in small, infrequent,
steps, interactively driven during system maintenance.

Similar coupled transformation of data types and corresponding data instances are
involved in data mappings [13]. Such mappings generally occur on the boundaries be-
tween programming paradigms, where for example object models, relational schemas,
and XML schemas need to be mapped onto each other for purposes of interoperabil-
ity or persistence. Data mappings tend not to be evolutionary, but rather involve fully
automatic translation of entire data structures, carried out during system operation.
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Both format evolution and data mappings are instances of what we call two-level
transformations, where a type-level transformation (of the data type) determines or con-
strains value-level transformations (of the data instances).

When developing a two-level data transformation system, a challenge arises regard-
ing the degree of type-safety that can be achieved. Two approaches to deal with this
challenge are common: (i) define a universal representation in which any data can be
encoded, or (ii) merge the input, output, and intermediate types into a single union type.
Transformation steps can then be implemented as type-preserving transformations on
either the universal representation or the union type. The first approach is simple, but
practically abandons all typing. The second approach maintains a certain degree of
typing at the cost of the effort of defining the union type. In either case, defensive
programming and extensive testing are required to ensure that the transformation is
well-behaved.

In this paper, we show how two-level data transformation systems can be devel-
oped in a type-safe manner. In this approach, value-level transformations are statically
checked to be well-typed with respect to the type-level transformations to which they
are associated, and well-typed composition of type-level transformation steps induces
well-typed compositions of value-level transformation steps. Unlike the mentioned ap-
proaches, our solution does not compromise precise typing of intermediate values.

In Section 2 we present a formalization of two-level transformations based on a the-
ory of data refinement. Apart from some general laws for any transformation system,
we present two groups of laws that cater for data mapping and format evolution scenar-
ios, respectively. In Section 3, we implement our formalization in the functional pro-
gramming language Haskell. We rely on various techniques for data-generic functional
programming with strong mathematical foundations. In Section 4 we return to the data
mapping and format evolution scenarios and demonstrate them by example. Section 5
discusses related work, and Section 6 discusses future extensions and applications.

2 Data Refinement Calculus

The theory which underlies our approach to two-level transformations finds its roots
in a data refinement calculus which originated in [17,19,20]. This calculus has been
applied to relational database design [21] reverse engineering of legacy databases [18].

Abstraction and Representation. Two-level transformation steps are modeled by in-
equations between datatypes and accompanying functions of the following form:

A

to

��� B

from

��

Here, the inequation A � B models a type-level transformation where datatype A gets
transformed into datatype B, and abbreviates the fact that there is an injective, total
relation to (the representation relation) and a surjective, possibly partial function from
(the abstraction relation) such that from · to = idA, where idA is the identity function
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on datatype A. Though in general to can be a relation, it is usually a function as well,
and functions to and from model the value-level transformations that accompany the
type-level transformation.

Since the equality of two relations is a bi-inclusion we have two readings of the
above equation: idA ⊆ from · to, which ensures that every inhabitant of datatypeA has
a representation in datatypeB; and from · to ⊆ idA, which prevents “confusion” in the
transformation process, in the sense that only one inhabitant of the datatype A will be
transformed to a given representative in datatype B.

In a situation where the abstraction is also a representation and vice-versa we have
an isomorphism A ∼= B, a special case of �-law which works in both directions.

Thus, type-level transformations are not arbitrary. They arise from the existence of
value-level transformations whose properties preclude data mixup. When applied left-
to-right, an inequation A � B will preserve or enrich information content, while ap-
plied in the right-to-left direction it will preserve or restrict information content.

Below we will present a series of general laws for composition of two-level trans-
formations that form a framework for any two-level transformation system. This frame-
work can be instantiated with sets of problem-specific two-level transformations steps
to obtain a two-level transformation system for a specific purpose. We will show sets of
rules for data mapping and for format evolution.

Sequential and Structural Composition Laws. Individual two-level transformation
steps can be chained by sequentially composing abstractions and representations:

if A

to

��� B

from

�� and B

to′

��� C

from ′

�� then A

to′·to
��� C

from·from ′

��

Such transitivity, together with the fact that any datatype can be transformed to itself (re-
flexivity), witnessed by identity value-level transformations (from = to = id), means
that � is a preorder.

Two-level transformation steps can be applied, not only at the top-level of a datatype,
but also at deeper levels. Such transformations on locally nested datatypes must then be
propagated to the global datatype in which they are embedded. For example, a transfor-
mation on a local XML element must induce a transformation on the level of a complete
XML document. The following law captures such upward propagation:

if A

to

��� B

from

�� then FA

F to
��

� FB

F from

�� (1)

Here F is a functor that models the context in which a transformation step is performed.
Recall that a functor F from categories C to D is a mapping that (i) associates to each
object X in C an object FX in D, and (ii) associates to each morphism f : X → Y
in C a morphism Ff : FX → FY in D such that identity morphisms and composition
of morphisms are preserved. When modeling two-level transformations, the objects X
and Y are data types, and the morphism f and g are value-level transformations.
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Thus, a functor F captures (i) the embedding of local datatypes A or B inside global
datatypes, and (ii) the lifting of value-level transformations to and from on the local
datatypes to value-level transformations on the global datatypes, in a way such that
the preorder (transitivity and reflexivity) on local datatypes is preserved on the global
datatypes. Generally, a functor that mediates between a global datatype and a local
datatype is constructed from primitive functors, such as products A×B, sums A+B,
finite maps A ⇀ B, sequences A�, sets 2A, etc. By modeling the context of a local
datatype by a composition of such functors, the propagation of two-level transforma-
tions from local to global datatype can be derived.

Rules for Data Mapping and Format Evolution. In [1] we presented a set of two-
level transformation rules that can be combined with the general laws presented above
into a calculator that automatically converts a hierarchic, possibly recursive data struc-
ture to a flat, relational representation. These rules are summarized in Figure 1. They are
designed for step-wise elimination of sums, sets, optionals, lists, recursion, and such, in
favor of finite maps and products. When applied according to an appropriate strategy,
they will lead to a normal form that consists of a product of basic types and maps, which
is readily translatable to a relational database schema in SQL. There are rules for elim-
ination and distribution, and a particularly challenging rule for recursion elimination,
which introduces pointers in the locations of recursive occurrences.

While data mappings rely on a automatic and fully systematic strategy for apply-
ing individual transformation rules, format evolution assumes more surgical and adhoc
modifications. For instance, new requirements might call for the introduction of a new
data field, or for the possible omission of a previously mandatory field. Figure 2 shows
a set of two-level transformation rules that cater for these scenarios. These rules for-
malize co-evolution of XML documents and their DTDs as discussed by Lämmel et
al [12]. Note that the rule for adding a field assumes that a new value x for that field
is somehow supplied. This may be done through a generic default for type B, through
interaction with a user or some other oracle, or by querying another part of the data.

3 Two-Level Transformations in Haskell

Our solution to modeling two-level data transformations in Haskell consists of four
components. Firstly, we will define a datatype to represent the types that are subject to
rewriting. Secondly, we will extend that datatype with a view constructor that can encap-
sulate the result of a type-level rewrite step together with the corresponding value-level
functions. Such encapsulation will allow type-changing rewrite steps to masquerade as
type-preserving ones. Thirdly, we define combinators that allow us to fuse local, single-
step transformations into a single global transformation. Finally, we provide functions
to release these transformations out of their type-preserving shell, thus obtaining the
corresponding type-changing, bi-directional data migration functions.

We will illustrate the Haskell encoding with this example transformation sequence:

(A+B)� � IN ⇀ (A+B) � (IN ⇀ A)× (IN ⇀ B)

This is a valid sequence according to rules (2) and (5) presented in Figure 1.
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Elimination and introduction

A�

seq2index

		
� IN ⇀ A

list

�� (2) 2A

set2fm

		∼= A ⇀ 1

dom

�� (3)

A + 1

opt-intro

		∼= 1 ⇀ A

opt-elim



 (4)

Distribution

A ⇀ (B + C)

uncojoin

��
� (A ⇀ B) × (A ⇀ C)

cojoin

�� (5)

A × (B + C)

distr


∼= (A × B) + (A × C)

undistr

�� (6)

(B + C) ⇀ A

unpeither
��∼= (B ⇀ A) × (C ⇀ A)

peither

�� (7)

Split, join, recursion

A ⇀ (B × (C ⇀ D))

unnjoin
��

� (A ⇀ B) × (A × C ⇀ D)

njoin

�� (8)

μF

rec-elim


� (K ⇀ F K) × K

rec-intro



 (9)

Fig. 1. One-step rules for a two-level transformation system that maps hierarchic, recursive data
structures to flat relational mappings. Only the names of type-level functions are given. More
details can be found elsewhere [20,21,1].

Representation of Types. Assume that IN will be represented by Haskell type Int ,
A ⇀ B by the data type Map a b (finite maps from standard library module Data.
Map), andA+B by data Either a b = Left a | Right b. We would like now to define
a rewriting strategy that converts type [Either a b ] to type (Map Int a,Map Int b),
building at the same time a function of type [Either a b ]→ (Map Int a,Map Int b)
to perform the data migration.

Both type-level and value-level components of this transformation will be performed
on the Haskell term-level, and to this end we need to represent types by terms. Rather
than resorting to an untyped universal representation of types, we define the following
type-safe representation, adapted from [8]:
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Enrichment and removal
add field

A

pairwith(b)

		
� A × B

project

�� (10)

Generalization and restriction
add alternative

A

inject

		
� A + B

uninject(a)

�� (11)

add optional

1

inject

		
� 1 + A

const1

�� (12)

allow empty list

A+

list2nelist

��
� A∗

nelist2list

�� (13)

allow repetition

A + 1

opt2seq

��
� A∗

seq2opt



 (14)

allow non-empty repetition

A

singleton

��
� A+

nehead

�� (15)

Fig. 2. One-step rules for a two-level transformation system for format evolution. These rules
formalize the discussion of XML format evolution of Lämmel et al [12].

data Type a where
Int :: Type Int
String :: Type String
One :: Type ()
List :: Type a → Type [a ]
Set :: Type a → Type (Set a)
Map :: Type a → Type b → Type (Map a b)
Either :: Type a → Type b → Type (Either a b)
Prod :: Type a → Type b → Type (a, b)
Tag :: String → Type a → Type a

This definition ensures that Type a can only be inhabited by representations of type a.
For example, the pre-defined type Int of integers is represented by the data constructor
Int of type Type Int , and the type [Int ] of lists of integers is represented by the value
List Int of type Type [Int ]. The Tag constructor allows us to tag types with names.

The datatype Type is an example of a generalized algebraic data type (GADT) [22],
a recent Haskell extension that allows to assign more precise types to data constructors
by restricting the variables of the datatype in the constructors’ result types. Note also
that the argument a of the Type datatype is a so-called phantom type [7], since no value
of type a needs to be provided when building a value of type Type a. Using a phantom
type we can represent a type at the term level without building any term of that type.

Going back to our example, our intended transformation must convert type represen-
tation List (Either a b) into Prod (Map Int a) (Map Int b).



290 A. Cunha, J.N. Oliveira, and J. Visser

Encapsulation of Type-Changing Rewrites. Whenever single-step rewrite rules are
intended to be applied repeatedly and at arbitrary depths inside terms, it is essential that
they are type-preserving [3,16]. Otherwise, ill-typed terms would be created as inter-
mediate or even as final results. But two-level data transformations are type-changing
in general. To resolve this tension, type-changing transformations will masquerade as
type-preserving ones.

The solution for masquerading type-changing transformation steps as type-preserv-
ing ones is simple, but ingenious. When rewriting a type representation, we do not
replace it, but augment it with the target type and with a pair of value-level functions
that allow conversion between values of the source and target type.

data Rep a b = Rep{to :: a → b, from :: b → a }
data View a where

View :: Rep a b → Type b → View (Type a)
showType :: View a → String

The View constructor expresses that a type a can be represented as a type b, denoted as
Rep a b, if there are functions to ::a → b and from ::b → a that allow data conversion
between one and the other. Note that only the source type a escapes from the View
constructor, while the target type b remains encapsulated — it is implicitly existentially
quantified1. The function showType just allows us to obtain a string representation of
the target type.

Now the type of type-preserving transformation steps is defined as follows2:
type Rule = ∀a.Type a → Maybe (View (Type a))

Note that the explicit quantification of the type variable a will allow us to apply the
same rewrite step of type Rule to various different subterms of a given type represen-
tation, e.g. to both Int and String in Prod Int String . Thus, when rewriting a type
representation we will not change its type, but just signal that it can also be viewed as a
different type.

We can now start encoding some transformation rules of our data refinement calcu-
lus. For instance, given value-level functions (see Figure 1):

list :: Map Int a → [a ]
seq2index :: [a ] → Map Int a
uncojoin :: Map a (Either b c) → (Map a b,Map a c)
cojoin :: (Map a b,Map a c) → Map a (Either b c)

the rule (2) that convert a list into a map, and the rule (5) that converts a map of sums
into a pair of maps can be defined as follows:

listmap :: Rule
listmap (List a) = Just (View rep (Map Int a))

where rep = Rep{to = seq2index , from = list }
listmap = Nothing
mapsum :: Rule
mapsum(Map a(Either b c))=Just (View rep (Prod (Map a b) (Map a c)))

1 View is somewhat similar to the folklore data Dynamic = ∀a.Dyn a (Type a), which
pairs a value of an existentially quantified type with its representation.

2 We model partiality with data Maybe a = Nothing | Just a .
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where rep = Rep{to = uncojoin , from = cojoin }
mapsum = Nothing

The remaining rules of Figure 1 can be implemented in a similar way.
The only rule that poses a significant technical challenge is rule (9) for recursion

elimination. We will only present an outline of our solution (more details in [5]), which
uses the Haskell class mechanism and monadic programming. Firstly, we represent the
fixpoint operator μ as follows:

newtype Mu f = In{out :: f (Mu f )}
data Type a where
...
Mu :: Dist f ⇒ (∀a.Type a → Type (f a)) → Type (Mu f )

Here f is a functor3, and the class constraint Dist f expresses that we require functors
to commute with monads. Rule (9) can now be implemented:

type Table f = (Map Int (f Int), Int)
fixastable :: Rule
fixastable (Mu f ) = Just (View rep (Prod (Map Int (f Int)) Int))

where rep = Rep{to = recelim, from = recintro}
fixastable = Nothing
recelim :: Dist f ⇒ Mu f → Table f
recintro :: Functor f ⇒ Table f → Mu f

Internally, recelim incrementally builds a table while traversing over a recursive data
instance. It uses monadic code to thread the growing table through the recursion pattern.

Strategy Combinators for Two-Level Transformation. To build a full two-level trans-
formation system, we must be able to apply two-level transformation steps sequentially,
alternatively, repetitively, and at arbitrary levels inside type representations. For this we
introduce strategy combinators for two-level term rewriting. They are similar to strategy
combinators for ordinary single-level term rewriting [16], except that they simultane-
ously fuse the type-level steps and the value-level steps. As we will see, the joint effect of
two-level strategy combinators is to combine the view introduced locally by individual
steps into a single view around the root of the representation of the target type.

Let us begin by supplying combinators for identity, sequential composition, and
structural composition of pairs of value-level functions:

idrep :: Rep a a
idrep = Rep{to = id , from = id }
comprep :: Rep a b → Rep b c → Rep a c
comprep f g = Rep{from = (from f ).(from g), to = (to g).(to f )}
maprep :: Functor f ⇒ Rep a b → Rep (f a) (f b)
maprep r = Rep{to = fmap (to r), from = fmap (from r)}

Using these combinators for pairs of value-level functions, we can define the two-level
combinators. Sequential composition is defined as follows4:

3 Functors are instances of: class Functor f where fmap :: (a → b) → f a → f b.
4 For composing partial functions we use the monadic do-notation, exploiting the fact that
Maybe is an instance of a Monad [23].
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(�) :: Rule → Rule → Rule
(f � g) a = do View r b ← f a

View s c ← g b
return (View (comprep r s) c)

We further define combinators for left-biased choice (f % g tries f , and if it fails, tries
g instead), a “do nothing” combinator, and repetitive application of a rule until it fails5:

(%) :: Rule → Rule → Rule
(f % g) x = f x ‘mplus‘ g x
nop :: Rule
nop x = Just (View idrep x )
many :: Rule → Rule
many r = (r �many r)% nop

These combinators suffice for combining transformations at a single level inside a term.
Two-level combinators that descend into terms are more challenging to define. They

rely on the functorial structure of type representations and use maprep defined above to
push pairs of value-level functions up through functors. An example is the once com-
binator that applies a given rule exactly once somewhere inside a type representation:

once :: Rule → Rule
once r Int = r Int
once r (List a) = r (List a) ‘mplus‘

(do View s b ← once r a
return (View (maprep s) (List b)))

...
Note that once performs a pre-order which stops as soon as its argument rule is applied
successfully. Other strategy combinators can be defined similarly.

It is now possible to combine individual two-level transformation rules into the fol-
lowing rewrite system:

flatten :: Rule
flatten = many (once (listmap %mapsum % ...))

which can be successfully applied to our running example, as the following interaction
with the Haskell interpreter shows:

> flatten (List (Either Int Bool))
Just (View (Rep <to> <from>) (Prod (Map Int Int) (Map Int Bool )))

Note that the result shown by the interpreter is a String representation of a value of type
Maybe (View (Type (List (Either Int Bool)))). Placeholders <to> and <from>
are shown in place of function objects, which are not printable. Thus, the existentially
quantified result type of the transformation is not available statically, though its string
representation is available dynamically.

Unleashing Composed Data Migration Functions. So far, we have developed tech-
niques to implement rewrite strategies on types, building at the same time functions
for data migration between the original and the resulting type. Unfortunately, it is still
not possible to use such functions with the machinery developed so far. The problem

5 mplus :: Maybe a → Maybe a → Maybe a returns the first argument if it is constructed
with Just or the second argument otherwise.
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is that the target type is encapsulated as an existentially quantified type variable inside
the View constructor. This was necessary to make the type-changing transformation
masquerade as a type-preserving one.

We can access the hidden data migration functions in two ways. If we happen to
know what the target type is, we can simply take them out as follows:

forth :: View (Type a) → Type b → a → Maybe b
forth (View rep tb′) tb a = do {Eq ← teq tb tb′; return (to rep a)}
back :: View (Type a) → Type b → b → Maybe a
back (View rep tb′) tb b = do {Eq ← teq tb tb′; return (from rep b)}

Again, GADTs are of great help in defining a data type that provides evidence to the
type-checker that two types are equal (cf [22]):

data Equal a b where
Eq :: Equal a a

Notice that a value Eq of type Equal a b is a witness that types a and b are indeed
equal. A function that provides such a witness based on the structural equality of type
representations is then fairly easy to implement.

teq :: Type a → Type b → Maybe (Equal a b)
teq Int Int = return Eq
teq (List a) (List b) = do {Eq ← teq a b; return Eq }
...

In the format evolution scenario, where a transformation is specified manually at system
design or maintenance time, the static availability of the target type is realistic.

But in general, and in particular in the data mapping scenario, we should expect
the target type to be statically unknown, and only available dynamically. In that case
we can access the result type via a staged approach. In the first stage, we apply the
transformation to obtain its result type dynamically, using showType , in the form of its
string representation. In the second stage, that string representation is incorporated in
our source code, and gets parsed and compiled and becomes statically available after
all. Below, we will use such staging in Haskell interpreter sessions.

4 Application Scenarios

We demonstrate two-level transformations with two small, but representative examples.

Evolution of a Music Album Format. Suppose rudimentary music album information
is kept in XML files that conform to the following XML Schema fragment:

<element name="Album" type="AlbumType"/>
<complexType name="AlbumType">
<attribute name="ASIN" type="string"/>
<attribute name="Title" type="string"/>
<attribute name="Artist" type="string"/>
<attribute name="Format"><simpleType base="string">

<enumeration value="LP"/><enumeration value="CD"/>
</simpleType></attribute>

</complexType>
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In a first evolution step, we want to allow an additional media type beyond CDs and
LPs, namely DVDs. In a second step, we want to add a list of track names to the format.

We can represent the album schema and an example album document as follows:
albumFormat = Tag "Album" (

Prod (Tag "ASIN" String) (
Prod (Tag "Title" String) (
Prod (Tag "Artist" String)

( Tag "Format" (Either (Tag "LP" One) (Tag "CD" One))))))
lp = ("B000002UB2", ("Abbey Road", ("The Beatles",Left ())))

With a generic show function gshow :: Type a → a → String , taking the format as
first argument, we can print the album with tag information included:

> putStrLn $ gshow albumFormat lp
Album = (ASIN = "B000002UB2", ( Title = "Abbey Road", (

Artist = "The Beatles",Format = Left (LP = ()))))
This function also ensures us that lp is actually well-typed with respect to album
Format.

To enable evolution, we define the following additional combinators for adding al-
ternatives, adding fields, and triggering rules inside tagged types:

addalt :: Type b → Rule
addalt b a = Just (View rep (Either a b))

where rep = Rep{to = Left , from = λ(Left x )→ x }
type Query b = ∀a.Type a → a → b
addfield :: Type b → Query b → Rule
addfield b f a = Just (View rep (Prod a b))

where rep = Rep{to = λy → (y, f a y), from = fst }
inside :: String → Rule → Rule
inside n r (Tag m a)
| n ≡ m = do {View r b ← r a; return (View r (Tag m b))}

inside = Nothing
Note that the addalt combinator inserts and removes Left constructors on the data level.
The addfield combinator takes as additional argument a query that gets applied to the
argument of to to come up with a value of type b, which gets inserted into the new field.

With these combinators in place, we can specify the desired evolution steps:
addDvd = once (inside "Format" (addalt (Tag "DVD" One)))
addTracks =once(inside "Album"(addfield (List(Tag "Title"String)) q))

where q :: Query [String ]
q (Prod (Tag "ASIN" String) ) (asin , ) = ...
q = [ ]

The query q uses the album identifier to lookup from another data source, e.g. via a
query over the internet6. Subsequently, we can run the type-level transformation, and
print the result type:

> let (Just vw) = (addTracks � addDvd ) albumFormat
> showType vw

6 For such a side effect, an impure function is needed.
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Tag "Album" (Prod (Prod (
Tag "ASIN" String) (Prod (
Tag "Title" String)(Prod (
Tag "Artist" String)(
Tag "Format" (Either (Either (

Tag "LP" One)(Tag "CD" One)) (Tag "DVD" One))))) (
List (Tag "Title" String))))

The value-level transformation is executed in forward direction as follows:
> let targetFormat = Tag "Album" (Prod (Prod (...
> let (Just targetAlbum) = forth vw targetFormat lp
> putStrLn $ gshow targetFormat targetAlbum
Album = ((ASIN = "B000002UB2", ( Title = "Abbey Road", (

Artist = "The Beatles",Format = Left (Left (LP = ())))),
[Title = "Come Together", ...]))

In backward direction, we can recover the original LP:
> let (Just originalAlbum) = back vw targetFormat targetAlbum
> lp ≡ originalAlbum
True

Any attempt to execute the backward value-level transformation on a DVD, i.e. on an
album that uses a newly added alternative, will fail.

Mapping Album Data to Relational Tables. We pursue our music album example to
demonstrate data mappings. In this case, we are interested in mapping the hierarchi-
cal album format, which models the XML schema, onto a flat schema, which could be
stored in a relational database. This data mapping is performed by the flatten trans-
formation defined above, but before applying it, we need to prepare the format in two
respects. Firstly, we want the enumeration type for formats to be stored as integers.
Secondly, we need to remove the tags from our datatype, since the flatten transfor-
mation assumes their absence. For brevity we omit the definitions of enum2int and
removetags ; they are easy to define.

Our relational mapping for music albums is now defined and applied to both our
original and our evolved formats as follows:

> let toRDB = once enum2int � removetags � flatten
> let (Just vw0 ) = toRDB (List albumFormat)
> showType vw0
Map Int (Prod (Prod (Prod String String) String) Int)
> let (Just vw1 ) = toRDB (List targetFormat)
> showType vw1
Prod (Map Int (Prod (Prod (Prod String String) String) Int)) (

Map (Prod Int Int) String)
Note that we apply the transformations to the type of lists of albums – we want to store
a collection of them. The original format is mapped to a single table, which maps album
numbers to 4-tuples of ASIN, title, name, and an integer that represents the format. The
target format is mapped to two tables, where the extra table maps compound keys of
album and track numbers to track names.
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Let’s store our first two albums in relational form:
> let dbs0 = Map Int (Prod (Prod (Prod String String) String) Int)
> let (Just db) = forth vw0 dbs0 [lp, cd]
> db
{0 := ((("B000002UB2","Abbey Road"),"The Beatles"), 0),
1 := ((("B000002HCO","Debut"),"Bjork"), 1)}

As expected, two records are produced with different keys. The last 1 indicates that the
second album is a CD.

The reverse value-level transformation restores flattened data to hierarchical form.
By composing the value-level transformations induced by data mappings with those
induced by format evolution, we can migrate from and old database to a new one7:

> let (Just lvw) = (addTracks � addDvd) (List albumFormat)
> let dbs1 = Prod (Map ...) (Map (Prod Int Int) String)
> let (Just x ) = back vw0 dbs0 db
> let (Just y) = forth lvw (List targetFormat) x
> let (Just z ) = forth vw1 dbs1 y
> z
({0 := ((("B000002UB2","Abbey Road"),"The Beatles"), 0),

1 := ((("B000002HCO","Debut"),"Bjork"), 1)},
{(0, 0) := "Come Together", ...})

In this simple example, the migration amounts to adding a single table with track names
retrieved from another data source, but in general, the induced value-level data trans-
formations can augment, reorganize, and discard relational data in customizable ways.

5 Related Work

Software Transformation. Lämmel et al [12] propose a systematic approach to evo-
lution of XML-based formats, where DTDs are transformed in a well-defined, step-
wise fashion, and migration of corresponding documents can largely be induced from
the DTD-level transformations. They discuss properties of transformations and iden-
tify categories of transformation steps, such as renaming, introduction and elimina-
tion, folding and unfolding, generalization and restriction, enrichment and removal,
taking into account many XML-specific issues, but they stop short of formalization
and implementation of two-level transformations. In fact, they identify the following
‘challenge’:

“We have examined typeful functional XML transformation languages, term
rewriting systems, combinator libraries, and logic programming. However, the
coupled treatment of DTD transformations and induced XML transformations
in a typeful and generic manner, poses a challenge for formal reasoning, type
systems, and language design.”

We have taken up this challenge by showing that formalization and implementation are
feasible. A fully worked out application of our approach in the XML domain can now
be attempted.

7 Such compositions of to and from of different refinements are representation changers [9].
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Lämmel et al [13] have identified data mappings as a challenging problem that per-
meates software engineering practice, and data-processing application development in
particular. An overview is provided over examples of data mappings and of existing
approaches in various paradigms and domains. Some key ingredients are described
for an emerging conceptual framework for mapping approaches, and ‘cross-paradigm
impedance mismatches’ are identified as important mapping challenges. According to
the authors, better understanding and mastery of mappings is crucial, and they iden-
tify the need for “general and scalable foundations” for mappings. Our formalization of
two-level data transformation provides such foundations.

Generic Functional Programming. Type-safe combinators for strategic rewriting were
introduced by Lämmel et al in [16], after which several simplified and generalized
approaches were proposed [15,14,8]. These approaches cover type-preserving transfor-
mations (input and output types are the same), and type-unifying ones (all input types
mapped to a single output type), but not type-changing ones.

Atanassow et al show how canonical isomorphisms (corresponding to laws for
zeros, units, and associativity) between types can induce the value-level conversion
functions [2]. They provide an encoding in the polytypic programming language
Generic Haskell involving a universal representation of types, and demonstrate how
it can be applied to mappings between XML Schema and Haskell datatypes. Re-
cursive datatypes are not addressed. Beyond canonical isomorphisms, a few limited
forms of refinement are also addressed, but these induce single-directional conversion
functions only. A fixed strategy for normalization of types is used to discover iso-
morphisms and generate their corresponding conversion functions. By contrast, our
type-changing two-level transformations encompass a larger class of isomorphism
and refinements, and their compositions are not fixed, but definable with two-level
strategy combinators. This allows us to address more scenarios such as format evo-
lution, data cleansing, hierarchical-relational mappings, and database re-engineering.
We stay within Haskell rather than resorting to Generic Haskell, and avoid the use
of a universal representation.

Bi-directional Programming. Foster et al tackle the view-update problem for databases
with lenses: combinators for bi-directional programming [6]. Each lens connects a
concrete representation C with an abstract view A on it by means of two functions
get : C→A and put : A×C→C. Thus, get and put are similar to our from and to, ex-
cept for put’s additional argument of type C. Also, an additional law on these functions
guarantees that put can be used to reconstruct an updated C from an updated A.

On the level of problem statement, a basic difference exists between lenses and two-
level transformations (or data refinements). In refinement, a (previously unknown) con-
crete representation is intended to be derived by calculation from an abstract one, while
lenses start from a concrete representation on which one or more abstract views are
then explicitly defined. This explains why some ingredients of our solution, such as
representation of types at the value level, statically unkown types, and combinators for
strategic rewriting, are absent in bi-directional programming.
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6 Future Work

We have provided a type-safe formalization of two-level data transformations, and we
have shown its implementation in Haskell, using various generic programming tech-
niques. We discuss some current limitations and future efforts to remove them.

Co-transformation. Cleve et al use the term ‘co-transformation’ for the process of
re-engineering three kinds of artifacts simultaneously: a database schema, database con-
tents, and application programs linked to the database [4]. Currently, our approach for-
malizes the use of wrappers for this purpose, where the application program gets pre-
and post-fixed by induced value-level data migration functions. We intend to extend our
approach to formalize induction of actual application program transformations, without
resorting to wrappers.

Coupled Transformations. Lämmel [11,10] identifies coupled transformation, where
‘nets’ of software artifacts are transformed simultaneously, as an important research
challenge. Format evolution, data-mapping, and co-transformations are instances where
two or three transformations are coupled. We believe that our formalization provides an
important step towards a better grasp of this challenge.

Bi-directional Programming. Among the outstanding problems in bi-directional pro-
gramming are decidable type checking and type inference, automatic optimization of
bi-directional programs, lens inference from given abstract and concrete formats, and
support for proving lens properties. We aim to leverage the techniques we used for
two-level transformations for these purposes.

Front-Ends. Work is underway to develop front-ends that convert between our type-
representations and formats such as XML Schemas, SQL database schemas, and nomi-
nal user-defined Haskell types.

Acknowledgments. Thanks to Bruno Oliveira for inspiring discussions on GADTs.
The work reported in this paper was supported by Fundação para a Ciência e a Tec-
nologia, grant number POSI/ICHS/44304/2002.
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Abstract. Based on experience from the hardware industry, product
families have entered the software development process as well, since
software developers often prefer not to build a single product but rather
a family of similar products that share at least one common functionality
while having well-identified variabilities. Such shared commonalities, also
called features, reach from common hardware parts to software artefacts
such as requirements, architectural properties, components, middleware,
or code. We use idempotent semirings as the basis for a feature algebra
that allows a formal treatment of the above notions as well as calculations
with them. In particular models of feature algebra the elements are sets
of products, i.e. product families. We extend the algebra to cover prod-
uct lines, refinement, product development and product classification.
Finally we briefly describe a prototype implementation of one particular
model.

1 Introduction

Software development models relate, in general, to the development of single
software systems from the requirements stage to the maintenance one. This
classical method of developing software is described in [13] as sequential comple-
tion. There, a particular system is developed completely to the delivery stage;
only after that similar systems are developed by keeping large parts of the work-
ing system and changing relatively small parts of it. Contrarily, in [13], Parnas
introduces the notion of program family and defines it as follows:

“We consider a set of programs to constitute a family, whenever it is
worthwhile to study programs from the set by first studying the common
properties of the set and then determining the special properties of the
individual family members.”
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Parnas also proposes a design process for the concurrent development of the
members of a program family. Since his paper [13], the notion of product family
has gained a lot of attention and has found its way into the software development
process in industry [14]. Indeed, software developers that are pressured by the
increase in the speed of time-to-market and the necessity of launching new prod-
ucts do not build a single product but a family of similar products that share at
least one common functionality and have well identified variabilities [5]. Their
goal is to target many market segments or domains. Also, in the competitive
market of today, they cannot afford to decline a request from a client who wants
a special variant that is slightly different from the company’s other products.
In this situation, the company would have advantage in gathering the require-
ments for and designing families of software systems instead of single software
systems. For example, in embedded system development, software depends on
hardware and the developer needs to change software specifications frequently
because of hardware specification changes. Hence, the developer ends up with
many variations of the intended system that need to be managed. Prioritising
development tasks and planning them become very challenging. A model that
helps to capture the variabilities and commonalities of the members of a system
family would be very helpful in dealing with these difficulties.

The concept of software product family comes from the hardware industry.
There, hardware product lines allow manufacturing several variants of products,
which leads to a significant reduction of operational costs. The paradigm of prod-
uct line has been transferred to the software embedded in the products. To cope
with a large number of software variants needed by an industrial product line,
the software industry has been organising its software assets in software product
families [14]. Hence, plainly, a product family can be defined as a set of prod-
ucts that share common hardware or software artefacts such as requirements,
architectural properties, components, middleware, or code. In the remainder,
we denote by feature any of these artefacts. We note that, according to [15], a
feature is a conceptual characteristic that is visible to stakeholders (e.g., users,
customers, developers, managers, etc.). A subfamily of a family F is a subset
whose elements share more features than are shared by all the members of F .
Sometimes, for practical reasons, a specific software subfamily is called a prod-
uct line. For instance, in a context of software development based on the family
approach, a subfamily is called a product line when its members have a common
managed set of features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set of a core assets
in a prescribed way [5,15]. Therefore, factors other than the structure of the
members of a family are involved in defining a product line.

The family-oriented software development is based on the assumption that it is
possible to predict the changes that are likely to be performed on a system. This
assumption is true in most of the cases. For instance, the manufacturers of robots
(and their embedded software) know from the start that customers will want to
have robots with several basic means of locomotion, such as treads, wheels, or
legs and with several navigation systems which are more or less sophisticated.
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The aim of the present paper is to underpin these ideas with a formalism
that allows a mathematically precise description of product families as well as
calculations with them. To this end we propose an algebra that we use to describe
and analyse the commonalities and variabilities of a system family.

Since systems are characterised by their features, we call our approach fea-
ture algebra. We will present models where elements of feature algebras are sets
of products, i.e. product families. Starting from idempotent semirings, we will
define feature algebra in Section 4, extend it to cover product lines, refinements,
product development and product classification. This approach allows compact
and precise algebraic manipulations and calculations on these structures.

2 Literature Review

In the literature, we find several feature-driven processes for the development of
software system families that propose models to describe the commonalities
and variabilities of a system family. For brevity, we focus on the key processes
relevant to the family description technique that we propose: Feature-Oriented
Domain Analysis (FODA) [10], Feature-Oriented Reuse Method (FORM) [11],
Featured Reuse-Driven Software Engineering Business (FeatuRSEB) [8] and Gen-
erative Programming (GP) [6]. The reader can find other feature modelling tech-
niques in [2].

FODA uses feature models which are the means to give the mandatory, op-
tional and alternative concepts within a domain [10,15]. For example, in a car,
we have a transmission system as a mandatory feature, and an air conditioning
as an optional feature. However, the transmission system can either be manual
or automatic. These two feature-options (manual and automatic) are said to be
alternative features. The part of the FODA feature model most related to our
work is the feature diagram. It constitutes a tree of features and captures the
above relationships (i.e., mandatory, optional, and alternative) among features.

In [15], the authors propose the use of feature diagrams which are trees. Each
feature may be annotated with a weight giving a kind of priority assigned to it.
Then, they use basic concepts of fuzzy set theory to model variability in software
product lines.

FORM starts with an analysis of commonalities among applications in a par-
ticular domain in terms of services, operating environments, domain technologies
and implementation techniques. Then a model called feature model is constructed
to capture commonalities as an AND/OR graph [12, pages 40-41& 99-100]. The
AND nodes in this graph indicate mandatory features and OR nodes indicate
alternative features selectable for different applications. The model is then used
to derive parameterised reference architectures and appropriate reusable com-
ponents instantiable during application development [11].

In FeatuRSEB, the feature model is represented by a graph (not necessary a
tree) of features. The edges are mainly UML dependence relationships: com-
posed of , optional feature and alternative relationship. The graph enables to
specify the requires and mutual exclusion constraints. The feature model in Fea-
tuRSEB can be seen as an improvement of the model of FODA.
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GP is a software engineering paradigm based on modelling of software sys-
tem families. Its feature modelling aims to capture commonalities and variation
points within the family. A feature model is represented by a hierarchically ar-
ranged diagram where a parent feature is composed of a combination of some or
all of its children. A vertex parent feature and its children in this diagram can
have one of the following relationships [6]:

– And: indicates that all children must be considered in the composition of
the parent feature;

– Alternative: indicates that only one child forms the parent feature;
– Or: indicates that one or more children features can be involved in the com-

position of the parent feature (a cardinality (n,m) can be added where n
gives a minimum number of features and m gives the maximum number of
features that can compose the parent);

– Mandatory: indicates that children features are required;
– Optional: indicates that children features are optional.

3 Example of a Simple Product Family

The following example is adapted from a case study given in [4]. An electronic
company might have a family of three product lines: mp3 Players, DVD Players
and Hard Disk Recorders. Table 1 presents the commonalities and the variability
of this family. All its members share the list of features given in the Common-
alities column. A member can have some mandatory features and might have
some optional features that another member of the same product line lacks.
For instance, we can have a DVD Player that is able to play music CDs while
another does not have this feature. However, all the DVD players of the DVD
Player product line must have the Play DVD feature. Also, it is possible to have
a DVD player that is able to play several DVDs simultaneously.

Table 1. Commonalities and variability of a set of product lines

Product line Mandatory Optional Commonalities

mp3 Player – Play mp3 files – Record mp3 files
– Audio equaliser
– Video algorithms

for DVD players
and hard disk
recorders

– Dolby surround
(advanced audio
features)

DVD Player – Play DVD – Play music CD
– View pictures

from picture CD
– Burn CD
– Play n additional

DVDs at the
same time

Hard Disk Recorder – mp3 player
– organise mp3 files
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We see that there are at least two different models of DVD players described.
But how many different models are described in Table 1? And what are the
properties/features of these products? Later on we will give the answer to these
two questions. If we had a model which gives us all combinations of features we
would be able to build new products. Vice versa, such a model would allow us
to calculate commonalities of a given set of products.

4 Algebraic Structure and Basic Properties

In this section we introduce the algebraic structure of feature algebra. Since it is
based on semirings we will first present these. Afterwards, we will define product
families, feature algebra, a refinement relation on feature algebra and, in a set
based model, features and products. In Section 6 the latter two are defined in
general.

Definition 4.1. A semiring is a quintuple (S,+, 0, ·, 1) such that (S,+, 0) is a
commutative monoid and (S, ·, 1) is a monoid such that · distributes over + and
0 is an annihilator, i.e., 0 · a = 0 = a · 0. The semiring is commutative if ·
is commutative and it is idempotent if + is idempotent, i.e., a + a = a. In the
latter case the relation a ≤ b ⇔df a + b = b is a partial order, i.e., a reflexive,
antisymmetric and transitive relation, called the natural order on S. It has 0 as
its least element. Moreover, + and · are isotone with respect to ≤.

In our current context, + can be interpreted as a choice between optionalities
of products and features and · as their composition or mandatory presence.
An important example of an idempotent (but not commutative) semiring is
REL, the algebra of binary relations over a set under relational composition.
More details about (idempotent) semirings and examples of their relevance to
computer science can be found,e.g., in [7].

For abbreviation and to handle the given case studies, we call an idempotent
commutative semiring a feature algebra. Its elements are termed product families
and can be considered as abstractly representing sets of products each of which
is composed of a number of features. On every feature algebra we can define a
relation that expresses that one product family refines another in a certain sense.

Example 4.2. Let IF be a set of arbitrary elements that we call features. Often,
features can be seen as basic properties of products. Therefore we call a collection
(set) of features a product. The set of all possible products is IP =df P(IF), the
power set or set of all subsets of IF. A collection of products (an element of
P(IP)) is called product family. Note that according to this general definition the
members of a product family need not have common features. Commonalities
will be discussed in Section 6.

For example, looking at the DVD example of Table 1, an mp3 player is a
product with the features ’play mp3 files’, ’record mp3 files’, ’audio visualiser’
and so on.



Feature Algebra 305

We use the following abbreviations:

Abbreviations:

p mp3 Play mp3 files

r mp3 Record mp3 files

c1 Audio equaliser

c2 Video algorithms

c3 Dolby surround

Now we can describe the mp3 players algebraically as

mp3 player = p mp3 · (r mp3 + 1) · c1 · c2 · c3 .

Here 1 = {∅} denotes the family consisting just of the empty product that has
no features, so that (r mp3 + 1) expresses optionality of r mp3. For clarity the
algebraic notation omits the set brackets.

We now formally define the operation · which is a composition or a merging
operator for all features:

· : P(IP)× P(IP)→ P(IP)
P ·Q = {p ∪ q : p ∈ P, q ∈ Q} .

The second operation + offers a choice between products of different product
families:

+ : P(IP)× P(IP) → P(IP)
P +Q = P ∪Q ,

With these definitions the structure

IPFS =df (P(IP),+, ∅, ·, {∅})

forms a feature algebra called product family algebra. The set-based model does
not allow multiple occurrences of the same feature in a product. If this is desired,
one can use an analogous model that employs multisets (also called bags) of
features. This bag-based model is denoted by IPFB. "&

Using feature algebra offers abstraction from set-theory. On the one hand it
provides a common structure that subsumes IPFB and IPFS and on the other
hand it avoids many set-theoretic notations, like accumulations of braces, and
emphasises the relevant aspects like commonalities.

The refinement relation � on a feature algebra is defined as

a � b ⇔df ∃ c : a ≤ b · c .

As an example we use again the DVD product line. A standard mp3-player
that can only play mp3 files is refined by a mp3-recorder that can play and
record mp3 files. In the algebraic setting this behaviour is expressed by

p mp3 · r mp3 · c1 · c2 · c3 � p mp3 · c1 · c2 · c3 .
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It is easy to see that the refinement relation is a preorder, i.e., a reflexive and
transitive relation. Informally, a � b means that every product in a has at least
all the features of some product in b, but possibly additional ones.

Further examples for feature algebras are all lattices with join as + and meet
as · operation. In this case the refinement relation is the same as the natural
order (which coincides with the lattice order).

Until now we have not made use of the commutativity of multiplication. Most
of the following basic properties hold only if · is commutative. In the context of
our case studies and the corresponding algebras IPFS and IPFB the commuta-
tivity is significant, since products and product families should not depend on
the ordering of features.

Lemma 4.3. Let a, b, c be elements of a feature algebra, then we have

a ≤ b ⇒ a � b , (1)
a · b � b , (2)
a � a+ b , (3)

a � b ⇒ a+ c � b + c , (4)
a � b ⇒ a · c � b · c , (5)
a � 0 ⇔ a ≤ 0 , (6)

0 � a � 1 . (7)

Proof. (1) Set c = 1 in the definition of �.
(2) a · b � b ⇔ ∃ c : a · b ≤ b · c⇐ a · b ≤ b · a ⇔ true .

The last step only holds if · is commutative.
(3) Immediate from a ≤ a+ b and (1).
(4) Suppose a � b, say a ≤ b · d. Then by isotony

a+ c ≤ b · d+ c ≤ b · d+ c+ c · d+ b = (b+ c) · (d+ 1) ,

i.e., a+ c � b+ c.
(5) By definition, isotony w.r.t. ≤ and commutativity we get

a � b ⇔ ∃ d : a ≤ b · d ⇒ ∃ d : a · c ≤ b · c · d ⇔ a · c � b · c.
(6) By annihilation, a � 0 ⇔ ∃ c : a ≤ 0 · c ⇔ a ≤ 0.
(7) Set a = 0 and b = 1, resp., in (2). "&

In IPFS and IPFB, (2) describes the situation that adding features (multiplying
by an element in our algebra) refines products. (3) offers an alternative product
on the right hand side. So we have a choice. But this does not affect that a refines
itself (a � a). (4) and (5) are standard isotony laws. (7) says that the empty set
of products 0 refines all families — all its products indeed have at least as many
features as some product in a. Moreover, (7) reflects that the product without
any features (which is represented by 1) is refined by any family.

Lemma 4.4. If a feature algebra contains a ≤-greatest element  , we have

a � b ⇔ a ≤ b ·  ⇔a ·  ≤ b ·  .
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Proof. First we show a � b ⇔ a ≤ b ·  .

(⇒) a � b ⇔ ∃ c : a ≤ b · c ⇒ a ≤ b ·  .
(⇐) Set c =  .

Now, we show a ≤ b ·  ⇔ a ·  ≤ b ·  .

(⇐) By isotony and a ≤ a ·  .
(⇒) By isotony and  ·  =  (which follows by  ·  ≤  ). "&

E.g., in IPFS the greatest element is P(IP), whereas in IPFB there is no greatest
element.

As already mentioned, � is a preorder. We now show that � forms a partial
order only in a very special case.

Lemma 4.5. � is antisymmetric if and only if it is the identity relation, i.e.,
iff a � b ⇒ a = b.

Proof. First, the identity relation clearly is antisymmetric.
Now suppose that � is antisymmetric and assume a � b. Then by isotony (4)

and idempotence of + we get a + b � b. By (3) we also have b � a + b. Now
antisymmetry shows a = b. "&

As the last property of �, we show that the choice operator can be split w.r.t.
� or, in other words, that + produces a supremum w.r.t. � as well.

Lemma 4.6
a+ b � c ⇔ a � c ∧ b � c .

Proof

(⇒) By the definition of �, lattice algebra and the definition again
a+b � c ⇔ ∃ d : a+b ≤ c·d ⇔ ∃ d : a ≤ c·d∧b ≤ c·d ⇒ a � c∧b � c.

(⇐) By isotony and distributivity
a ≤ c · d ∧ b ≤ c · e ⇒ a+ b ≤ c · d+ c · e = c · (d+ e).
Hence, a � c ∧ b � c ⇒ a+ b � c. "&

5 Example of a More Complex Product Family

Our next case study is borrowed from [16] where it is used to illustrate a set-
theoretic approach to reasoning about domains of what is called n-dimensional
and hierarchical product families. It consists of a product family of mobile robots
that reflect different hardware platforms and several different behaviours. The
robot family is constructed using two hardware platforms: a Pioneer platform
and a logo-bot platform. The behaviour of the robots ranges from a random
exploration of an area to a more or less sophisticated navigation inside an area
that is cluttered with obstacles. More details about the case study can be found
in Thompson et al. [17], where the platforms are thoroughly described, and in
[9], where two tables give an overview over the robots’ behaviours. One table
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describes the robot family from a hardware perspective and the other from a
behaviour perspective.

We briefly explain the main parts of the robots’ behaviours. The robot family
includes three product lines: Basic Platform, Enhanced Obstacle Detection and
Environmental Vision. All the members of the Basic Platform product line share
the following features:

– basic means of locomotion that could be treads , wheels , or legs ;
– ability to turn an angle α from the initial heading;
– ability to move forward;
– ability to move backward;
– ability to stay inactive.

The variability among the members of a product line is due in part to the use
of a variety of hardware. For instance, if we take the robotic collision sensors
that protect robots from being damaged when they approach an obstruction or
contact, then we obtain members with different sensing technologies. In our case,
there are three main methods to sense contact with an obstruction: pneumatic,
mechanical and a combination of mechanical and pneumatic. A member of the
Basic Platform can have more than one collision sensor. The sensors could be of
different types. The optional features of the members of Basic Platform product
line concern their locomotion abilities as well as their locomotion means (treads,
wheels or legs).

The DVD example of Section 3 was chosen for its simplicity to illustrate basic
notions. The present example illustrates a family of products that exposes a more
sophisticated structure of its subfamilies. It emphasises the fact that products
can be defined from more than one perspective. Within a given perspective,
subfamilies are defined based on other subfamilies. For instance, in the robot
example the subfamily Enhanced Obstacle Detection is constructed on top of
basic platform subfamily. For more details we refer the reader to [17,9]. The
specification of the robot family using our formalism can be found in [9].

6 Further Notions and Properties

In the literature, terms like product family and subfamily are used without
any exact definition. Therefore, we want to make these terms formally precise.
Already in Section 4 we have defined some notions like feature and product in the
special models of IPFS and IPFB, however, in terms of these particular models
and not in general algebraic terms. In the remainder let F = (S,+, 0, ·, 1) be a
feature algebra.

Definition 6.1. An element a is said to be a product, if a �= 0 and

∀ b : b ≤ a ⇒ b = 0 ∨ b = a ∧ ∀ b, c : a ≤ b+ c ⇒ (a ≤ b ∨ a ≤ c) . (8)

The set of all products is denoted by IP.
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Intuitively, this means that a product cannot be split using the choice operator
+. In IPFS and IPFB an element is a product iff it contains only one element,
i.e., it is a singleton set.

In Example 4.2 we have also given a definition of features for the concrete
case. Again we want to give an abstract algebraic counterpart. Analogously to
Definition 6.1, we ask for indecomposability, but this time w.r.t. multiplication
rather than addition.

Definition 6.2. An element a is called feature if it is a product and

∀ b : b | a ⇒ b = 0 ∨ b = a ∧ ∀ b, c : a | b+ c ⇒ (a | b ∨ a | c) , (9)

where the divisibility relation | is given by x | y ⇔df ∃ z : x = y · z. The set of
all features is denoted by IF.

From the mathematical point of view, the characteristics of products (8) and
features (9) are similar and well known. We give a uniform treatment of both
notions in the Appendix of [9], where we also discuss the order-theoretic back-
ground.

As a special kind of products we have the generated products (for short gIP),
i.e., those products that are obtained by multiplication of features:

gIP =df IP ∩ IF∗,

where IF∗ =df
{ n∏

i=1

xi : n ∈ IN, xi ∈ IF
}

is the set of all elements that arise by

multiplying an arbitrary finite number of features. Over a finite set IF of features,
in IPFS as well as in IPFB the set of generated products is equal to the set of all
products, i.e., gIP = IP.

Definition 6.3. A product family or family (IPFam) is a set of generated prod-
ucts that have at least one common feature, i.e,

a ∈ IPFam ⇔ ∃ f ∈ IF : ∃ I ⊆ gIP : a = f ·
∑
xi∈I

xi .

We call b a subfamily of a iff b ≤ a.

Of course, the family a may have more common features than just f ; they could
be extracted from the sum by distributivity. But in our definition we wanted to
emphasise that there is at least one. It is obvious that each subfamily of a forms
a family again, since it has f as a common feature.

Sometimes, for practical reasons, a specific subfamily is called a product line.
For instance, in a context of software development based on the family approach,
a subfamily that needs to be developed in the same production site or by the
same development team is called a product line. Therefore, factors other than
the structure of its members can be involved in defining a product line.

To get a measure for similarity we give the following definitions:
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Definition 6.4. Let k ∈ IN. The family f1 is said to be k-near the family f2, if

∃ g �= 0 : ∃x, y ∈ IF≤k : x �= y ∧ f1 = x · g ∧ f2 = y · g,

where IF≤k =df
{ n∏

i=1

xi : k ∈ IN, n ≤ k, xi ∈ IF
}
.

Since every product is also a product family (which has only one member), we
also have a notion for measure similarity of products. In particular, each product
of a family is at least 1-near any other element of the same family (they have
the common feature f).

Finally, we discuss the case of a finite set of features IF. Then we have an
additional special element in IPFS, which is characterised by

Π =df

{{ ∏
xi∈IF

xi

}}
.

This element contains only one product, namely the product that has all possible
features. In this case we have a · Π = Π if a �= 0. Then, by setting c = Π in
the definition of the refinement relation � Section 4)

Π � a .

In general, we call an element p �= 0 satisfying, for all a ∈ S\{0}, a · p = p
(= p ·a by commutativity) a weak zero, since it annihilates almost all elements.

Lemma 6.5. (i) A weak zero is unique if it exists.
(ii) A weak zero p refines everything except 0, i.e., p � a ⇔ a �= 0.

(iii) If p is a weak zero then a � p ⇔ a ≤ p.

Proof. (i) Assume p and q to be weak zeros. Then, by definition, p = p·q = q.
(ii)(⇒) Assume a = 0. Then by definition of weak zero and annihilation p = 0,

which contradicts the definition of p.
(⇐) By definition p ≤ p · a if a �= 0 and hence, p � a.

(iii) By definition of � and weak zero,
a � p ⇔ ∃ c : a ≤ p · c ⇔ a ≤ 0 ∨ a ≤ p ⇔ a ≤ p. "&

Note that in IPFB there is no weak zero, since multiple occurrences of features
are allowed.

7 Building Product Families and Generating Product
Lines

In this section we present some useful properties of feature algebras concerning
finding common features, building up product families, finding new products and
excluding special feature combinations.



Feature Algebra 311

We first address the issue of finding the commonalities of a given set of prod-
ucts. This is a very relevant issue since the identification of common artifacts
within systems (e.g. chips, software modules, etc.) enhances hardware/software
reuse. If we look at feature algebras like IPFS and IPFB we can formalise this
problem as finding “the greatest common divisor” or to factor out the features
common to all given products. This relation to “classical” algorithms again shows
an advantage of using an algebraic approach. Solving gcd (greatest common di-
visor) is well known and easy, whereas finding commonalities using diagrams
(e.g., FODA) or trees (e.g., FORM) is more complex.

Example 7.1. Resuming the product line of Section 3 and Example 4.2, we
give an explicit example. Assume two different products: An mp3-player defined
as

p mp3 · c1 · c2 · c3
and an mp3-recorder given by

p mp3 · r mp3 · c1 · c2 .

To find all common parts we look at the sum of the two products, i.e., we create
a set of products, and by simple calculations using distributivity we get

p mp3 · c1 · c2 · (c3 + r mp3) .

Thus the common parts are p mp3, c1 and c2. "&

Such calculations can easily done by a program; we will briefly describe a proto-
type in the next section. Of course one can calculate the common parts of any
set of products. If there is at least one common feature, all the products form a
product family. After factoring out the common parts, we can iterate this proce-
dure for a subset of the given products and find again common parts. In this way
we can form subproduct families if necessary. Hence, using the algebraic rules in
different directions, we can both structure and generate product families and
product lines.

Starting with a set of features, we can create new products just by combining
these features in all possible ways. This can easily be automated. For example,
using our prototype which is described in Section 8, we calculate that the Basic
Platform subfamily consists of 13635 products.

However, there are products with combinations of features that are impossible
or undesirable. For example, it is unreasonable to have a robot that has both
wheels and legs as basic means of locomotion. This requirement can be coded in
feature algebra by postulating the additional equation

wheels · legs = 0 .

This exclusion property is also implemented in our prototype. For the robot
example we also exclude combinations of impossible or undesirable features (see
next section) from the Basic Platform subfamily and are left with 1539 products.
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There are many other properties like:

“If a product has feature f1 it also needs to have feature f2”.

Most of these requirements can easily be modelled and implemented using our
algebra.

8 A Prototype Implementation in Haskell

To check the adequacy of our definitions we have written a prototype imple-
mentation of the IPFB model1 in the functional programming language Haskell.
Features are simply encoded as strings. Bags are represented as ordered lists
and · as bag union by merging. Sets of bags are implemented as repetition-free
ordered lists and + as repetition-removing merge.

This prototype can normalise algebraic expressions over features into a sum-
of-products-form. A small pretty-printing facility allows us to display the results
as the sequence of all products described by such an expression.

As an example we give the code corresponding to Table 1 of Section 3.

-- basic features:
p_mp3 = bf "play mp3-files"
r_mp3 = bf "record mp3-files"
o_mp3 = bf "organise mp3-files"
p_dvd = bf "play DVD"
p_cd = bf "play CD"
v_cd = bf "view picture CD"
b_cd = bf "burn CD"
a_cd = bf "play additional CD"
c1 = bf "audio equaliser"
c2 = bf "video algorithms"
c3 = bf "dolby surround"

-- composed features
mp3_player = p_mp3 .*. (opt [r_mp3])
dvd_player = p_dvd .*. (opt [p_cd , v_cd , b_cd , a_cd])
hd = opt [mp3_player, o_mp3]

--whole product line
p_line = c1 .*. c2 .*. c3 .*. (mp3_player .+. dvd_player .+. hd)

The product line contains 22 products, printed out as follows:

=====================================================================
Common Parts

---------------------------------------------------------------------

1 The program and a short description can be found at: http://www.informatik.uni-
augsburg.de/lehrstuehle/dbis/pmi/publications/all pmi tech-reports
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audio equaliser
dolby surround
video algorithms
---------------------------------------------------------------------
=====================================================================

Variabilities
---------------------------------------------------------------------
burn CD
play CD
play DVD
play additional CD
---------------------------------------------------------------------
burn CD
play CD
play DVD
play additional CD
view picture CD
---------------------------------------------------------------------
burn CD
...

Feature exclusion as discussed in the previous section, can be also encoded
using an algebraic expression. For instance, all the required exclusion properties
of the robot example are given by

excludes = treads .*. wheels
.+. treads .*. legs
.+. wheels .*. legs
.+. limited_spd .*. extended_spd
.+. basic_ctrl .*. digital_ctrl
.+. small_pltfrm .*. large_pltfrm
.+. medium_pltfrm .*. large_pltfrm
.+. small_pltfrm .*. c_sensor .^. 4
.+. medium_pltfrm .*. c_sensor .^. 5
.+. large_pltfrm .*. c_sensor .^. 6

Here ^ is the exponentiation operator. Due to the fact that 0 is an annihilator
for ·, the last line excludes large platforms with more than 5 collision sensors.

9 Conclusion and Outlook

The adoption of the product family paradigm in software development aims at
recognising a reality in software development industry noticed decades ago [13]:
economical constraints impose a concurrent approach to software development
replacing the early sequential one. The research work about software product
families aims at studying the commonalities/variability occurring among the
products in order to have a better management of software production. However,
a review of the literature reveals a wide set of notions and terms used without
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formal definitions. A clear and simple mathematical setting for the usage of this
paradigm arises as a necessity.

In this paper we have introduced feature algebra as an idempotent commuta-
tive semiring. We have given a set-based and a bag-based model of the proposed
algebra. To compare elements of our algebra, besides the natural order defined
on an idempotent semiring we use a refinement relation and have established
some of its basic properties. Then we have given formal definitions of common
terms that are intuitively used in the literature such as product, feature, and
family. We introduced as well new notions such as that of a weak zero, and a
measure for similarity among products and families.

The proposed algebra not only allows us to express the basic notions used
by the product family paradigm community, but also enables algebraic ma-
nipulations of families of specifications, which enhances the generation of new
knowledge about them. The notions and relationships introduced in FODA [10],
FORM [11], FeatuRSEB [8] and GP [6] and expressed with graphical notations
can easily be stated within our algebra. For instance, the alternative is expressed
using the + operator, and we write f = b · (1+a) · c (where b, and c are families)
to express that a feature a is optional in a family f .

In contrast to other product family specification formalisms, like FODA and
FORM, there exists a large body of theoretical results for idempotent com-
mutative semiring and for algebraic techniques in general with strong impact
for research related to problems of consistency, correctness, compatibility and
reusability.

Many items found in the literature support the potential scalability of alge-
braic approaches in specifying industrial-scale software product families [1,3].
However, we think that empirical substantiation of the scalability of our ap-
proach is needed.

This work opens new questions and brings in new research horizons. One of
the questions is how to generate the specification of individual members of a
given family from the specifications of features and the feature-algebraic specifi-
cation of a family. One can envisage that the specifications of all the features are
stored in a specification depository and the specification of a product is gener-
ated on the fly. There is no need to have rigid specifications of products that are
members of a family. This flexibility in generating specifications on the fly eases
coping with the changes that frequently affect specifications of features. The
proposed feature algebra provides a solid base on which to build for answering
these questions.

As illustrated in [16], a product family might need to be specified from sev-
eral perspectives. For example, in embedded systems, a product family needs to
be specified from hardware and software perspectives. We conjecture that these
perspectives are somehow interdependent. When this interdependence is known,
how can we model the global specification of a family (involves all the perspec-
tives) within a super-structure (such as a product structure) of feature algebras?
The aim of further work in this area is to tackle these questions.
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Abstract. The key to the integration of formal methods into engineer-
ing practice is education. In teaching, domain-independent problems —
i.e., not requiring prior engineering background— offer many advantages.

Such problems are widely available, but this paper adds two dimen-
sions that are lacking in typical solutions yet are crucial to formal meth-
ods: (i) the translation of informal statements into formal expressions;
(ii) the role of formal calculation (including proofs) in exposing risks or
misunderstandings and in discovering pathways to solutions.

A few example problems illustrate this: (a) a small logical one show-
ing the importance of fully capturing informal statements; (b) a com-
binatorial one showing how, in going from “real-world” formulations to
mathematical ones, formal methods can cover more aspects than clas-
sical mathematics, and a half-page formal program semantics suitable
for beginners is presented as a support; (c) a larger one showing how a
single problem can contain enough elements to serve as a Leitmotiv for
all notational and reasoning issues in a complete introductory course.

An important final observation is that, in teaching formal methods,
no approach can be a substitute for an open mind, as extreme mathpho-
bia appears resistant to any motivation.

Index Terms: Domain-independent problems, Formal methods, Func-
tional Predicate Calculus, Funmath, Generic functionals, Teaching, Spec-
ification, Word problems.

1 Introduction: Motivation and Overview

A Gap in Engineering Professionalism. One often hears the complaint that the
use of formal methods into everyday software engineering practice is taking a
long time in becoming commonplace (except for critical and some embedded
systems) and that, as a result, professionalism in software design is generally
low.

Yet, the published literature reports many projects for which formal methods
were essential or at least the key to success. Why, then, is the software industry
at large so slow in exploiting the advantages?

Many explanations have been conjectured by diverse people, but the following
one seems inescapable as “Occam’s razor”: universities are providing far from
sufficient education in formal methods to generate the massive injection of qual-
ified people necessary for enabling industry to integrate formal methods into
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their everyday software design practice. The success stories remain restricted to
companies that are either consultants specialized in the area of formal methods
or users of ad hoc support for specific projects from consultants and universities.

The contrast with classical engineering disciplines, in particular electrical en-
gineering, is significant. Mathematical modelling has not only proven indispens-
able for todays communications technology, but has been accepted de facto since
centuries as an essential part of engineering education. It is commonplace in in-
dustry, and no university engineer would dare confessing to his project leader
that he doesn’t know enough elementary calculus or algebra to cope with this.

Yet, some universities still turn out software “engineers” whose grasp of logic
is not better than high school level, and whose highest abstraction “tool” for
specifying systems is some program-like code which they are unable to model
and analyze mathematically. Complaints from industry are not surprising [19].
A serious educational obstacle pointed out by one of the reviewers is that logic
is much harder than differential calculus, as also indicated by other studies [1].

On Using Tools. A similar gap exists in the ability to use software tools judi-
ciously. High school education provides sufficient mathematics for starting to use
tools for classical mathematics like Mathematica, Maple, Matlab, Mathcad with
ease, and a good calculus or analysis course at the freshman and junior level
prepares for more advanced use by providing a solid basis and insight (not a
luxury, given the many “bugs” reported in the literature). Mathematicians and
engineers 150 years ago would have no difficulty in using today’s tools without
a “tutorial”.

By contrast, for software tools supporting CS-oriented formal methods, classi-
cal mathematics offers no preparation, and too many computing curricula do not
even start filling this gap. Using the tools themselves in an introductory course as
a vehicle for introducing (or, worse, as a surrogate for) the relevant mathematics
is highly inappropriate1 since such tools are still very design-specific2 and hence
induce a narrow and misleading view in beginners, turning them into sorcerer’s
apprentices. Of course, tools can be very useful as an illustration, especially for
the shortcomings in and the differences between them. In fact, in the same vein
some of the best analysis texts provide exercises with tools precisely to show the
pitfalls [21], and always keep the mathematics and “thinking” central.

In brief: the best preparation for using tools is solid mathematics education.

Curriculum Design. Providing the relevant mathematics early creates the oppor-
tunity for other computer-oriented courses (HW and SW) to start using serious
mathematical modeling, rather than remaining stuck at the old descriptive level
with some elementary programming exercises as the highest intellectual activity.
For classical mathematics, preparation usually starts in high school but, as uni-
versities have no control at this level, the earliest opportunity to teach the basic
1 This observation assumes today’s state of the art; only vast progress can alter it.
2 Unlike software tools for classical mathematics, which support mature notational

and formal calculation conventions, current tools in the formal methods area are still
based on overly specific logics and too reflective of various implementation decisions.
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mathematics for computing science and engineering is the freshman level. A typ-
ical embedding in a traditional curriculum is achieved by thoroughly changing
the content of an existing discrete mathematics course for this purpose, as ex-
emplified in the textbook by Gries and Schneider [11] and the BESEME (BEtter
Software Engineering through Mathematics Education) project [15].

To summarize, an early start paves the way for “weaving formal methods into
the undergraduate curriculum” as advocated by Wing [23]. The extent to which
other courses catch this opportunity depends on the quality of the staff, and
determines the ability of the students to use formal methods.

The Role of Domain-Independent Problems. Providing the mathematical basis
for CS early in the curriculum is facilitated by assuming no prior technical or
engineering background, as is also customary in calculus courses. An independent
reason is the principle of separation of concerns: not overburdening the student
by combining new mathematical with new (or recent) engineering concepts.

Any basic course needs illustrations and, more importantly, problems to en-
hance insight in the concepts and to learn using them in problem solving.

Domain-independent problems combine all the above requirements. They can
be understood by anyone, and are fun to solve. Furthermore, they are widely
available in both educational [2,11] and recreational literature [9,17]. Finally,
courses and textbooks on this basis can reach more easily over boundaries be-
tween disciplines. One might ask how this pertains to CS-oriented mathematics,
given its specialistic reputation. Actually, this reputation is undeserved, given
the rapidly growing evidence that the insights and reasoning styles fostered by
CS have wide applicability in mathematics [8], in science and in engineering [5].

New Dimensions in Solving Domain-Independent Problems. Concerns arising
from the application of formal methods add new dimensions to problem solving
that are also best illustrated by domain-independent problems.

Indeed, solutions to such problems, especially “puzzles”, are traditionally of-
ten presented with a “look how clever” undertone of impressing the audience.
Unfortunately, this effect often comes at the expense of hiding steps in the cal-
culation or in the conversion from the informal statement to mathematical for-
mulas. Sometimes this is forgivable, e.g., when common notation falls short.

When using formal methods in practice, avoiding or exposing hidden steps and
assumptions is part of the task. Hence, in the introduction of formal methods,
domain-independent problems can help emphasizing the following two important
issues: (i) the translation of informal statements into formal expressions; (ii) the
role of formal calculation (including proofs) in exposing misunderstandings or
possible risks and in discovering pathways to solutions.

Scope of This Paper and Approach. We will show that even small domain-inde-
pendent problems can have sufficiently rich ramifications for illustrating central
issues in formal methods, and that medium ones can contain enough elements
to serve as the Leitmotiv for illustrating all notational and reasoning issues in a
complete introductory course on basic mathematics for CS.
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For notation and reasoning we use Funmath (Functional Mathematics) [3,5],
a very general formalism unifying mathematics for classical engineering and CS.

The language [3] uses just four constructs, yet suffices to synthesize familiar
notations (minus the defects) as well as new ones. It supports formal calculation
rules convenient for hand calculation and amenable to automation.

The reasoning framework has two main elements. First, concrete generic func-
tionals [4] support smooth transition between pointwise and point-free formula-
tions, facilitating calculationwith functionals and exploiting formal commonalities
between various engineering mathematics. Second, a functional predicate calculus
[5] makes formal logic practical for engineers, allowing them to calculate with pred-
icates and quantifiers as fluently as with derivatives and integrals.

Here we use the language mostly in its “conservative mode”, restricted to ex-
pressions with the same look and feel as common mathematical conventions. We
only lift this restriction when common notation cannot express what is needed.

As a result, most of this paper requires neither prior knowledge of nor intro-
duction to Funmath, and we can refer to [5] for details or for exploring deeper.

Overview. We consider some selected issues only; any attempt at completeness
would rapidly grow into a textbook. Section 2 uses a very small word problem (at
the level of propositional logic) to highlight some psychological and educational
issues and to demonstrate the importance of completeness when capturing infor-
mal statements. Section 3 shows via a small combinatorial problem how steps in
the transition from “real-world” formulations to mathematical ones are missed
in traditional solutions, yet can be captured by formal methods. A half-page
formal program semantics suitable for beginners is presented as a support. Sec-
tion 4 shows how a single problem can give rise to enough topics for a complete
introductory course on formal methods. Section 5 presents some conclusions and
observes that, in teaching formal methods, no approach can be a substitute for
an open mind, as extreme mathphobia appears resistant to any motivation.

2 On Logic and Properly Formalizing Informal
Statements

Most people would attribute to themselves a basic “natural” understanding of
logic. Yet, studies by Johnson-Laird [13] about logic reasoning by humans expose
serious flaws. Table 1 describes two typical experiments and their outcomes.

One step further: most engineers and mathematicians would consider them-
selves fairly fluent in logic by profession3. We have no data on how this group as a
whole would perform on the test, but experience with the subgroup in computer
science/engineering —where logic is vital— gives reason for concern.

Indeed, we found that even CS students who previously had a full semester
course on formal logic elsewhere generally did poorly on this test.
3 Introductions to logic that are too elementary (as in traditional discrete math

courses) only strengthen this feeling, since they offer little more than a semi-formal
notation or even syncopation [20] for expressing something they were already doing
informally in mathematics before and will continue doing informally afterwards.
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Table 1. Two experiments as reported by Johnson-Laird

(a) One of the following assertions is true about a particular hand of cards,
and one of them is false about the same hand of cards:

If there is a king in the hand, then there is an ace in the hand
If there isn’t a king in the hand, then there is an ace in the hand.

Q: What follows?
Subjects overwhelmingly infer that there is an ace in the hand.

(b) Only one of the following assertions is true about a particular hand of cards:
There is a king in the hand, or an ace, or both.
There is a queen in the hand, or an ace, or both.
There is a jack in the hand, or a ten, or both.

Q: Is it possible that there is an ace in the hand?
Nearly every participant in our experiment responded: ‘yes’.

Analysis of the answers suggests that here some other effect is responsible
than the one Johnson-Laird observes in people without logic background. Indeed,
the most common error for problem (a) was taking the conjunction of the two
assertions listed. The errors for problem (b) were more diverse. However, the
answers indicated that often the “preamble” (the part of the problem statement
before the list of assertions) was simply ignored. Even students who attempted
formalizing the problem statement left the preamble out of this process.

In general there seems to be a strong tendency to skip parts of the prob-
lem statement (which are perhaps perceived as mere padding) and, as a result,
“jumping to conclusions”. It is safe assuming that the same effect occurs with
more complex specifications stated as many pages of text. Recently, Vaandrager
mentioned that IEEE specifications of complex protocols are typically stated in
words, with at best an appendix where fragments are formalized [22].

We suggest the following discipline to eliminate, or at least reduce, this effect:
start by formalizing every sentence separately as accurately as the formalism
used permits, and simplify or combine only afterwards. . In particular, discard
seemingly irrelevant parts only if due consideration justifies doing so.

For instance, in solving (a), do not directly formalize the problem statement
in one step as (k ⇒ a)⊕ (¬ k ⇒ a) ≡ 1 (the identifier conventions are obvious).
Instead, in a first version, maintain one-to-one correspondence with the text, as
illustrated in the following set of equations, and simplify afterwards.

α⊕ β ≡ 1
α ≡ k⇒ a

β ≡ ¬ k ⇒ a

As an aside: in programming, one discourages writing if b = true then ...
since if b then ... is better style. In logic, it is often better style to give
equations the shape of equations; so we wrote α⊕β ≡ 1 rather than just α⊕β.

More importantly, in view of faithfully formalizing informal statements, one
might argue that using ⊕ in the first equation already skips ahead of things,
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since the preamble is a conjunction of two sentences. The shortcut reflects the
fact that proposition logic is insufficiently expressive to formalize this.

Indeed, the sentences in the preamble imply counting the number of true and
false assertions. For many reasons not discussed here, Funmath views Booleans as
numbers, subject to common arithmetic, which turns out advantageous for this
kind of problems as well. We first make “one of the following assertions” more
precise as “at least one of the following assertions”, since interpretation with
“exactly one” would make the second conjunct redundant, albeit this is clear
only in the total context and gives the same end result (but that is hindsight).

A faithful translation of the preamble then proceeds as follows. The sentence
“[at least] one assertion is true (false)” is in natural language shorthand for “the
number of assertions that are true (false) is [at least] one”. So, for the preamble,∑

(α, β) ≥ 1 ∧
∑

(¬α,¬β) ≥ 1 . (1)

Equivalence with α⊕ β ≡ 1 for Boolean α and β can be shown in many ways,
e.g., the following head calculation in 3 steps using the formal rules of Funmath.

Generally, a family of sentences (such as α, β in problem (a) or α, β, γ in
problem (b)) is a predicate, say P , and expressions like

∑
P ≥ n or

∑
P = n as

appropriate reflect the counting. The case
∑
P ≥ 1 is equivalent to ∃P , which

is the formal rule for rewriting (1) in one step as ∃ (α, β)∧∃ (¬α,¬β). A second
step using ∃ (p, q) ≡ p ∨ q yields (α ∨ β) ∧ (¬α ∨ ¬β), which equals α⊕ β.

The reader may wish to try this approach on problem (b) and then on some
of the word problems in [11] or in the mathematical puzzles literature [9,17].

From the classical “cleverness-oriented” problem solving point of view, faith-
ful translation may seem overkill, but in the context of formal methods and
textual specifications it can reduce errors. In view of the expressiveness and rich
collection of formal rules in Funmath, the extra work need not be prohibitive.

3 Intermediate Phases in Formalizing Informal
Statements

The preceding example already illustrated how to handle certain intermediate
phases, but the problem statement itself was “static” and already logic-oriented.

Some interesting additional issues arise in the following problem from [7].

A school has 1000 students and 1000 lockers, all in a row. They all start
out closed. The first student walks down the line and opens each one.
The second student closes the even numbered lockers. The third student
approaches every third locker and changes its state. If it was open he
closes it; if it was closed he opens it. The fourth student does the same
to every fourth locker, and so on through 1000 students. To illustrate, the
tenth locker is opened by the first student, closed by the second, reopened
by the fifth, and then closed by the tenth. All the other students pass
by the tenth locker, so it winds up being closed. How many lockers are
open?
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Here is the solution offered in [7].

The nth locker is opened or closed by student number k precisely when
k divides n. So if student k changes locker n, so does student n/k. They
cancel each other out. This always holds unless students k and n/k are
precisely the same person. That is, k = n/k. The lockers that are exact
squares will remain open. These are lockers 1, 4, 9, 16, 25, etc. How
many of these are there in a row of 1000? You can go all the way up to
31× 31 = 961, hence there are 31 lockers open.

In formalizing the problem statement, a first step is tightening the wording and
removing examples. Here is the result.

A school has 1000 students and 1000 lockers in a row, all initially closed.
All students walk successively along the row, and the kth student inverts
the state of every kth locker, that is: opens the locker if it was closed and
vice versa. How many lockers are open in the end?

The formal equations reflecting the informal reasoning in the proposed solution,
parametrized by the number of lockers N and the number of students K, are

Answer = |{n : 1 ..N | Open n}| Legend: |S| = size of set S
Open n ≡ Odd |{k : 1 ..K | k divides n}| Legend: Oddm ≡ number m is odd

Elaborating yields a “nicer” expression for the answer, but this is not the issue.
The problem statement describes a procedure, the equations only the result.

Classical mathematics cannot express the intermediate steps, but a procedural
language can, and formal semantics allows deriving the equations formally.

A more faithful rendering of the procedure in the problem statement is
for k in 1..K do

(for n in 1..N do if (k divides n) then inv (L n) fi od) od .

Here inv (L n) (for “invert the state of locker L n”) can be refined in many
ways, for instance L n := L n ⊕ 1 if L n is defined as taking values in 0 .. 1.
Program semantics allows calculating the final value of L (given that initially L
is zero everywhere) and hence the answer

∑
L. The calculation is facilitated by

observing that the loops are interchangeable (even parallelization is possible).
In an introductory course, a scaled-down formal semantics can be used, kept

simple by some restrictions on generality, as exemplified next.

Intermezzo: Microsemantics, a Scaled-Down Formal Semantics. We show one of
many forms for a simple program semantics presentable early in an introductory
course when handling problems of this kind. It is assumed that one of the starting
lessons was about substitution and instantiation, as in Gries and Schneider [11].
Substituting expression d for variable v in expression e is written e [v := d],
compacted as e[vd (written ev

d in [11]). As in [11], v and d may be tuples. The
operator [vd affects expressions only, the counterpart for commands is 〈vd.

In this example of a scaled-down semantics, the state s is the tuple of variables,
in simple problems the one variable that is changed. A command c is a function
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from states to states (direct functional semantics) defined recursively by axioms
of the form c s = e (instantiated c d = e[sd). Here are axioms for the basic
commands assignment (v := e), composition (c ; c′) and selection.

(v := e) s = s[ve or, as a nice pun, (v := e) s = s [v := e]
(c ; c′) s = c′ (c s)

(if b then c else c′ fi) s = b ? c s c′s

The last right hand side is a conditional expression with axiom (b ? e1 e0) = eb.
The following derived commands are expressed in terms of the basic ones.

skip = v := v

if b then c fi = if b then c else skip fi

while b do c od = if b then (c ; while b do c od) fi

for i in e .. e′ do c od = i, i′ := e, e′ ; while i ≤ i′ do c ; i := i +1 od

Finally, for arrays, A i := e is by definition shorthand for A := (i �→ e)>©A.
In Funmath, d �→ e is a maplet as in Z [18], and (f >©g)x = (x ∈ D f) ? f x g x.

With these preliminaries, calculating the final value for L (after loop inter-
change) is left as an exercise for the reader. As this kind of approach is meant
for an introductory course, elaboration should be done carefully and in detail
(at least the first time) and at a pace that all students can follow.

Variants and Ramifications. An interesting item is the k divides n test, which
is an indirect interpretation of “every kth locker” in the problem statement. A
more direct interpretation is that the kth student always proceeds directly to the
kth following locker. This is reflected by the inner loop in the procedure below.

for k in 1..K do (n := k; while n ≤ N do inv (L n); n := n + k od) od

Some might find (n := 0; while n + k ≤ N do n := n + k; inv (L n) od) more
stylish (I do). Anyway, now the loops are not interchangeable any more. Clearly
the interplay between faithfulness of translation and simplicity of derivation pro-
vides enough sustenance for an entire course on specification and transformation.

As an aside, observe that this problem illustrates the reverse of program de-
sign, which starts from an abstract specification and results in a procedure.
Here we start with a procedure and derive mathematical equations. In terms of
axiomatic semantics, the solution involves calculating strongest postconditions,
which also play an important role in the theory of reverse software engineering.

In the literature, the theoretical basis for postconditions is somewhat neglected
as compared to preconditions (or anteconditions as we prefer to call them) and
often presented as a footnote or afterthought. This is why we provide a more
symmetric treatment in [6], where furthermore axiomatic semantics is not for-
mulated via postulates but derived calculationally from program equations.

Again from the “cleverness-oriented” viewpoint, the procedural description
and its analysis may seem superfluous, yet it shows how formal methods can
attach “handles” to intermediate steps not expressible in standard mathematics.

A wealth of examples on algorithmic problem solving can be found in [2].
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4 Using Wide-Scope Domain-Independent Problems

Finally, we show that domain-independent problems can have a sufficiently wide
scope to serve as a running example for all notational and reasoning issues in a
complete introductory course on a mathematical basis for formal methods.

The chosen puzzle is designed as a brain-teaser and hence may appear some-
what artificial, but this is compensated by the fact that it was not designed at
all for our purpose: it was proposed by Propp [16] in Mathematical Horizons.
Moreover, its self-referential character is a good preparation for CS students.

Problem Statement. Table 2 is the test from [16]; we only renumbered the ques-
tions to range from 0 to 19. The author of the test further comments:

The solution to [this] puzzle is unique; in some cases the knowledge
that the solution is unique may actually give you a short-cut to finding
the answer to a particular question, but it’s possible to find the unique
solution even without making use of the fact that the solution is unique.
(Thanks to Andy Latto for bringing this subtlety to my attention.)
I should mention that if you don’t agree with me about the answer to
#19, you will get a different solution to the puzzle than the one I had in
mind. But I should also mention that if you don’t agree with me about
the answer to #19, you are just plain wrong. :-)

Formalization in Funmath. Table 3 is the translation of Table 2 into mathemat-
ical equations. We directly encode the letters A .. E for the answers by 0 .. 4 to
avoid the unnecessary clutter of explicit conversion mappings, so the answer to
the test is a string a : 20→ 5 satisfying this system of equations.

Most operators are basic Funmath [4,5] and, as said, need little explanation.
We just mention m ..n = {k : Z | m ≤ k ≤ n} and n = 0 ..n − 1. A property
of ∧| is that m = ∧| (n :S | P n) ≡ P m ∧ ∀n :S . P n ⇒ m ≤ n for any subset
S of N and predicate P on N with ∃n :S . P n. The choice operator has axiom
f ∈ R f , and f− is the generalized inverse of f , yielding inverse images iff they

are unique [4]. Also, n $ a =
∑
i :D a . a i = n counts occurrences of n in a.

A few ad hoc operators: abs is the absolute value operator, and Evn etc. are
appropriate predicates on N (i.e., their type is N→B).

Note: we provide some extra information by stating here that no equation
contains out-of-domain applications (e.g., a right-hand side outside 5). This is
ensured by the designer of the test and captured in the formalization.

Calculating the Solution(s). We shall use very few words; justifications are writ-
ten between 〈 〉, equation references between [ ], using [20] for the “extra eqn.”.
Heuristic: we scan the list various times; first looking for equations yielding an
answer by themselves, then extracting the maximum of information out of single
equations, then in combination etc.. The numbering indicates how many answers
are still left. Obviously, at the side we keep a running inventory of all answers
found thus far, and occasionally we will show it.
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Table 2. Self-referential Aptitude Test

0. The first question whose answer is B is question
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

1. The only two consecutive questions with identical answers are questions
(A) 5 and 6 (B) 6 and 7 (C) 7 and 8 (D) 8 and 9 (E) 9 and 10

2. The number of questions with the answer E is
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

3. The number of questions with the answer A is
(A) 4 (B) 5 (C) 6 (D) 7 (E) 8

4. The answer to this question is the same as the answer to question
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

5. The answer to question 16 is
(A) C (B) D (C) E (D) none of the above (E) all of the above

6. Alphabetically, the answer to this question and the answer to the following one are
(A) 4 apart (B) 3 apart (C) 2 apart (D) 1 apart (E) the same

7. The number of questions whose answers are vowels is
(A) 4 (B) 5 (C) 6 (D) 7 (E)

8. The next question with the same answer as this one is question
(A) 9 (B) 10 (C) 11 (D) 12 (E) 13

9. The answer to question 15 is
(A) D (B) A (C) E (D) B (E) C

10. The number of questions preceding this one with the answer B is
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

11. The number of questions whose answer is a consonant is
(A) even (B) odd (C) a perfect square (D) a prime (E) divisible by 5

12. The only even-numbered problem with answer A is
(A) 8 (B) 10 (C) 12 (D) 14 (E) 16

13. The number of questions with answer D is
(A) 6 (B) 7 (C) 8 (D) 9 (E) 10

14. The answer to question 11 is
(A) A (B) B (C) C (D) D (E) E

15. The answer to question 9 is
(A) D (B) C (C) B (D) A (E) E

16. The answer to question 5 is
(A) C (B) D (C) E (D) none of the above (E) all of the above

17. The number of questions with answer A equals the number of questions with answer
(A) B (B) C (C) D (D) E (E) none of the above

18. The answer to this question is:
(A) A (B) B (C) C (D) D (E) E

19. Standardized test is to intelligence as barometer is to
(A) temperature (B) wind-velocity (C) latitude (D) longitude (E) all of the above

With the numbering conventions as explained, here are the calculations.
20. [19] a 19 = 4
19. [4] a 4 = (a<5)− (a 4)

≡ 〈Note〉 a 4 = (a<5)− (a 4) ∧ a 4 ∈ D (a<5)−

≡ 〈Lemma −〉 a 4 = 4 ∧ ∀ i : 5 . i �= 4⇒ a i �= a 4
Lemma: f j ∈ D f− ≡ j ∈ D f ∧ ∀ i :D f . i �= j ⇒ f i �= f j (exercise)
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Table 3. Equations formalizing Table 2

a 0 = ∧| i : 5 | a i = 1
a 1 = i : 5 | a (i + 5) = a (i + 6) Extra (uniqueness): ∃! i : 18 . a i = a (i + 1)
a 2 = 4 $ a
a 3 = 0 $ a − 4
a 4 = (a<5)

− (a 4)
a 5 = (3, 3, 0, 1, 2) (a 16)
a 6 = 4 − abs (a 7 − a 6)
a 7 = (0 $ a + 4$ a) − 4

a 8 = ∧| i : 5 | a (i + 9) = a 8
a 9 = (3, 0, 4, 1, 2)− (a 15)
a 10 = 1 $ a<10

a 11 = ((Evn, Odd, Sqr, Prm, Mof)T (1 $ a + 2 $ a + 3$ a))− 1
a 12 = ((aEvn)

− 0 − 8)/2
a 13 = 3 $ a − 6
a 14 = a 11
a 15 = (3, 2, 1, 0, 4)− (a 9)
a 16 = (3, 3, 0, 1, 2) (a 5)
a 17 = ∀ (i : 1 .. 4 . 0 $ a �= i $ a) ? 4 (($ a) � (1 .. 4))− (0 $ a) − 1
a 18 = a 18
a 19 = 4 Question 19 is not mathematical, but asks an opinion.

18. [0] a 0 =∧| i : 5 | a i = 1
≡ 〈Prop. ∧| 〉 a (a 0) = 1 [α]

∧ ∀ i : 5 . a i = 1 ⇒ a 0 ≤ i [β]
[α] ⇒ 〈Leibniz〉 a 0 = 0 ⇒ a 0 = 1

⇒ 〈Leibniz〉 a 0 = 0 ⇒ 0 = 1
≡ 〈p⇒ 0 ≡ ¬ p〉 a 0 	= 0 [α′]

[β] ⇒ 〈Instantiate i := 0〉 a 0 = 1 ⇒ a 0 ≤ 0
⇒ 〈Leibniz〉 a 0 = 1 ⇒ 1 ≤ 0
≡ 〈p⇒ 0 ≡ ¬ p〉 a 0 	= 1 [β′]

[α] ⇒ 〈Leibniz〉 a 0 = 2 ⇒ a 2 = 1
≡ 〈[2]〉 a 0 = 0⇒ a 2 = 1 ∧ a 2 = 4 $ a
⇒ 〈a 4 = 4 ∧ a 19 = 4〉 a 0 = 2 ⇒ a 2 = 1 ∧ a 2 ≥ 2
≡ 〈p⇒ 0 ≡ ¬ p〉 a 0 	= 2 [γ′]

[4] ⇒ 〈From step 19, Leibniz〉 ∀ i : 4 . a i 	= 4
⇒ 〈Instantiate i := 0〉 a 0 	= 4
⇒ 〈[α′, β′, γ′], a 0 ∈ 5〉 a 0 = 3

17. [α] ⇒ 〈a 0 = 3〉 a 3 = 1 ⇒ 〈[3]〉 0 $ a = 5
16. [9] a 9 = ‘30412’− (a 15)

≡ 〈Note〉 a 9 = ‘30412’− (a 15) ∧ a 15 ∈ D ‘30412’−

⇒ 〈y ∈ D f− ⇒ x = f−y ⇒ y = f x〉 a 15 = ‘30412’ (a 9) [δ]
[15] a 15 = ‘32104’− (a 9), hence:
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a 9 = 〈Similarly〉 ‘32104’ (a 15)
= 〈[δ]〉 ‘32104’ (‘30412’ (a 9))
= 〈Def. ◦〉 (‘32104’◦ ‘30412’) (a 9)
= 〈Calcul. ◦〉 ‘03421’ (a 9)

The equation x = ‘03421’x has just one solution, x = 0, so a 9 = 0.
15. a 15 = 〈[δ], a 9 = 0〉 3 Hence a 15 = 3
14. [16] a 16 = ‘33012’ (a 5)

⇒ 〈[5]〉 a 16 = ‘33012’2 (a 16)
⇒ 〈Calcul. ◦〉 a 16 = ‘11330’ (a 16)
⇒ 〈Solutions〉 a 16 = 1 ∨ a 16 = 3

[1] a 1 = i : 5 | a (i+ 5) = a (i+ 6)
⇒ 〈e = (x :DP | P x) ⇒ ∃P 〉 ∃ i : 5 . a (i+ 5) = a (i+ 6)
≡ 〈Ch. var.〉 ∃ i : 5 .. 9 . a i = a (i+ 1)
⇒ 〈[20], lemma〉 ∀ i : 0 .. 18 . i 	∈ 5 .. 9⇒ a i 	= a (i+ 1)
⇒ 〈Instantiate i := 15〉 a 15 	= a 16
⇒ 〈Leibniz, a 15 = 3〉 a 16 	= 3
⇒ 〈a 16 = 1 ∨ a 16 = 3〉 a 16 = 1

Lemma: ∃!P ⇒ X ⊆ DP ⇒ ∃ (P �X)⇒ ∀x :D P . x 	∈ X ⇒ ¬P x

13. a 5 = 〈[5], a 16 = 1〉 3 Hence a 5 = 3
12. [6] a 6 = 4− abs (a 7− a 6)

⇒ 〈Arithmetic〉 a 6 = 4− (a 7− a 6)
∨ a 6 = 4− (a 6− a 7)

⇒ 〈Arithmetic〉 a 7 = 4
∨ a 7 = 2 · (a 6− 2)

⇒ 〈Weaken〉 Evn (a 7)
[7] a 7 = (0 $ a+ 4 $ a)− 4
⇒ 〈[2, 3], a 3 = 1〉 a 7 = a 2 + 1 [σ]
⇒ 〈[γ′′] a 2 ≥ 2〉 a 7 ≥ 3
⇒ 〈Evn (a 7)〉 a 7 = 4

11. [σ] ⇒ 〈a 7 = 4〉 a 2 = 3
We show the inventory thus far. Note: no more answers can be 4 (all used up).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
a i 3 3 1 4 3 4 0 3 1 4

10. [12] a 12 = ((aEvn)− 0− 8)/2
a 12 = 0 ≡ 〈Def. −〉 (aEvn)− 0 = 12

≡ 〈Eq. 12〉 a 12 = 2
a 12 = 1 ≡ 〈Eq. 12〉 (aEvn)− 0 = 10

≡ 〈Def. −〉 a 10 = 0
≡ 〈[10], a 3 = 1〉 0

So a 12 	∈ {0, 1, 2}, hence a 12 = 3

9. [12] a 12 = ((aEvn)− 0− 8)/2
≡ 〈a 12 = 3〉 3 = ((aEvn)− 0− 8)/2
≡ 〈Arithmetic〉 (aEvn)− 0 = 14
⇒ 〈Def. −〉 a 14 = 0
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8. [14] a 14 = a 11
⇒ 〈a 14 = 0〉 a 11 = 0

7. [1] ⇒ 〈Step 14.〉 ∃ i : 5 .. 9 . a i = a (i+ 1)
≡ 〈Expand〉 a 5 = a 6 ∨ a 6 = a 7 ∨ a 7 = a 8 ∨ a 8 = a 9 ∨ a 9 = a 10
≡ 〈Known〉 3 = a 6 ∨ a 6 = 4 ∨ 4 = a 8 ∨ a 8 = 0 ∨ 0 = a 10
≡ 〈No more 4〉 3 = a 6 ∨ a 8 = 0 ∨ 0 = a 10
≡ 〈(aEvn)− 0 = 14〉 a 6 = 3

6. [1] a 1 = i : 5 | a (i+ 5) = a (i+ 6)
⇒ 〈Lemma a 5 = a 6〉 a 1 = 0

Lemma: X ⊆ DP ⇒ ∃!P ∧ e = (x :X | P x) ⇒ e ∈ X
5. [8] a 8 =∧| i : 5 | a (i+ 9) = a 8

⇒ 〈Prop. ∧| 〉 a (a 8 + 9) = a 8 [κ]
a 8 = 0 ⇒ 〈[12], a 12 	= 0〉 0
a 8 = 1 ⇒ 〈[κ, 10]〉 a 10 = 1 ∧ a 10 = 2
a 8 = 2 ⇒ 〈[κ], 8.〉 a 11 = 2 ∧ a 11 = 0

So a 8 	∈ {0, 1, 2}, hence a 8 = 3
4. [10] a 10 = 1 $ a<10

⇒ 〈a<10 = ‘3031433430’〉 a 10 = 1
We show once more the running inventory.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
a i 3 0 3 1 4 3 3 4 3 0 1 0 3 0 3 1 4

3. Letting b := a �∈{13,17,18}, earlier answers yield
i 0 1 2 3 4

i $ b 4 3 0 7 3
From step 17, 0 $ a = 5, so calculation (not shown) yields 0 $ a∈{13,17,18} = 1.
[17] ⇒ 〈a 17 	= 4, 0 $ a = 5〉 a 17 = (($ a) � (1 .. 4))− 5− 1 [μ]

⇒ 〈Note, prop.−〉 ∃! i : 1 .. 4 . i $ a = 5
⇒ 〈Arith.〉 1 $ a = 5
⇒ 〈[μ], 1 $ b = 3〉 a 17 = 0 ∧ a 13 = a 18 = 1

0. Result: a = ‘30314334301031031014’.

This was a first version, still needing some restyling, but instructive as a first
attempt. Although detailed, the formal derivation is not much larger than the in-
formal statement. Deep mathematical problems like Fermat’s “last theorem”will
cause more expansion, “real-life” problems usually less.

As before, the point is not solving problems that cannot be solved without
formal methods: the web contains informal solutions for this example. Even
more: for a beginner, solving any but the smallest problem formally is harder,
since it forces concentrating on solving the problem and learning the formalism.

The point is that the statement of this problem can be understood by any
student without background in computing or other fields of engineering, yet
the formalization provides the opportunity for illustrating all notational issues
relevant in modeling engineering systems and most formal rules needed to reason
calculationally about them. Therefore, problems of this kind are ideal as running
examples for any introductory course or textbook on formal methods.
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5 Final Remarks

An Important Observation. Popular belief holds that formal methods are of
little use in deriving formulas from informal statements, almost by definition.
Yet, formal methods are especially valuable for this translation in the following
way.

Precisely because informal statements are subject to interpretation, transla-
tion into formulas will generally yield different results — in fact, almost certainly
if done from different viewpoints or, ideally, by different people. Formal calcula-
tion can then elucidate the relationship between the formalizations: equivalence,
refinement, contradiction, hidden hypotheses etc., as the case may be.

Again, the problem in Section 4 can illustrate this: a literal translation of the
statements in Table 2 will, for most of them, yield precursors of the equations
in Table 3 rather than the equations themselves. Even more: problem solvers
cited on the website mentioned in [16] have observed that some questions can
be interpreted in emtirely different ways.

On Language Expressiveness. Faithful translation requires a very expressive lan-
guage, otherwise steps have to be skipped or even the link between the informal
specification and the formulas is not easy to see. Since, with the current state of
the art, automated tools still reflect to a large degree the restrictions imposed
by the implementation or even some peculiar logic, they cause gaps.

An example of a tool-supported specification language that suffers less from
this drawback than its peers is Lamport’s TLA+ [14], as it was designed with
mathematical expression in mind. Therefore I particularly enjoy using this lan-
guage and support tool (TLC) for the laboratory exercises in one of my courses.

Yet, a fully-fledged declarative language, designed with a preference for ex-
pressiveness over implementability, still offers advantages. Here is an example.

Informal specification: given a sequence of symbols, replace successive appear-
ances of the same symbol (aptly called stuttering in the context of [14]) by a
single appearance of that symbol. Sequences are defined as functions on natural
numbers, e.g., of type N→S for infinite sequences of elements of S.

Before continuing, the reader should express this in his/her preferred formal-
ism. Even more interesting is letting students do this as a homework assignment.

Lamport’s formal specification is the following. For any infinite sequences σ,

�σ
Δ= let f [n ∈ Nat ] Δ= if n = 0 then 0

else if σ[n] = σ[n− 1]
then f [n− 1]
else f [n− 1] + 1

S
Δ= {f [n] : n ∈ Nat}

in [n ∈ S �→ σ[choose i ∈ Nat : f [i] = n]]

I wanted to derive a formula from the informal specification that reflects the
intuitive simplicity of the mapping. An essential feature that emerges from
the statement is that the elements the sequence remain intact and in order;
only the corresponding domain points are changed. This is exploited as follows.
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Let us first provide some background. In Funmath, any function f satisfies
f = x :D f . f x for new variable x (like N = λx.Nx for lambda terms), but also
f =
⋃
· x :D f . x �→ f x, a merge of maplets. The effect of merge (

⋃
· ) for simple

cases can be inferred from its use here, but its generic definition in [4] is more
subtle and yields extra properties that make it extremely flexible, as illustrated
by f− =

⋃
· x :D f . f x �→x for any (not necessarily injective) function.

With this background, any sequence β can be written
⋃
· n :D β . n �→β n. To

transform this according to the specification, it suffices replacing the the domain
point n to the left of �→ by the number of times that a new “stutter” started
before, which is

∑
k : n . β (k + 1) 	= β k. This yields the Funmath definition

�.β =
⋃
· n :D β .

∑
(k : n . β (k + 1) 	= β k) �→β n (2)

for finite as well as infinite sequences. In a complete Funmath definition, equation
(2) would be preceded by def �. :Sω→Sω with, specifying the types.

Note that equation (2) is as succinct as the informal specification and easy
to relate to the informal specification: immediately for those familiar with the
formalism, and with the above derivation otherwise. Proving equivalence of equa-
tion (2) with Lamport’s specification for infinite sequences, or with the semantics
of a recursive Haskell program having the stated effect on finite sequences is a
typical exam problem (subdivided into subproblems with helpful hints).

Educational Issues. In an ideal world, separation of concerns would be well-
served by domain-independent problems making things easier on students. Yet,
this does not guarantee a positive reception by all concerned. In courses, we
found that some students react adversely, and a small minority (about 2 in
25) ‘strongly asserts’ (!) not being interested in puzzles or even in analogies
with more tangible phenomena, but only wanting to do “real” applications and
programming.

Taking such comments at face value is misleading. Indeed, when offered the
choice between a ‘theoretical’ and an ‘application’ problem in a test, students
mostly choose the former. In class exercises, they do less well on practical prob-
lems, and the mistakes or breaks in the answers show diffculties with com-
bined concerns. Deeper probing via separate questionnaires strongly suggests
that stating a preference for “real” problems is often only a pose, and that a
dislike of mathematics is the real problem. Many prefer programming because
of the immediate feedback from the computer and the chance to tinker until it
works.

We conjecture that the growing supply of CS courses with just programming
assignments on seemingly ‘practical’ but intellectually insignificant problems [19]
degrades the ability to cope with the delay in gratification when doing math.

Yet, not taking the aforesaid comments for granted is also risky, because
colleagues responsible for interpreting the questionnaires may well take them
literally, especially if they are adverse to formal methods. In that case, the teacher
faces the choice between serving the students or serving the administrators.
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Abstract. This paper considers network services that bind identifiers
in the course of delivering messages, and also persistent, point-to-point
connections made in the context of such bindings. Five patterns represent
the different ways that identifier binding can be accomplished. A formal
model incorporating these patterns is used to compare the properties of
the patterns, to define desirable network properties related to identifier
binding, and to establish sufficient conditions for guaranteeing them. The
results provide new insights into connections between mobile endpoints.

1 Introduction

1.1 The Problem

The most complex aspect of network design and operation is routing. Although
network routing has been studied intensively, almost all investigations are
focused on the goals of performance and reliability. This paper is also about
routing, but its focus is on services: How should network services be built and
deployed? How can network architecture best support the needs of services?

Of all the possible purposes and behaviors of network services, this paper
concerns two: (1) Delivering a message that requires binding of an identifier. In
other words, the sender of the message knows the intended receiver of the mes-
sage by one identifier, and the network knows that receiver by another identifier.
To deliver the message, it is necessary to bind the first identifier to the second.
(2) Providing a persistent, point-to-point connection in the presence of identifier
binding. In other words, one or both of the connection endpoints knows each
other by an identifier that requires binding.

The specific goal of the paper with respect to these services is to classify all
the ways that they can be performed, and to elucidate the properties of each.
The potential benefit to service builders is that they can make informed design
decisions. The potential benefit to network architects is that they can determine
whether an architecture provides good support for services.

There are many reasons why a service might maintain two distinct identifiers
I1 and I2 with the same meaning, in the sense that both identify the desired
receiver of a message. Four of the most common reasons are:

• I1 represents an abstraction such as a group of equivalent endpoints, and I2
represents a concrete instance of the abstraction such as a member of the
group.

J. Misra, T. Nipkow, and E. Sekerinski (Eds.): FM 2006, LNCS 4085, pp. 332–347, 2006.
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• I1 is a long-lasting identifier such as the published address of a mobile end-
point, and I2 is a short-lived identifier such as the current network address of
the mobile endpoint.

• I1 is a public identifier and I2 is a private one.
• I1 belongs to the address space of the subnetwork to which the sender is

attached, while I2 belongs to the address space of the subnetwork to which the
destination is attached. In this situation the sender cannot send the message
with address I2 because it is either illegal or has a different meaning in the
sender’s locality.

These bindings have interesting properties and interactions from a service per-
spective [10].

1.2 Approach to a Solution

It is widely accepted in the network literature that naming and routing are
related (Balakrishnan et al. have assembled an excellent bibliography on the
subject [1]), but it is difficult to say exactly how they are related. What we find
in the literature is a bewildering variety of examples, particularly because the
explosive growth of the Internet has been accompanied by an explosion in the
ways its structures are used and the purposes they are used for.

The first contribution of this paper is a formal model that gives a precise
answer to the question of how identifier binding can be accomplished in the
course of message delivery (Sections 2 and 3). The scope of the formal model is
a network domain, which corresponds loosely to the use of one protocol within
one network layer. Three “patterns” identify the three major variations on the
theme of identifier binding.

The model is compositional in the sense that message delivery can involve a
composition of any number of bindings. It is used to define the domain properties
of reachability, determinism, and nonlooping, and to state some simple theorems
concerning them.

The formal model appears to apply equally well to all network layers and pro-
tocols. Most interestingly, application of the model to the “link” and “network”
(IP) layers shows that IP routing is simply a special case of identifier binding.
This adds a fifth reason for binding to the list above, the new reason being to
get the message closer to its destination.

The second contribution of this paper concerns the structure necessary to
implement persistent connections in the presence of identifier binding. For this
to work, an endpoint must be able to send messages that respond to a message it
has received, and these messages must be delivered to the sender of the original
message. Two ways to do this are presented as patterns that can be combined
with the patterns for message delivery (Sections 4 and 5).

Returnability is the domain property ensuring correct connections (Section 4).
For a domain to have returnability, its various bindings must interact correctly.
Section 6 proposes a set of constraints for ensuring returnability in a domain,
and gives evidence of their sufficiency. Section 7 shows how the results apply to
the problem of sustaining connections between mobile endpoints.



334 P. Zave

The model is written in Alloy [3]. The formal reasoning is performed by the
Alloy Analyzer, which checks all possible instantiations of a model up to a spec-
ified size. The size limits used were not arbitrary, but rather based on reasoning
about the model itself. Nevertheless, the claimed results should still be con-
firmed by proof. For reasons of space this paper shows only fragments of the
model; the full model, including information about analysis bounds, is available
on the author’s Web site.

2 Domains

A domain exists to provide network communication among a set of agents known
as endpoints. Typically a domain is associated with the protocol that the end-
points use to communicate with each other, so there is an IP domain in the
network layer of the Internet, and TCP and UDP domains in the transport layer
of the Internet. In the application layer there are many domains associated with
protocols; for example, the SIP domain is associated with the SIP protocol for
for voice-over-IP and other media services [8].

The address space of a domain is the set of strings that the routing infrastruc-
ture of the domain can interpret. This infrastructure is represented by a relation
routing from the address space to the endpoints. For example, in the IP domain,
IP routing maps IP addresses to hosts.

Although routing is not constrained by the formal model, it is best to think
of it, at least initially, as an immutable function. More flexible mappings to end-
points, such as mappings defined on abstract identifiers, one-to-many mappings,
and transient mappings, are all provided by the bindings that are the subject of
this paper.

A path packages together agent attributes generator and absorber and address
attributes source and dest. If a domain supports a path, then it is consistent with
the domain model for the path’s generator to send a message in the domain with
those source and destination addresses, and for that message to be received by
the absorber. For a given generator, source, and dest a domain might support
more than one path, which means that it can route nondeterministically to any
one of a set of absorbers. In Alloy, the signature of domains and paths, and the
definition of support, are:

sig Domain { sig Path {
endpoints: set Agent, source: Address,
space: set Address, dest: Address,

-- Arrow is Cartesian product. generator: Agent,
routing: space -> endpoints } absorber: Agent }

pred DomainSupportsPath (d: Domain, p: Path) { {
-- Source address routes to generator (dot is relational join).

p.source in (d.routing).(p.generator)
-- The destination address routes to the absorber.

p.absorber in (p.dest).(d.routing) } }
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Often a domain is partitioned by subnetworks, each of which may have its own
administration, address space, and routing function. Although interoperation of
subnetworks requires binding [11], this example of binding is not necessary for
exploring binding issues, so subnetworks are ignored in this paper.

3 Bindings and Reachability

Endpoints are not the only agents participating in domains. There are also han-
dlers, which (among many other activities) absorb messages or forward them
on their way to their destinations. In the SIP domain, the handlers are SIP
application servers. In the IP domain, the handlers include firewalls, gateways,
and Mobile IP home agents [7]. In a lower-layer domain implementing IP, the
handlers are IP routers.

If a path from one endpoint to another includes handlers, it is divided into
hops as shown in Figure 1. One of the reasons for having handlers in paths is to
bind identifiers. The figure shows three patterns for delivering a message when
binding of an identifier I1 to an identifier I2 is required. Of the three patterns,
two entail the use of handlers in the message path.

dest = IN 1

1

dest = I

I

1

I

dest = IA

IA

dest = I 2

I
2

2

2

21

1

2

dest = I

dest = I 1

binding(I  ) = I
2

generator absorber

absorber

absorbergenerator

generator

Pattern 3

I
handler

handler

Pattern 1

Pattern 2

Fig. 1. Three patterns for delivering a message with binding

In Pattern 1, the initiator does its own lookup of the binding of I1, and then
sends a message whose destination is the resulting identifier I2. An example of
Pattern 1 is the binding of DNS names to IP addresses in the IP domain.

In Pattern 2, the initiator sends the message with destination I1, which is
mapped by routing to a handler. The handler handles the message by looking up
the binding of I1 to I2, changing the message destination to I2, and forwarding
it. Most messages in the SIP domain employ Pattern 2. The domain has its own
address space, in which all addresses begin with the prefix sip. If a message
is sent with destination sip:I1, and if sip:I1 is associated with a server, the
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message goes to the server. The server looks up the binding and changes the
destination to sip:I2 before forwarding the message.

In Pattern 3, I1 has two parts. The initiator sends the message with destina-
tion IA1, which is the address part of the identifier. IN1 is the name part of
the identifier, which is encapsulated in the message as a secondary destination.
IA1 is routed to a handler, just as I1 in Pattern 2 is. The handler has access to
the binding of (IA1,IN1), and handles the message by changing the destination
to the resulting identifier I2 and forwarding it. A good example of Pattern 3 is
a single-address Network Address Translator (NAT). In this case, IA1 is the IP
address of the NAT. IN1 is a port number, which is used to identify different
hosts behind the NAT.

The primary distinction between the three patterns is the type of identifier
that they can bind. Pattern 2 can only bind addresses in the address space of the
domain, because the message is sent with destination I1, and the destination field
of a message must be in the address space of the domain. For the same reason,
Pattern 3 can only bind pairs whose first components are addresses, although
their second components are unrestricted. We refer to unrestricted identifiers as
names. Pattern 1 can bind unrestricted names.

Another important distinction between the patterns lies in the distribution
of binding data. In Patterns 2 and 3, the binding of an identifier need be acces-
sible only to the handler for that identifier. In Pattern 1, the binding for every
identifier must be accessible to every endpoint.

Other distinctions arise from the fact that Patterns 2 and 3 employ a handler
in the path of every message destined for the identifier, while Pattern 1 does
not. The presence of the handler can be used to increase security [1], yet it can
also reduce performance and reliability.

The result of binding any identifier can be another identifier of any type, itself
requiring further binding. Thus binding is inherently compositional. If I2 is a
name bound using Pattern 1, then the descriptions above are modified slightly:
instead of sending a message with destination I2, as stated above, the endpoint
or handler looks up the binding of I2 and then uses the result of the lookup as
appropriate to its type.

To create the simplest possible model of compositional binding, we can ab-
stract names, addresses, and address/name pairs as subtypes of a single type
identifier. Then domains and paths can be extended as shown below. The union
of all bindings that apply to message destinations in a domain is dstBinding.

sig Domain { sig Path {
... ...
dstBinding: Identifier -> Identifier origDst: Identifier

} }

pred DomainSupportsPath (d: Domain, p: Path) { {
...

-- Starting from origDst, dest is in the reflexive transitive
-- closure of binding.
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p.dest in (p.origDst).(*(d.dstBinding))
-- No further binding applies to dest.

p.dest !in (d.dstBinding).Identifier } }

pred ReachableInDomain (d: Domain, i: Identifier, g: Agent) {
some a: Address | a in i.(*(d.dstBinding)) &&

a !in (d.dstBinding).Identifier &&
g in a.(d.routing) }

Paths are extended with an origDst attribute holding the identifier originally
given as a destination. Binding transforms it to dest, which must (as shown
above) be in the closure of the binding relation but not in its domain. Thus the
transformation from origDst to dest models a path of hops and handlers extend-
ing as far as possible before the last hop is routed to the absorbing endpoint.

An endpoint is reachable in a domain, from an identifier, if there could be a
path in that domain with that identifier as origDst and that endpoint as absorber.

It is now possible to define some useful domain properties. A domain is non-
looping if chains of hops and handlers cannot be infinitely extended, or

pred NonloopingDomain (d: Domain) {no ( ^(d.dstBinding) & iden )}

This says that there is no intersection between the irreflexive transitive closure
of dstBinding and the identity relation. A domain is deterministic if an identifier
reaches at most one endpoint, or

pred DeterministicDomain (d: Domain) {
all i: Identifier | lone g: Agent | ReachableInDomain(d,i,g) }

Adding a new binding to a domain is performed by an operation whose sig-
nature is:

pred AddBinding ( d, d’: Domain,
newBinding: Identifier -> Identifier )

A precondition ensures that if a newly bound identifier (member of newBind-
ing.Identifier) is an address or address/name pair, then its address part belongs
to the address space of the domain. The operation simply puts the newBinding
tuples into dstBinding.

The domain properties of reachability, nonlooping, and determinism are pre-
served by adding a binding, provided that some unsurprising preconditions on the
arguments are added. A particularly important group of preconditions ensures
that the newly bound identifiers are unused in the old domain. The preconditions
are packaged in this definition:

pred IdentifiersUnused (d: Domain, new: Identifier ) { {
no ((d.routing).Agent & new)
no ((d.dstBinding).Identifier & new)
no (Identifier.(d.dstBinding) & new) } }
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The three conditions say that the identifiers in the argument set new are not in
the domain of routing, are not in the domain of the old dstBinding, and are not
in the range of the old dstBinding, respectively. To ensure that reachability in
the new domain is a superset of reachability in the old domain, it is sufficient to
have IdentifiersUnused(d,newBinding.Identifier). To preserve determinism, it is
sufficient to have unused identifiers and a precondition that newBinding is itself
deterministic. To preserve nonlooping, it is sufficient to have unused identifiers
and a precondition that newBinding is itself nonlooping.

4 Connections and Returnability

From the perspective of binding, the most interesting use of message delivery is
to create persistent network connections between endpoints. Figure 2 illustrates
the setup of a connection.

The request message from the generator (now initiator of the connection)
is delivered to the absorber (now acceptor of the connection) as described in
Section 3. Because the source address can be altered in the course of the path,
the figure shows a new path attribute finSrc, which is the final source identifier
delivered to the acceptor.

To complete setup of the connection, the acceptor must send a response mes-
sage, and the response message must be delivered to the initiator. The remainder
of the paper concerns how the acceptor sends the response message, how we can
be sure that it is delivered to the initiator, and related matters.

In the terminology of this model, to return a message is to send a message
related to a previously received message, with the intention that the message
will go to the generator of the previous message. The returning agent must do
this in a fixed way, which is to invert the source and dest identifiers it received
in the message being returned. The necessary relationship between the path p1
being returned and the return path p2 is as follows:

pred ReturnPath (p1, p2: Path) {
p1.absorber = p2.generator &&
p2.source = p1.dest && p2.origDst = p1.finSrc }

As shown in Figure 2, the acceptor of the connection responds to the request
message by returning it. Once the connection is set up, either endpoint should
send messages within the connection by returning the last message they received
within the connection. This is also shown in Figure 2, where the initiator sends its
next message to the acceptor by returning the response message it has received.

The requirement on agents to return messages within a connection is an ar-
chitectural constraint. It is being imposed for the purpose of ensuring that the
return message goes to the generator of the message being returned, thus main-
taining a healthy connection. As explained in the next section, both the finSrc
and dest fields of a received message are related to bindings in the domain. The
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finSrc2

dest2

source3 = dest2

origDst3 = finSrc2 dest3

origDst1

finSrc3 = finSrc1

initiator

acceptor

acceptorinitiator
source1 finSrc1

dest1

source2 = dest1

origDst2 = finSrc1

Repeat

Response

Request

Fig. 2. The anatomy of a connection. Path attributes in Roman type are addresses,
while path attributes in Italic type are identifiers.

returner of the message must use dest as source and finSrc as destination to
invoke the bindings as intended. For example, in the figure finSrc2 may not be
the same as origDst1, and the repeat message must use the more recent finSrc2
as its origDst.

Rather than being an onerous constraint, this requirement is easy to satisfy
and beneficial for other reasons. The source address of any message should be an
address that routes to the generating endpoint in the current state of the network
(see Section 2). This constraint provides a measure of security, and is enforced
in the Internet today by IP firewalls that perform ingress filtering. Returning
messages is an easy way to get this security.

A domain in which every return message is delivered to the generator of the
message being returned has the desirable property of returnability. This property
of a domain is defined as follows:

pred ReturnableDomain (d: Domain) {
-- If there is a terminating attempt to return a path, it must
-- go to the generator of the message being returned.
( all p1, p2: Path |

DomainSupportsPath(d,p1) && DomainSupportsPath(d,p2) &&
ReturnPath(p1,p2)

=> p2.absorber = p1.generator
) &&
-- If there is an attempt to return a path, it must terminate.

NonloopingDomain(d) &&
( all p1: Path | DomainSupportsPath(d,p1) =>

(all a: Address |
a in (p1.finSrc).(*(d.dstBinding)) &&
a !in (d.dstBinding).Identifier

=> a in (d.routing).Agent )
) }
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The first major conjunct says that if a domain supports two paths, one return-
ing the other, the return path must end where the path being returned began.
The second major conjunct says that if a domain supports a path, an attempt to
return that path must always terminate. A loop in the destination binding could
prevent termination, so that is prohibited. An undefined dest address could also
prevent termination, so that is also prohibited.

5 Bindings and Returnability

With respect to the return of a message whose delivery entails binding by means
of a handler, there are two patterns, as shown in Figure 3. A handler is inserted
in the path from initiator to acceptor, just to remind us of its presence.

finSrc2 =I

origDst1 = I

source
handler

dest
handler

finSrc2 = I

dest1 = I

2

2source2 = I

source2 = I1

1

2

2

Pattern B initiator

Pattern A initiator

acceptorinitiator

Fig. 3. Two patterns for returning a message with binding. If the original message
follows Pattern 3 and the return message follows Pattern B, then finSrc2 has both
address and name parts.

In Pattern A, address I2 is the final source of the return message as delivered
to the initiator. In Pattern B, the return message goes through a handler because
it has source I2, not because of its destination. The handler inverts the binding,
so that the final source of the return message is I1.

Most domains do not have a built-in mechanism for routing a message to a
handler on the basis of its source address. However, DFC [2,4] and SIP domains
have it, and it can be simulated by various mechanisms.

The two patterns lead to fundamentally different network behaviors. With
Pattern A only the first message of a connection goes through a handler, which
evaluates the binding exactly once for the connection. With Pattern B, every
message of a connection goes through a handler: each message from the ac-
ceptor to the initiator goes through a handler that hides I2, and each message
from the initiator to the acceptor goes through a handler that re-evaluates the
binding of I1.

As a result of these differences, the two patterns are good for different pur-
poses. Pattern A is good for one-to-many bindings, for example bindings that
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distribute requests across a pool of equivalent endpoints. For a particular re-
quest, the destination handler chooses a particular endpoint and its address I2.
All subsequent messages of the connection go directly between the requestor
and the chosen endpoint. The destination handler is free to choose a different
endpoint and address for the next request.

Pattern B is good for long-lasting connections to identifiers whose binding
changes over time, for example mobile bindings. Every message of the connection
goes through the destination handler, so these messages will continue to be
delivered to the same endpoint even as its network address changes.

Pattern B is far more expensive than Pattern A. Nevertheless, Pattern B
appears to be the only well-structured way to achieve true mobility. The meagre
deployment of Mobile IP, as described by Perkins [7], can be explained by the
absence of a mechanism functioning as the source handler in Pattern B. Without
it, the only way to get connection messages through the destination handler (so
the binding can change over time without disrupting the connection) is to have
source2 = I1. Such messages, however, are often blocked by ingress filtering
because I1 appears unrelated to the current address of the mobile endpoint.

Because every message of a connection using Pattern B goes through at least
one handler, the pattern provides extra opportunities for security and privacy,
which should be included as benefits to balance its costs. For example, Pattern
B conceals I2 from the initiator of the connection, thus maintaining privacy for
the acceptor.

Referring back to Figure 2, this section so far has described the binding of
origDst1 to dest1, and how the choice of Pattern A or B determines whether
finSrc2 is the same as dest1 (Pattern A) or origDst1 (Pattern B). In other words,
it concerns how the initiator reaches the acceptor.

The patterns apply equally to how the acceptor reaches the initiator. In this
direction, the identifier by which the initiator is known to the acceptor is finSrc1.
In this direction Pattern A is vacuous, as source1 will be the same as finSrc1.
With Pattern B, however, a handler invoked when the source address is source1
changes it to a different finSrc1, and every message from the acceptor to the
initiator goes through a destination handler for finSrc1.

The A/B distinction does not apply to Pattern 1 because there the initiator
knows address I2 from the beginning. In effect, all Pattern 1 bindings are also
Pattern A bindings.

6 Structured Bindings

To add Patterns A and B to our model of composable bindings, it is necessary
to extend domains and paths as follows:

sig Domain { sig Path {
... ...
srcBinding: Identifier -> Identifier, finSrc: Identifier
AdstBinding: Identifier -> Identifier, }
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BdstBinding: Identifier -> Identifier
} {

dstBinding = AdstBinding + BdstBinding
}

pred DomainSupportsPath (d: Domain, p: Path) {
...
p.finSrc in (p.source).(*(d.srcBinding)) &&
p.finSrc !in (d.srcBinding).Identifier }

The generalization dstBinding is now the union of two destination bindings, one
following Pattern A and one following Pattern B. There is also a srcBinding that
transforms a source address to a finSrc identifier exactly as dstBinding transforms
an origDst identifier to a dest address.

Note that, in this simple model, source and destination bindings are applied
independently to each message. In a more complex model, the handlers might do
more than just bind, and their order might be significant. Routing to all source
handlers before any destination handlers has proven to be a very successful rule
for this situation [4].

The easiest way to ensure returnability in a domain with many bindings is
to impose structure on them. The following definition of a structured domain is
stronger than it needs to be for many real situations, where sufficient conditions
can be defined more locally. The point here is not to find the narrowest con-
straints, but rather to understand why certain domain properties are important
in general, and how they contribute to returnability.

pred StructuredDomain (d: Domain) {
let ADom = (d.AdstBinding).Identifier,

BDom = (d.BdstBinding).Identifier,
RDom = (d.routing).Agent,
BRan = Identifier.(d.BdstBinding) | {

NonloopingDomain(d)
-- The two bindings and routing operate on different identifiers.

no (ADom & BDom)
no (ADom & RDom)
no (BDom & RDom)

-- Except for AdstBinding, delivering a message is deterministic.
(all i: Identifier | lone i.(d.BdstBinding) )
(all i: Identifier | lone i.(d.routing) )

-- B bindings are invertible, are inverted by srcBinding.
all i: Identifier | lone (d.BdstBinding).i
d.srcBinding = ~(d.BdstBinding)

-- Pattern A bindings precede Pattern B bindings.
no ( BRan & ADom ) } }

The let clauses establish ADom, BDom, and RDom as the mapping domains of
A binding, B binding, and routing, respectively. These sets are constrained to
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be disjoint because it is too difficult to write constraints if one identifier can be
treated, nondeterministically, in two different ways.

Routing and B binding must be deterministic because (for instance) they are
repeatedly applied to the messages of a connection. If these operations could
have multiple legal outcomes, there would be no assurance that all the messages
belonging to one connection would go to the same endpoint. Note that A bindings
can be nondeterministic (one-to-many), because an A binding is only evaluated
once per connection.

B bindings must also be invertible, because they must be (and are) inverted
by source binding. Seeing this constraint, one might wonder why routing does
not have to be invertible. What if a B binding maps identifier I to address A1,
and both A1 and A2 route to the same endpoint? The answer to the question
lies in the definition of returning a message, which requires that if the message
being returned came to the endpoint by means of I and A1, the source field of
the return message is A1 and not A2. This is important because A2 is not in the
range of BdstBinding, and therefore not in the domain of srcBinding.

Finally, there is no intersection between the range of B binding and the domain
of A binding, which means that in any composition of bindings, all A bindings
must precede all B bindings. The reason for this constraint is illustrated by
Figure 4, in which a B binding precedes an A binding in a compositional chain.
The return message has source = I3. This address is unknown to srcBinding,
because it was produced by an A binding. Consequently the B binding is not
inverted, and the return message is handled as if both bindings were A bindings.
If A bindings precede B bindings, on the other hand, the return works properly,
and the finSrc received by the initiator is the last result of A binding and the
first input to B binding.

B destgenerator

3
source = I

3
handler

3finSrc = I

acceptorA dest
handler dest = I

2
I

1
origDst = I

Fig. 4. An A binding following a B binding nullifies the B binding

Fortunately the most natural uses of A and B bindings obey this rule. For
example, in the IP domain, DNS lookups (A bindings) precede all other bindings.
The rule is most likely to be broken by accident, when a binding of either type
is acceptable, and a binding of the wrong type is chosen because of lack of
awareness of the consequences.

The AddBinding operation is extended in two ways to add A and B bind-
ings, respectively. The preconditions on the extended operations are sufficient to
preserve the structure of a domain.



344 P. Zave

Analysis with the Alloy Analyzer establishes that structure guarantees return
ability—a structured domain is a returnable domain as defined in Section 4.
A finite counterexample to the assertion could not have more than 2 paths,
3 agents, and 10 identifiers, even if both paths entail the application of two
bindings in either direction. The Alloy Analyzer found no counterexamples to
the assertion, checking all possible instances with up to 2 paths, 3 agents, and
10 identifiers. The possibility of an infinite counterexample is precluded because
a structured domain is nonlooping.

7 Mobility

The most interesting example of a B binding is one used to reach a mobile
agent. When a mobile agent moves its network attachment, the domain changes,
or, in logical terms, becomes a different domain. The following operation is an
example of the effect a move might have on a domain. In domain d1, endpoint
g is attached to the network at address a1. In domain d2, it is attached to the
network at address a2. The operation updates BdstBinding to track the change,
and srcBinding to preserve the structure of the domain. Analysis establishes that
if d1 is structured, d2 is also structured.

pred MobileAgentMove (g: Agent, a1, a2: Address, d1, d2: Domain)
{ {
-- Preconditions:
-- a1 is the result of a B binding.

a1 in Identifier.(d1.BdstBinding)
-- a1 is not in the domain of a B binding.

a1 !in (d1.BdstBinding).Identifier
-- a1 routes to g.

a1.(d1.routing) = g
-- a2 is unused.

IdentifiersUnused(d1,a2)

-- Postconditions:
-- Update the domain.

(let a3 = (d1.BdstBinding).a1 |
d2.routing = d1.routing + (a2->g) - (a1->g) &&
d2.BdstBinding = d1.BdstBinding + (a3->a2) - (a3->a1) &&
d2.srcBinding = d1.srcBinding + (a2->a3) - (a1->a3)

)
-- Frame conditions on domain parts that don’t change:

d2.endpoints = d1.endpoints
d2.space = d1.space
d2.AdstBinding = d1.AdstBinding } }

To check that a mobile move preserves returnability, we need a new definition
of returnability with a temporal dimension, because a message can be delivered
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Fig. 5. How a connection is maintained to a mobile endpoint

in one domain and returned in another. This situation is illustrated by Figure 5.
In this figure, a request message is delivered, then the initiator (a mobile agent)
moves, and the response message is delivered in the new domain. The mobile
address m of the initiator is bound using a B binding.

The new definition of ReturnableDomainPair is very similar to the definition
of ReturnableDomain in Section 4. The only differences are that there are two
domains d1 and d2, it is d1 that must support the path being returned, and it is
d2 that must support the return path or attempted return path. Alloy analysis
establishes that the following assertion is true for all instantiations with up to 2
paths, 3 agents, and 8 identifiers. A finite counterexample to the assertion could
not have more than 2 paths, 3 agents, and 8 identifiers, even if if acceptor’s
identifier of the initiator has two bindings and the initiator’s identifier of the
acceptor has one binding.

assert StructureSufficientForPairReturnability {
all g: Agent, a1, a2: Address, d1, d2: Domain |

StructuredDomain(d1) &&
MobileAgentMove(g,a1,a2,d1,d2)
=> ReturnableDomainPair(d1,d2) }

The form of this assertion emphasizes that we are making a major simplification:
we are assuming that message delivery and moving a mobile agent are serializable
with respect to each other.

8 Related Work, Limitations, and Future Work

The current Internet architecture has two global name spaces, DNS (domain)
names and IP addresses. Various researchers have proposed that additional
global name spaces should be added to the Internet architecture. For exam-
ple, the Name Space Research Group has explored the possibility of adding one
name space [5], O’Donnell proposes adding one name space [6], and Balakrishnan
et al. have considered the addition of two [1].

The problem with the “global” approach is illustrated clearly by the fact that
no two of these four proposed global name spaces are exactly alike in their goals
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and properties. Clearly there are more requirements than can be satisfied by
adding global name spaces, so it makes sense to try to understand fundamental
properties of name binding, in the hopes of satisfying requirements in a more
incremental way.

In related work [9], Xie et al. also define a compositional model of reachability
in networks. Their model includes packet filtering, which is not covered here, and
does not include the issue of replying to a message, which plays a large role here.
The purpose of their model is actual computation of reachability, and the model
is not related to general network properties.

A study of interoperating subnetworks [11] is related to the present work in
its approach and concerns. The present work improves on the previous study in
three ways: (1) It covers bindings created for all reasons, not just interoperation.
For example, of all the binding situations mentioned above, only one is related to
interoperation. The present work gives special prominence to bindings support-
ing mobility, which requires a model having a temporal dimension not present
in [11]. (2) Here, the sufficient conditions for returnability do not require that
routing be completely deterministic. This is an important relaxation of demands.
(3) Here, the sufficient conditions for desirable properties are simpler and easier
to understand.

The model in this paper does not preserve the actual history of handlers or
bindings that contribute to a path. This is a limitation, as many interesting
capabilities and properties rely on this history.

Figure 6 illustrates this limitation. Alice has an identifier anon that she pub-
lishes in certain contexts, giving address alice only to trusted associates. If anon
is bound with a B binding as modeled in this paper, every return message from
Alice will have finSrc = anon, regardless of whether the connection was requested
by a friend or by a stranger. If anon is bound with an A binding the problem is
even worse, as a stranger will receive return messages with finSrc = alice.

handler

generator

generator

finSrc = anon source = alice

B dest

Response to

Request

Request

handler
source

acceptordest = alice
origDst = alice

origDst = anon

either Request

Fig. 6. These bindings do not support privacy well

This limitation can only be removed by adding a mechanism that remembers
more about the request message. The issue is not adding history to the for-
mal model—which is straightforward—but rather understanding all the possible
mechanisms, their properties, and their architectural implications.
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Another limitation, made obvious by Section 7, is that delivering a message
through a domain and modifying the domain are assumed to be serializable
with respect to each other. This assumption is far from reality, and insights into
realistic network behavior based on rigorous reasoning would be an important
contribution.

Another limitation of this work is that the rules for managing bindings are
global with respect to the domain, and therefore difficult to apply. A more prag-
matic approach might be to introduce the concept of hierarchical name spaces,
which are widely used for scalability, to convert the rules into a form that is
local and easy to apply.

By extending this work in the directions mentioned above, we would very
quickly be studying problems at the very heart of Internet routing, security, and
scalability. The prospect is equally exciting and daunting. By working top-down
from abstract models and extending them carefully, however, we have a chance
of making valuable discoveries that the usual bottom-up approach to networking
will never reach.

References

1. H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica, and
M. Walfish. A layered naming architecture for the Internet. In Proceedings of
SIGCOMM ‘04. ACM, August 2004.

2. G. W. Bond, E. Cheung, K. H. Purdy, P. Zave, and J. C. Ramming. An open
architecture for next-generation telecommunication services. ACM Transactions
on Internet Technology, 4(1):83–123, February 2004.

3. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006.

4. M. Jackson and P. Zave. Distributed Feature Composition: A virtual architec-
ture for telecommunications services. IEEE Transactions on Software Engineering,
24(10):831–847, October 1998.

5. E. Lear and R. Droms. What’s in a name: Thoughts from the NSRG. IETF Name
Space Research Group, work in progress, 2003.

6. M. J. O’Donnell. Separate handles from names on the Internet. Communications
of the ACM, 48(12):79–83, December 2005.

7. C. E. Perkins. Mobile IP. IEEE Communications, May 1997.
8. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler. SIP: Session Initiation Protocol. IETF Network
Working Group Request for Comments 3261, 2002.

9. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson, and J. Rex-
ford. On static reachability analysis of IP networks. In Proceedings of IEEE Info-
com. IEEE, March 2005.

10. P. Zave. Address translation in telecommunication features. ACM Transactions
on Software Engineering and Methodology, 13(1):1–36, January 2004.

11. P. Zave. A formal model of addressing for interoperating networks. In Proceedings
of the Thirteenth International Symposium of Formal Methods Europe, pages 318–
333. Springer-Verlag LNCS 3582, 2005.



Formal Modeling of Communication Protocols

by Graph Transformation

Zarrin Langari and Richard Trefler�

David R. Cheriton School of Computer Science
University of Waterloo, Canada

{zlangari, trefler}@cs.uwaterloo.ca

Abstract. Formal modeling is a crucial first step in the analysis of safety
critical communication protocols such as IP Telephony. These protocols
are notoriously resistant to formal modeling due to their sheer size and
complexity. We propose using graph transformation, a straight forward,
visual approach to do this. In experiments with Distributed Feature Com-
position (DFC) protocol and its implementation in BoxOs, we find that
graph transformation offers several key advantages over naive methods in
modeling the dynamic evolution of a reactive communication protocol.
The generated model closely follows the way in which communication
protocols are typically separated into three levels: the first describing lo-
cal features or components, the second characterizing interactions among
components, and the third showing the evolution of the component set.
The graph transformation semantics described here follows this scheme,
enabling a clean separation of concerns when describing a protocol. Using
DFC semantics one can easily focus on individual telephones, features,
and communication structures without reference to components not di-
rectly of interest. This separation is a key to being able to deal with even
modestly sized communication protocols. Graph transformation is also a
powerful formalism, allowing for very expressive and accurate modeling
of the systems under study. Finally, the relative ease of using this seman-
tics is demonstrated, and likely avenues for further use are outlined.

1 Introduction

Currently, there is intense pressure to rapidly migrate complex communication
protocols to the Internet. In this context, systems are particularly vulnerable
to problems, and an accurate yet usable formal method of describing and ana-
lyzing these systems is vitally important [8]. We propose using visual semantics
[11] to describe the behavior of distributed communication protocols as a first
step toward such a formal analysis. We show that graph transformation pro-
vides a natural and expressive formalism for describing such semantics and we
illustrate its use by giving a visual, graph based semantics to an Internet based
communication protocol.
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1.1 Objectives

Our objective is to describe the behavior of a distributed communication pro-
tocol using graph transformation [25], a visual and intuitive formalism. As a
motivating example, we have focused on the semantics of the Distributed Fea-
ture Composition (DFC) architecture of Jackson and Zave [15]. DFC has been
used at AT&T as the basis for BoxOs [7], its next generation IP communication
protocol. Our graphical description of the semantics has several important fea-
tures, most notably, the ability to cleanly separate out those system features of
current interest. This separation of concerns is a necessity for formal analysis of
system behavior (cf [1,17]).

1.2 Contribution and Approach

To the best of our knowledge there is no extant formal model for DFC. Although
DFC semantics can be extracted by naively building a single giant finite state
machine (FSM) together with queues as communication channels, this results in
the state explosion problem and does not give a dynamic approach to describe
different functionalities of the system.

We propose an approach that allows the designer to formalize the behavior of
each designated component individually. The approach uncouples those compo-
nents of interest from those that are not currently interacting with them. Our
model is well-suited for describing the behavior of individual features, perfect
communication channels amongst the features, and dynamic feature creation
and elimination.

To model the dynamic behavior of a communication system as it changes over
time, we utilize a graph transition or a graph transformation system (GTS), in
which nodes represent states of the system at a particular point in time and
transitions show how the system evolves from one state to the next. System
evolution, or computation, is thus expressed as sequences of transitions beginning
from a source or initial state. Each state of the system is modeled as a graph
and by using the graph transformation system we describe how a system changes
from one state to another. We use an attributed graph and a set of rules to show
dynamic changes in the system.

GTS allows us to generate an individual communication usage for analysis
and verification purposes without considering other processes participating in
the protocol. In the DFC example, a usage describes the dynamics of a telephone
call between two or more parties. A usage grows over time with the addition of
components. Therefore at each stage of the connection we have a partial usage.
The connection between two components of the system, which may be either an
end party or a feature box, is a point-to-point connection with a bi-directional
signaling channel called an internal call. In our proposed model a (partial) us-
age is presented visually as a graph, according to DFC semantics, with boxes
representing features, and arrows representing internal calls. This behavior is
one of the advantages of using GTS to describe communication protocols. Its
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other advantage is to describe computations of communication protocols at an
appropriately abstract level.

To show these advantages, we propose an operational semantics to describe the
DFC behavior, as an example, using a 3-level hierarchical graph model. At the
first level, the functionality of a feature is shown as a finite state machine graph,
with each machine describing the behavior of an individual telephony feature.
One typical example feature is the basic telephone; another, call-forwarding,
operates from one local machine but both receives messages from, and sends
messages to non-local machines. A feature may be composed by several modules.
This modularity may result in decomposition into additional components, but
for the sake of clarity and our interest in component interaction we consider
each feature as a single component. The second level shows a composition of
features and telephones (as end processes) communicating through channels via
internal calls. This composition is shown as a higher level graph. This level
represents a Communicating Finite State Machine (CFSM) architecture [20]
(see Figure 1). DFC assumes the existence of essentially perfect and unbounded
channels over which features communicate. The third level shows changes to the
global state of the system. The global state of the system may be modified due
to a local change of state in any of the features or via a topological change.
Topology changes show how a feature or telephone may be added to a usage or
how a feature may depart from a usage.

Fig. 1. Graph of Communicating Finite State Machines
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The basis of our model is treating states of the system as graphs and compu-
tations of the system as transformations of these graphs. Similar to the descrip-
tion of a system based on formal language grammars, our graph transformation
system presents a visual notation that is based on graph grammar rules. Funda-
mental elements of our visual notation are graph alphabets and rewriting rules.
In the work presented here we model both topology changes and global state
changes that are due to local state changes of components. A local state change
happens when the content of a channel is changed and a message is sent or
received by the component. Consequently each local state change implies the
global state of the model to be changed. A global state of the protocol is the
set of components local states and contents of the channels. The idea is to use
single-pushout production rules to formally define the communication protocol’s
dynamic transformations.

1.3 Related Work

To our knowledge, this is the first work to use graph transformation machinery to
model details of the dynamic behavior of a distributed communication protocol.
In fact, Heckel [13] and Taentzer [26] have both explicitly noted the omission of
reactive protocols from the GTS literature. While DFC is a rich architecture,
due to space limitations, we have been restricted to discussing just a few of its
representative features.

Among other works that detail system semantics we note the “Abstract State
Machines (ASM),” or “Evolving Algebras,” of Gurevich [12]. ASM’s present
states of a system as algebras and transitions from one state to another one as
evolution of the algebras. ASM’s are powerful enough to represent step-by-step
system semantics. AsmL is an associated programming language for building
ASM models. The work presented here uses a visual ASM style to capture the
semantics of distributed reactive protocols.

Other works, such as [18,14], illustrate how graph transformation is applied
to define dynamic semantics of systems by UML state machines. These systems
present an operational semantics for local systems, but do not treat the com-
municating state machines. Grammar rules of these models are context-free and
local, with the restriction of accessing one component and its neighborhood in
a production rule. Furthermore, context-free grammars may well define the evo-
lution of the system when components are added, but when components are
deleted and the graph is shrinking we need to replace a subgraph with a smaller
subgraph. In contrast, our proposed model uses context-sensitive graph trans-
formation rules to cover distributed systems semantics; we note that the added
power of context-sensitivity seems to be a requirement to deal with models as
rich as DFC.

Interesting works by Ribeiro [23,24] and Baldan, Corradini, and König [3]
consider an unfolding semantics and recent work by Baldan, König and Rensink
[5] uses an abstraction approach for verification of graph grammars using Petri
graphs. Finally, we note the extensive literature on graph transformation as a
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formalism for describing Petri net behavior, but again, Petri nets are a less
powerful formalism. Among these works we mention that of [9,4].

Structure of the Paper. In Section 2, graphs that describe the communicating
automata levels are defined. Then, graph morphism and a graph transition sys-
tem to be used for modeling the third level are explained. We then describe the
single-pushout (SPO) approach to define transformation rules. In Section 3 we
give an informal description of DFC semantics, and in Section 4 our model is
presented and DFC graph transformation rules are defined. We then show how
a production rule is applied to a graph, producing the resulting transformed
graph. Section 5 outlines conclusions and directions for future research.

2 Graph Transformation System

2.1 Definitions

In this section we review some definitions and approaches from the graph trans-
formation context. Later we describe the DFC production rules, and transfor-
mations based on these definitions.

Definition 1 (Graph). A graph is a set of nodes connected by edges. Formally
it is defined as G = (N,E, S, T, L), where N,E are, respectively sets of nodes
and edges, and S, T, L are functions. S, T , respectively, source and target, map
an edge to a node, S, T : E → N . The labeling function, L, maps an edge or a
node to a label, L : E,N → lab, where lab belongs to a set of labels [2].

Definition 2 (Graph Morphism). A graph morphism f : G→ H maps nodes
(V) and edges (E) of graph G to nodes and edges of graph H. fv : VG → VH and
fe : EG → EH are structure-preserving. This is defined as: for all edges e ∈ EG,
fv(SG(e)) = SH(fe(e)), fv(TG(e)) = TH(fe(e)), and LH(fe(e)) = LG(e). If
fv : domain(VG) → VH and fe : domain(EG) → EH where domain(VG) and
domain(EG) are the set of all nodes and edges of graph G respectively, then we
have a total morphism. On the other hand fv and fe are partial iff domain(VG)
and domain(EG) are not the whole source graph nodes and edges[22].

Note that in a structure-preserving mapping the shape and the edge labeling of
the original graph is preserved.

Definition 3 (Graph Transition System). A transition system is generally
defined as: G = (N,E, P, S0). N is a set of states (nodes), where each state has
a graph, G, structure, defined in Definition 1. P is a set of production rules,
and S0 is an initial state. E is a set of transitions based on graph morphism:
E ⊆ N × P ×N . A transition T is defined as T : G P1−−−−→ H where P1 ∈ P .
The production rule P1 has three components, left-hand side (L), right-hand side
(R), and depending on the type of grammar used, a constraint (C) which can be
a propositional logic formula. P1 appears in the form: L → R. The application
of a rule P1 to a graph S, is based on a total morphism between L and graph S.
We write s1

P1−−−−→ s2 to show the system will be reconfigured from the state s1
to s2 by the application of rule P1 [2].



Formal Modeling of Communication Protocols by Graph Transformation 353

By a graph transition or a graph transformation system we apply a set of rules
to an initial graph and replace one part of it with another graph. The initial
state of a system is changed over time by a series of local computations or
by addition/deletion of components to/from the system. The concept of graph
transformation is equivalent to the concept of graph grammar, where we start
from an initial graph and go through all derivable graphs and end up with a
derivation tree.

Different ways of rule application introduce variations of graph grammars
[25,10]. Among those we mention node replacement and hyperedge replace-
ment grammars that are context-free. Context-free graph grammars are not
powerful enough to describe the dynamic behavior of the telephony system we
are studying. Hence, what we are proposing here is a set of context-sensitive
[19] rules that allows us to describe the transformation of a telephony
system.

2.2 The Algebraic Approach to Production Rules

In the algebraic approach, graphs are considered as algebras and embedding is
defined by an algebraic construction (pushout). There are two popular algebraic
approaches, Double-Pushout(DPO) and Single-Pushout(SPO). In the SPO ap-
proach, production rules are presented as P : L→ R, illustrated in Figure 2. In

Fig. 2. Applying rule P to graph G and deriving H from G in SPO

SPO, the production rule P may be a partial morphism, and it is applied in one
gluing step. First, a total match, m, between the subgraph in the left-side of a
production and a subgraph in G is made, then the subgraph of G is deleted and
replaced by the right-side subgraph R, resulting in H. Therefore everything in L
but not in R will be deleted, everything in R which is not in L will be created,
and everything that is in both sides will be preserved [10].

The shaded area in Figure 2 shows the common subgraph in both sides that
is going to be preserved by the rule application. In Figure 2 it can easily be
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observed that the morphism m is a total mapping from the L subgraph to its
image in G, but the morphism m∗ is a partial mapping from R to the image of
R in H since deletion has priority over preservation. In other words there might
be elements in R that do not have an image on H.

On the other hand, DPO is a method in which a derivation step or a pro-
duction rule, P, is applied in two gluing constructions or pushouts. Readers may
refer to details of this approach in [10]. Although DPO has some restrictions
due to explicit gluing conditions, but in our model both approaches can be used.
However we adopted SPO, since it uses one gluing step and therefore is easier
in applying to graphs.

3 Basic Semantics of DFC Architecture

The goal of DFC is to increase feature modularity and to structure the way in
which features interact. In the most straightforward situation the DFC protocol
should provide stand-alone functionalities such as basic phone service. Features
are used to add incremental functionalities to existing services, as illustrated
in Figure 5. Examples of features include Call-Forwarding-on-No-Answer, which
allows incoming calls to be redirected to another address based on a trigger
from the callee, and Call-Waiting, which provides a subscriber with the ability
to switch to a second incoming call.

A basic connection between any two points (phone-to-phone, phone-to-feature,
feature-to-phone and feature-to-feature) constitutes an internal call which is a
point-to-point connection without any features in between and contains two com-
munication channels to send and receive signals as messages. The number of media
channels can be greater; for more clarity of pictures in our DFC examples we avoid
showing media channels.

A usage describes a connection between two telephones. A usage grows/
shrinks dynamically starting at a single initiating phone, then adds features
of the initiator. The usage eventually adds features of the target phone, and
then the target phone itself. Features are not intended to stand alone (i.e. Voice
Mail or Call-Waiting do not operate without having two communicating phones)
when they appear in a usage. A usage is presented visually as a graph. An ex-
ample of a usage is illustrated in Figure 5. Although there is a function for each
feature, during a connection a feature may act transparently; that is, as if it
does not exist. In this case a feature receives a signal message on a receiving
channel, and sends the message on through a sending channel. When a feature
is in a service mode it can generate, absorb, send or reverse a signal. Features
also receive and transmit media through their media channels. The interaction
of features is enabled via their signal channels. Although features interact, it is
expected that feature operation is independent of the specific network condition;
hence features can easily be added/deleted to/from the system configuration.

This communication service behaves as a network with a DFC router con-
trolling the reception and transmission of signals through a routing algorithm.
To make a simple phone call with one telephone at each end and no features in
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between, the router may need to make several internal calls. The party initiat-
ing a connection (caller) and the party accepting the connection (callee) may
both subscribe to several features. Figure 3 shows that a caller initiates a call
by sending a setup signal to the router through the box out channel. Following
that, the router sends the setup signal to the other features. If all features agree
to setup they acknowledge that by sending back the upack signal to the caller.
The caller communicates its signal messages with the other features downstream
through the signal channel ch.

Fig. 3. Caller is communicating via the channel ch to a component at its right, sending
its setup signal to the router through box-out channel

The FSM at the Figure 4 describes part of the caller box process [16]. After
sending the setup caller waits for the reception of upack (acknowledgement signal
that the setup has been received by downstream boxes) and then avail or unavail
signals through the ch channel. The communication holds and the line links
until a teardown is demanded from either parties. In a connection those features
subscribed to by the caller lie in the source zone and those subscribed by the
callee are located in the target zone; see Figure 5.

In general, there are several types of features. Source features are those fea-
tures that are activated when the telephone is initiating the call, for example
the Teen-Line feature which restricts outgoing calls at certain times of the day.
These features act transparently if the subscriber is the recipient of the call.
Source/target features are activated when the subscriber is both a caller and a
callee. These features allow the subscriber to be involved in multiple calls simul-
taneously. An example is Call-Waiting. For Target features activation happens
when they are subscribed to a telephone which is accepting calls, like Call-
Forwarding-on-No-Answer.

Another characteristic of a feature is its boundedness. A feature is free if
new instances of that feature are created whenever the feature appears in a us-
age. When a telephone is involved in a usage and instances of its features have
been created for that usage, if a second usage requires that telephone, then new
instances of the telephone’s free features will be created. In contrast, a bound fea-
ture has only one instantiation, and other calls involving the subscriber telephone
route through this instance. Bound features must be of type source/target.

Although the router controls the network behavior, it is not specific to DFC
and therefore not described here. Since all the computation steps of features
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Fig. 4. Caller Process Finite State Machine. !: signal transmission, ?: signal reception.

Fig. 5. A simple DFC service with 3 feature boxes

are triggered by signals (internal calls), feature interaction and composition of
features are very important in DFC architecture. In the next section, semantics
of DFC is presented as a graph transformation system showing the evolution of
its computation due to transmission and reception of signals.

4 DFC Semantics Using GTS

4.1 Three Level Semantics

The graph model at the first level simply uses the standard notation for an
FSM graph. A state of an FSM is a node and state transitions are directed
edges with suitable labeling for both states and transitions. In the literature
[25,6] several types of graphs have been defined that are suitable for different
system structures and models. Among them we use both hierarchical graphs,
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Fig. 6. A DFC example representing the second level of computation

where a node may contain a subgraph, and attributed graphs, where nodes
and/or edges are labelled with attributes. The notion of hierarchical graphs is
especially suitable to show that our local rules include nodes that are FSM
graphs themselves. An example of a caller FSM graph has been illustrated in
Figure 4.

The graph model at the second level uses three notations for nodes: a phone
symbol, a feature box and a circle to be used as the connection point between
two components (see Figure 6). Each telephone or feature box can be connected
to other components via several input or output connection points. Edges or
transitions are drawn as undirected arrows, to show bidirectional connections.
Each feature node is labelled with a set of attributes such as name of the feature,
and the status (Stat) of a feature with values: {source, target, source/target}. In
building a usage graph, we insert all the subscribed features of an end party in
the order of source, source/target, and target features, cf. [15]. Then there is a
Type attribute that accepts the values bound and free, and the attribute Subsc
which accepts the subscriber’s telephone identification as its value. A connection
point node (a circle) has two attributes. The first one explains whether that
connection edge is an input edge (edge-in), or an output edge (edge-out). The
second describes if it is linked to another connection point or if it is idle and can
be used later.

A component potentially has many points of input and output connections,
and all of them are idle before locating in a usage. For the sake of clarity we
simply show some of the idle input and output nodes and all the linked ones in
the second level graph of usage, illustrated in Figure 6. Those edges that show a
link between connection points of two components are labelled with the direction
of call to represent the source and target of the call.

This example shows a usage for the call from end party 1 with a Call-Waiting
(CW) feature to end party 2 with a Call-Forwarding (CF) feature. The example
also includes another partial call from the end party 3, with the Call-Transfer
(CT) feature, to the end party 1. Since CW is a bound box, the second call
also joins this feature. Therefore we see several linked connection points for CW.
Components in this example may have more idle edge-in and edge-out connection
points, but for clarity sake we do not show them here. The connection edges show
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Fig. 7. A Graph derivation step representing the third level of computation by the
application of production rule JoinCallee

the direction of each individual call, e.g. from 1 to 2 or from 3 to 1, although in
reality there is only one outgoing port switching between calls in CW.

The third level is a transition graph presenting how the global state of a
telephony system changes over time. There are two possible reasons for this
change. The first is when a usage adds new participating features or end pro-
cesses. A good example of this is when one of the end parties has subscribed to
a Call-Waiting feature and during the usage a third party joins the call. This
results in change of the graph structure. The example in Figure 7 shows two
nodes of the transition graph at the third level. This is one computation step
developed by the application of rule JoinCallee depicted in Figure 8, joining
the CW feature to the end party 1 (callee) due to a call from the end party 3
(caller) to 1. The partial call from end party 3 toward 1 has been evolved during
several steps until we get the graph at the first node of Figure 7. We omitted
these steps but the last one due to the space limitation. The last evolution step
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depicted in this figure results in the joining of end party 1 to the call from 3 and
makes the usage complete. From the picture we see the status of two connection
edges (one attached to party 1 and the other to CW) have changed from idle
to linked. The second type of change is a local change in a single process (or
feature) and its associated channels. This occurs when the local process changes
its state and either sends or receives a message. To distinguish the difference
between these two cases we define two sets of rules: global rules and local rules
[21].

4.2 DFC Production Rules

The rules presented in Figure 8 are SPO production rules as defined in Defini-
tion 2.2. They show the transformation of an FSM graph (local rule) and the
transformation of the global architecture (global rules). The local rule shows a
computation step in a process of one component (a Call-Forwarding feature),
where the topology is unchanged.

Rule AppendFeature describes the addition of feature F2 to an already exist-
ing feature F1. We would like to keep the same direction of call for new features
that are attached to the usage. To satisfy this requirement we keep the same
feature’s connection edge label of the left-hand side on the right-hand side. To
apply the AppendFeature rule, the left side of this rule shows that a mapping for
the idle connection point, edge-out of feature F1, should be found and it will be
transformed to a linked state after being connected to the newly created com-
ponent F2. The edge-in connection point of F2 is also linked, while its edge-out
connection point is idle to provide the possibility of connecting another compo-
nent in the future. Note that all the components in these rules have more than
one idle connection point and they may have more than one linked connection
point as well, but to have a clear picture we show only one of them. A constraint
on this rule expresses either the non-existence of F2 or freeness of F2. Recall
from Section 3 that only free features can have multiple instances in the usage
graph associated with a particular telephone. The other parts of the constraint
control the ordering of features based on the picture at the top of Figure 8.

Reverse application of these rules allow the shrinkage of our graph model in
the second level. Partial morphism in SPO can specifically be seen in reverse
rules, e.g. the reverse application of first rule in Figure 8 ends up in an empty
graph. In this rule domain of nodes and edges from the left side graph that are
mapped to the right side elements are not the whole source graph nodes and
edges. Therefore the telephone, edges and connection nodes map to nothing in
the right. In the other words, no element from the left side graph is preserved on
the right side. Application of global rules and their reverses results in our third
level graph model as pictured in Figure 7. While this picture shows a two-node
graph, our third level graph may become very large with many transformation
nodes. Many processes may exist in a distributed IP-based telephony protocol,
but each node of this graph is a partial usage that can be analyzed and veri-
fied separately, without dealing with the processes not directly involved in the
same usage.
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Fig. 8. Several DFC Architecture Rules

5 Conclusion and Future Work

Graph grammars have primarily been used in areas like pattern recognition,
compiler construction, and data type specification. More recently, their areas of
application have been broadened to include concurrent system modeling, soft-
ware specification and development, database and VLSI.
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In the present work, graph grammar rules together with graph transforma-
tions have been used to explain the dynamic behavior of a distributed com-
munication protocol. Our work produces a visualization of behavior in three
different levels. We explicate the three-level semantics of our model on an IP-
based telephony system called Distributed Feature Composition (DFC) using
graph transformations. A description of DFC semantics has been presented by
a graph transformation system with a hierarchical, attributed graph model and
an SPO approach for the production rules.

The first level of our model describes the semantics of a telephone or a fea-
ture process as an FSM graph, and the second level details a graph model of
communicating FSM’s. The third level describes dynamic evolution of the tele-
phony system via a graph transformation system. At this level we generate a
transformation graph with nodes representing the second level graphs and edges
representing transformations of the second level graphs. At each transformation,
the third level graph provides the ability to focus on a partial connection, a usage
in DFC, without inclusion of other distributed processes that are not involved
in the call. Therefore each partial usage can be analyzed and verified separately.
This is a key advantage over other models because of its visual presentation, and
ease of use. Another advantage of our model is that it cleanly addresses typical
communication protocol layers with the ability to focus on dynamic evolution of
these systems.

Our future work includes elaboration on formalizing composition of FSM’s
and explication on the bridge between the first and the second level graphs of
our model. Later, we would also like to analyze usages against their properties.
Usages in DFC can be viewed as scenarios, and our graph model as a way of ex-
pressing scenarios. We will also investigate whether the temporal logic properties
of features hold over particular scenarios.
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Abstract. While designing a service-oriented system, deciding whether a service
interaction is desired or harmful is a subjective choice which depends on the
requirements expressed by the user with respect to the service integration. In this
paper, we define both a formalism and a methodology which, respectively, allow
us to automatically analyse interactions based on specification consistency. For
the latter (i.e. the methodology), we take advantage of both specifier expertise
and formal methods.

Keywords: pre-post formalism, specification consistency, static analysis, feature
integration, feature interaction resolution.

1 Introduction

The work presented in this paper was performed within the French project ValiServ1

in collaboration with the French telecommunication company FranceTelecom and the
LSR team of the university J. Fourier of Grenoble [8]. This project was devoted to ser-
vice (feature) design for telecommunication purposes. The aim of this project was to
better answer both feature system specification and the underlying problems: feature
integration and feature interactions. Indeed, software telecommunication systems are
composed of a kernel providing the basic expected functionalities and a set of satellite
entities, called features2. Each of them aims to modify the set of functionalities char-
acterising the rest of the system (possibly including other already existing features).
This project also aimed to develop an assistant tool for integrating new phone services.
The interest was to provide support for rapid service-oriented development which is
an important issue, especially for telecommunication operators. Indeed, the primary
motivation to offer numerous features to users is that the set of offered features differ-
entiates providers, and then becomes a significant source of income. However, if some

� This work was partially supported by the RNRT French project ValiServ and by the European
Commission under WGs Fireworks (23531).

1 The acronym of which means “Validation de Services”.
2 In the following, we will indifferently use the two words feature and service although we are

aware of that services also represent more particularly the notion of components such as web
services.
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behaviours of a telecommunication system do not conform to some feature descrip-
tions offered to customers, this may have calamitous effects on the public image of the
concerned provider.

The paper is the continuation of the works developed in [3,4] by giving the theoretical
basis of the methodology and the tool presented respectively in [4] and in [3]. This will
be briefly recalled in Section 4. Our purpose is then to formally define an integration
methodology allowing to solve interactions resulting from an inconsistent integration
of a feature in a system specification, according to expert’s point of view. The theoreti-
cal foundations will be based on algorithms the correctness of which will be stated (see
Theorem 2 and Theorem 3). These algorithms deal with specification consistency. More
precisely, interactions are properties which are violated. They may be qualified as desir-
able or not by an expert who can modify both the considered property, and integration
choices to make service integration conform to its judgement. Thus, interaction resolu-
tion takes care of interactions which may be introduced during the integration process.
To ease the service design, we define an axiomatic formalism (i.e. system behaviour is
specified by logical properties) which will be used for detection and resolution. This
formalism aims to specify telecommunication systems viewed along phone services at
which customers can subscribe. Now, both formalism and methodology can be obvi-
ously extended and applied to specify and automatically analyse interaction in systems
viewed along services (not necessarily phone services) at which objects can subscribe
(e.g. lifts equipped with different services such as the basic service and the service
which indicates a priority floor).

The methodology presented in this paper will then take advantage of designer’s ex-
pertise with an interactive integration activity assisted by static analysis of specification
consistency. This static analysis will be based on symbolic techniques dealing with
phone variables to deduce the appropriate subscription configuration. Hence, the for-
malism defined in this paper will manipulate state transition rules (str), invariants and
inequations between phone variables. The formalism developed in the paper is then a
simple restriction of classic pre -post logical language. The interest of such a language
is twofold:

1. it allows to automatically detect inconsistencies after integrating a new feature in a
system specification. This is precisely the main goal of the present paper.

2. its syntax is very simple up to some syntactical sugar3. Hence, specifications are
made readable for the expert what will ease his(her) choices to circumvent incon-
sistencies. Besides, this has been experimented in the ValiServ project with some
experts of our partner France Telecom.

The paper is structured as follows. Section 2 presents the formalism and the notion
of specification consistency on which our interactions are based on. Specifications are
provided in the form of invariant properties and state transition rules, very much as
in [20]. Examples are also provided. For lack of space, we present a simple and peda-
gogical example which only integrates three features on a basic system. More generally,
our method can deal with all services which can be expressed within our specification

3 Which will not be presented in the paper in order not to make heavy the presentation. The
interested readers can find them in [3,10].
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formalism and integrated on the intelligent network (see [2] and [14] for more than 20
examples of such service specifications). Section 3 details the algorithms used to check
specification consistency in the integration process. Section 4 presents the methodology
and our results on usual services using the tool [3] developed in the ValiServ project.
Finally, related works are addressed in Section 5.

By lack of space, most of the proofs of propositions and theorems are not given in
this paper. However, they can be found in the preliminary version of this paper [1]. Only
the proof of Theorem 1 is given because the algorithms described in this paper are based
on it.

2 Service Specification

Here, we define a formalism dedicated to service (so-called feature) telecommunication
systems. Services will be specified along two types of predicates, subscription and sta-
tus. By the former, we will specify what and how customers subscribe to a service. For
instance4, TCS(x, y) will mean that x has subscribed to TCS and any call from y to x
is forbidden. By the latter, we will specify communication situations such as to be busy,
idle, etc... Moreover, telecommunication systems are dynamic systems. Therefore, in
order to automatically analyse interactions, the formalism under definition will manip-
ulate sentences of the form (pre, event, post) where pre and post will be finite sets of
atoms denoting respectively pre and post-conditions and eventwill be an event trigger-
ing side-effect. Moreover, some invariants roughly defined by free-quantifier first-order
formulas (i.e. state-evolution independent) will be stated.

2.1 Syntax

The formalism is devoted to specify features in telecommunication systems. Its syntax
is closely related to the one developed in [10]. Vocabularies (so-called signatures) over
which pre and post-conditions and invariants will be built on, will then contain two
types of predicates: status and subscription predicates.

Definition 1 (Signature). A signature Σ is a triple (St, Sb, E) where St and Sb are
two sets of predicates names, andE is a set of events names. Each element in St∪Sb∪E
are equipped with an arity n ∈ N. St, Sb and E are disjoint sets.
A signature is said finite when both St, Sb and E are finite sets. An element p ∈ St ∪
Sb ∪E equipped with the arity n is noted pn.
St and Sb contain respectively, status and subscription predicates.

Note, by the definition of signatures, that variables are the only allowed arguments for
the predicates and the events. Hence, variables will necessarily denote terminals.

Systems will be specified by means of two kinds of formulas: State transition rules
(str) and Invariants. Moreover, as we are interested by automatically analysing interac-
tions (which will be defined by properties), manipulated formulas will be constrained
on their form.

Notation 2. Let Σ = (St, Sb, E) be a signature. Let X be a set of variables. Note
AtΣ(X) and AtΣ(X) the two sets defined by:

4 TCS is an usual acronym for the Terminating Call Screening.
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1. AtΣ(X) = {p(x1, . . . , xn) | pn ∈ St ∪ Sb, xi ∈ X, 1 ≤ i ≤ n}
2. AtΣ(X) = {¬p(x1, . . . , xn) | pn ∈ St ∪ Sb, xi ∈ X, 1 ≤ i ≤ n}

Note SbΣ(X) and SbΣ(X) (resp. StΣ(X) and StΣ(X)) the two subsets of AtΣ(X)
and AtΣ(X) restricted to predicates in Sb (resp. in St).

Definition 3 (Formulas). Let Σ = (St, Sb, E) be a signature. Let X be a set of vari-
ables.

1. A str-formula over Σ is a sentence of the form < ctr|subs : pre
e(x1,...,xn)−→ post >

where:
– ctr is a set of inequations x 	= y with x, y ∈ X ,
– subs ⊆ SbΣ(X) ∪ SbΣ(X),
– pre, post ⊆ StΣ(X) ∪ StΣ(X) are two finite sets, and
– en ∈ E and xi ∈ X for 1 ≤ i ≤ n.

2. An invariant over Σ is a sentence of the form < ctr|ϕ > where ctr is defined as
above, and ϕ is a quantifier-free first-order formula over St ∪ Sb.

In the sequel, quantifier-free first-order formulas will be simply called formulas. We will
note V ar(x) the set of variables occurring in x ∈ {ctr, subs, pre, post, ϕ}.

We have chosen to separate in str-formulas, subscription atoms from pre and post-
conditions because events do not modify subscriptions. Hence, subscriptions are neces-
sarily preserved along transitions.

Definition 4 (Service specification). A service specification F is a 2-tuple (Σ,Ax)
where Σ is a signature and Ax is a set of str-formulas and invariants over Σ.
F is said finite if both Σ and Ax are a finite signature and finite set of axioms, respec-
tively. In the sequel Ax will be also noted STR

∐
I . STR and I will then contain all

the str-formulas and invariants, respectively, of Ax.

2.2 Examples

We now provide examples: the specifications of the basic telecommunication system,
classically called POTS, and of three common services destined to be plugged on it.
The different components of the specifications will be indexed by the specification
name. Moreover, elements of the underlying system POTS are implicitly present for
the specification of the three services.

Example 1: POTS, the Plain Old Telephone Service
StPOTS contains idle(x) (“x is idle”), dialwait(x) (“x is in dial waiting state”),
caller(x, y) (resp. callee(x, y)) (“x is in communication with y as the caller (resp.
callee) part”), ringing(x, y) (“x is ringing from the caller y”), hearing(x, y) (“x is
hearing the tone of the call to y”), busytone(x) (“x is hearing the busy tone”). By
convention, SbPOTS is empty since by default all phones are supposed to subscribe
to the basic service POTS. EPOTS contains offhook(x) meaning that x hooks off,
onhook(x) (x hooks on), dial(x, y) (x dials y). STRPOTS contains:

φ1 : < | idle(A)
offhook(A)−→ dialwait(A) >

φ2 : < A �= B | dialwait(A), idle(B)
dial(A,B)−→ hearing(A,B), ringing(B,A) >
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φ3 : < | dialwait(A), idle(B)
dial(A,B)−→ busytone(A) >

φ4 : < A �= B | hearing(A,B), ringing(B, A)
offhook(B)−→ caller(A,B), callee(B,A) >

φ5 : < A �= B | caller(A,B), callee(B,A)
onhook(A)−→ idle(A), busytone(B) >

φ6 : < A �= B | caller(A,B), callee(B,A)
onhook(B)−→ idle(B), busytone(A) >

φ7 : < A �= B | hearing(A,B), ringing(B, A)
onhook(A)−→ idle(A), idle(B) >

φ8 : < | busytone(A)
onhook(A)−→ idle(A) >

φ9 : < | dialwait(A)
onhook(A)−→ idle(A) >

IPOTS contains several invariants expressing that status predicates are mutually exclu-
sive when they concern the same variables. For example, it contains:

< B 	= C | ¬(talking(A,B) ∧ talking(A,C)) >
< | ¬(idle(A) ∧ talking(A,B)) >

For lack of space, we do not give all such invariants. However, they can be found in [2].
POTS characterises the behaviour of a terminal which has just subscribed to the basic

telephone service, when communicating with another terminal with the same subscrip-
tion. For example, φ5 says that if the call initiator hangs up during a communication,
then his party gets a busy tone.

Example 2: TCS, Terminating Call Screening (this service screens out incoming calls
from terminals belonging to the TCS subscriber’s black list).
SbTCS contains Tcs(y, x): calls from x to y are forbidden by y. ITCS contains

ψ1 : < A �= B | Tcs(A,B) ⇒ ¬hearing(B, A) >

while STRTCS contains

ψ2 : < | Tcs(B, A), dialwait(A), idle(B)
dial(A,B)−→ busytone(A) >

Example 3: CFB, Call Forward on Busy (this service allows a subscriber to forward
all incoming calls to a designated terminal, when the subscriber’s terminal is busy).
SbCFB contains Cfb(x, y): when x is not idle, forward incoming calls to y. ICFB

contains

χ1 : < | ¬Cfb(A, A) >

χ2 : < B �= C | Cfb(A, B) ⇒ ¬Cfb(A, C) >

and STRCFB contains

χ3 : < B �= C | Cfb(B, C), dialwait(A), idle(B), idle(C)
dial(A,B)−→

hearing(A,C), ringing(C, A) >

χ4 : < B �= C | Cfb(B, C), dialwait(A), idle(B), idle(C)
dial(A,B)−→ busytone(A) >

Example 4: INTL, IN Teen Line (this service allows a user to restrict outgoing calls
during a specified daily period. The restriction can be over-ridden by entering a pin.
If the given pin is the right one, then a normal call can be initiated, else the user is
requested to abort his call.)
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SINTL contains SPOTS and specific predicates: time(x) characterises the time slot
where a pin is required from the user x to perform outgoing calls, waitpin(x) means
that the user x should now dial its personal pin, and invalid(x) means that the dialled
pin is not valid. SbINTL contains Intl(x): x is subscribing for the INTL service.
EINTL contains two new events related to the pin dialling: dialgoodpin(x) for “x

is dialling the expected correct pin”, and dialbadpin(x) for “x is dialling a wrong
pin”. IINTL contains new invariants expressing that the status invalid and waitpin
are exclusive with the POTS status idle, dialing, . . . and are also mutually exclusive.
STRINTL contains:

κ1 : < | Intl(A), time(A), idle(A)
offhook(A)−→ waitpin(A), time(A) >

κ2 : < | waitpin(A)
dialgoodpin(A)−→ dialwait(A) >

κ3 : < | waitpin(A)
dialbadpin(A)−→ invalid(A) >

κ4 : < | invalid(A)
onhook(A)−→ idle(A) >

κ5 : < | waitpin(A)
onhook(A)−→ idle(A) >

Specifications are restricted to service specificities. They implicitly refer to the
underlying system. For example, the TCS specification contains a service invariant char-
acterising a newly prohibited situation (the subscriber terminal cannot be put in com-
munication with a terminal from its screening list) and a limited behavioural description
(what happens when a forbidden terminal attempts to call the subscribing terminal).

2.3 Semantics

Definition 5 (Models). Let Σ = (St, Sb, E) be a signature.
A Σ-model A = (U, S, (eA)e∈E) is a set U (terminals) and a set S ⊆ P(AtΣ(U))

(states) equipped for every en ∈ E and every (u1, . . . , un) ∈ U × . . .× U︸ ︷︷ ︸
n times

with a bi-

nary relation5 eA(u1, . . . , un) ⊆ S × S.
A is deterministic if and only if for every en ∈ E and every (u1, . . . , un) ∈
U × . . .× U︸ ︷︷ ︸

n times

, eA(u1, . . . , un) is a partial function.

Definition 6 (Formula satisfaction). Let Σ = (St, Sb, E) be a signature. Let A be a
Σ-model. A state s ∈ S and an interpretation ι : X → U satisfy a formula ϕ, noted
(ι, s) |= ϕ, if and only if:

– (ι, s) |= p(x1, . . . , xn)⇐⇒ p(ι(x1), . . . , ι(xn)) ∈ s
– propositional connectives are handled as usual.

A satisfies a formula ϕ, notedA |= ϕ, if and only if for every s ∈ S and every ι : X →
U , (ι, s) |= ϕ.

Definition 7 (Transition satisfaction). A Σ-modelA satisfies for s ∈ S and ι : X →
U a str-formula ϕ of the form < ctr|subs : pre

e(x1,...,xn)−→ post >, noted A |=ι,s ϕ, if
and only if, if for every x 	= y ∈ ctr, ι(x) 	= ι(y) then:

5 We note s eA(u1, . . . , un) s′ to mean that (s, s′) ∈ eA(u1, . . . , un).
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if (ι, s) |=
∧

α∈subs∪pre

α then ∀s′ ∈ S, s eA(ι(x1), . . . , ι(xn)) s′ ⇒ (ι, s′) |=
∧

α∈post

α)

Definition 8 (Invariant satisfaction). AΣ-modelA satisfies for s ∈ S and ι : X → U
an invariant < ctr|ϕ >, noted A |=ι,s< ctr|ϕ >, if and only if, if for every x 	= y ∈
ctr, ι(x) 	= ι(y) then (ι, s) |= ϕ.

Definition 9 (Specification satisfaction). A Σ-model A satisfies a service specifica-
tion F = (Σ,STR

∐
I) if and only if it satisfies for every s ∈ S and every ι : X → U

each formula of Ax.
A service specification is said consistent if and only if there exists a non-emptyΣ-model
A which satisfies it and such that the cardinality of its set U of terminals satisfies:

|U | ≥ max{V ar(ctr)|∃ < ctr|subs : pre e→ post >∈ STR ∨ ∃ < ctr|ϕ >∈ I}
The last condition on the carrier cardinality of Σ-models prevents trivial Σ-models. A
trivialΣ-model is such that the number of terminals in U is not sufficient to satisfy each
inequation occurring in the ctr part of each formula in STR and I .

2.4 Fundamental Results

We first define a Σ-model which will be useful to us in the next section. Let Σ =
(St, Sb, E) be a signature. Let U and S ⊆ P(StΣ(U)) be two sets of terminals and
states, respectively. Let STR be a set of str-formulas over Σ. Therefore, define the
Σ-model G(U, S) = (U, S′, (eG(U,S))e∈E) as follows:

– S′ is the set inductively defined by S′ =
⋃
i<ω

Si with:

• S0 = S

• s′ ∈ Sn ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ < ctr|subs : pre
e(x1,...,xn)−→ post >∈ STR, ∃ι : X → U,

∃s ∈ Sn−1, (∀x 	= y ∈ ctr, ι(x) 	= ι(y))∧
(ι, s) |=

∧
α∈subs∪pre

α∧

s′ = (s \ {p(ι(y1), . . . , ι(ym))|¬p(y1, . . . , ym) ∈ post})
∪

{p(ι(y1), . . . , ι(ym))|p(y1, . . . , ym) ∈ post}
– For every en ∈ E and every (u1, . . . , un) ∈ U × . . .× U︸ ︷︷ ︸

n times

, eG(U,S)(u1, . . . , un) is

defined: s eG(U,S)(u1, . . . , un) s′ ⇐⇒⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ < ctr|subs : pre
e(x1,...,xn)−→ post >∈ STR, ∃ι : X → U,

(∀1 ≤ j ≤ n, ι(xj) = uj)∧
(∀x 	= y ∈ ctr, ι(x) 	= ι(y))∧
(ι, s) |=

∧
α∈subs∪pre

α∧

s′ = (s \ {p(ι(y1), . . . , ι(ym))|¬p(y1, . . . , ym) ∈ post}
∪

{p(ι(y1), . . . , ι(ym))|p(y1, . . . , ym) ∈ post})
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Let us point out that when X , U , S and STR are finite sets, then G(U, S) is com-
putable. Let us consider Σ a signature, X a set of variables over Σ and I a set of
invariants. Define

EΣ(X) = {s ⊆ AtΣ(X)| ∀ι : X → X, ∀ < ctr|ϕ >∈ I,
(∀x 	= y ∈ ctr, ι(x) 	= ι(y)) ⇒ (s, ι) |= ϕ}

then define IΣ(X) = {s ∈ EΣ(X)|	 ∃s′ ∈ EΣ(X), s′ ⊆ s}.
Proposition 1. When Σ is a finite signature and X and I are finite sets, then EΣ(X)
and IΣ(X) are computable.

Theorem 1. Let F = (Σ,STR
∐
I) be a service specification. F is consistent if and

only if G(X, IΣ(X)) satisfies all the axioms of F .

Proof. The if part is obvious.
The only if part. Suppose that F is consistent but G(X, IΣ(X)) does not satisfy it.
Obviously, the consistency of F means the consistency of STR and of I . By con-

struction, the consistency of I implies that IΣ(X) is not empty. In the following, the
question of (the verification of) the consistency of I will be simply denoted by InvCons.

Therefore, if G(X, IΣ(X)) does not satisfy F then by construction of G(X, IΣ(X))
which relies on str-formulas, either two str-formulas with the same event lead to two
incompatible states or a str-formula leads to a state violating the invariants. These two
cases are denoted by respectively NonDet for non-deterministic str-formulas and Vio-
lInv for the non preservation of the invariants by str-formulas. Then, let us prove that
both NonDet and ViolInv lead to a contradiction.

1. NonDet there exists6 ψ =< ctr|subs : pre
e(x1,...,xn)−→ post >∈ STR, s ∈ S′

and ι : X → X such that for every x 	= y ∈ ctr, ι(x) 	= ι(y), (s, ι) |=∧
α∈subs∪pre

α, but there exists s′ and7 p(y1, . . . , ym) ∈ post such that s eG(X,IΣ(X))

(ι(x1), . . . , ι(xn)) s′ and p(ι(y1), . . . , ι(ym))	∈s′. By definition, this means that

there exists ψ′ =< ctr′|subs′ : pre′
e(z1,...,zn)−→ post′ >∈ STR and ι′ : X → X

such that for every x′ 	= y′ ∈ ctr′, ι′(x′) 	= ι′(y′), (s, ι′) |=
∧

α∈subs′∪pre′
α,

¬p(w1, . . . , wm) ∈ post′ and ι(yi) = ι′(wi) (1 ≤ i ≤ m). As F is consistent,
there exists a Σ-model A which satisfies it. Let ι′′ : X → U be an interpretation
in A such that for every x 	= y ∈ ctr and x′ 	= y′ ∈ ctr′, ι′′(x) 	= ι′′(y) and
ι′′(x′) 	= ι′′(y′), and ι′′(xi) = ι′′(wi) 1 ≤ i ≤ n. By the property on the carrier
cardinality of Σ-models, ι′′ exists.

By construction of G(X, IΣ(X)), there exists a state s′′ in A such that ι′′(s) ⊆
s′′. We then have for every α ∈ subs ∪ subs′ ∪ pre ∪ pre′ that (s′′, ι′′) |= α.
Therefore, there exists s3 in A such that s′′ eG(X,IΣ(X))(ι′′(x1), . . . , ι′′(xn)) s3.
But, we have both p(ι′′(y1), . . . ι′′(ym)) ∈ s3 and p(ι′′(y1), . . . ι′′(ym))	∈s3 what
is impossible.

6 S′ is the set of state of G(X, IΣ(X)).
7 Without any loss of generality, we only consider the case of a positive literal p(y1, . . . , ym) in
post. The case of a negative literal ¬p(y1, . . . , ym) can be handled in a similar way.
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2. ViolInv there exists s′ ∈ S′\IΣ(X) 8, an invariant< ctr|ϕ > and an interpretation
ι : X → X such that for every x 	= y ∈ ctr ι(x) 	= ι(y) but (s′, ι)	|=ϕ.

By definition, this means that there exists s ∈ IΣ(X), n str-formulas < ctri|

subsi : prei

ei(xi
1,...,xi

ni−→ posti > in STR, n interpretations ιi : X → X and n+ 1
states si with s1 = s and sn+1 = s′, such that for every 1 ≤ i ≤ n and every x 	=
y ∈ ctri ιi(x) 	= ιi(y), (si, ιi) |=

∧
α∈subsi∪prei

α, si e
G(X,IΣ(X))
i (ιi(xi

1), . . . , ιi(x
i
ni

))

si+1 and (si+1, ιi) |=
∧

α∈posti

α. By construction of G(X, IΣ(X)), this then means

there exists for every 1 ≤ i ≤ n, pi(yi
1, . . . , y

i
mi

) ∈ AtΣ(X) such that ι(yi
j) =

ιi(yi
j) for every 1 ≤ j ≤ mi, and pi(ι(yi

1), . . . , ι(yi
mi

)) ∈ s but pi(ι(yi
1), . . . ,

ι(yi
mi

))	∈s′.
As F is consistent, there exists a Σ-modelA which satisfies it. Let ι′ : X → U

be an interpretation inA such that for every x 	= y ∈ ctr∪
⋃

1≤i≤n

ctri, ι′(x) 	= ι′(y).

By the property on the carrier cardinality of Σ-models, ι′ exists. By construction
of G(X, IΣ(X)), for every 1 ≤ i ≤ n + 1, there exists in A a state s′i such that
ι′(si) ⊆ s′i. Moreover, for every 1 ≤ i ≤ n, s′i e

A
i (ι′(xi

1), . . . , ι
′(xi

ni
)) s′i+1. We

the have for every 1 ≤ i ≤ n and every α ∈ subsi ∪ prei that (s′i, ι
′) |= α,

and then (s′i+1, ι
′) |=

∧
α∈posti

α. Whence we deduce that for every 1 ≤ i ≤ n,

pi(ι′(yi
1), . . . , ι′(yi

mi
)) ∈ s′n+1 and pi(ι′(yi

1), . . . , ι′(yi
mi

))	∈s′n+1 what is impossi-
ble.

Let us note that the proof of Theorem 1 highlights the 3 questions to solve in order to
show specification consistency. They have been noted InvCons, NonDet and ViolInv.
The two last ones will be solved by the two algorithms given in Section 3. The first
question will be tackled in Section 4.2.

Let us remark that str-formula determinism is sufficient to ensure specification con-
sistency but in no case it is necessary.

2.5 Service Integration

The key question now is how to define service integration provided with an adequate
semantic counterpart. A first answer might be to consider the union of axioms issued
from different service specifications. However, this is not a good solution. Indeed, recall
that a service is defined as possibly modifying the behaviour of the existing system on
which it will be plugged on. Hence, any system obtained by the union of axioms of its
different services would be lucky enough to be inconsistent. Therefore, in order to avoid
to introduce inconsistencies during integration steps, choices are needed about which
axioms are preserved, lost, modified and added. Hence, the integration of two services
will be parameterised by choices. In this paper, we propose an interactive methodol-
ogy based on algorithms introduced in Section 3 to determine these choices. These

8 S′ is the set of state of G(X, IΣ(X)).
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algorithms will automatically check consistency of service specifications. When incon-
sistencies (i.e. interactions) are detected, they are presented to an expert who makes
integration choices (see Section 4 for more explanations on how this methodology is
worked up).

3 Interactions

We have seen in the proof of Theorem 1 that the inconsistency of a service specification
may be the result of: the inconsistency of invariants InvCons, or the non-determinism
of some events such as specified in the service specification NonDet, or because some
str-formulas question some invariants ViolInv.

The first step, that is the question of invariant consistency InvCons, boils down to
a classical boolean satisfiability problem9. The way we reduce InvCons to the boolean
satisfiability problem will be handled in Section 4.2. Below, we detail the algorithms
which solve the two last questions NonDet and ViolInv.

3.1 Non-determinism

Input A finite specification such that is consistent. A finite set

of variables . Two str-formulas in ,

and
Initialisation Compute and . Note the set of states of

and the whole set of endofunctions from to . and
.

Loop while and do:
1) choose in and ;
2) ;
3) Loop while and do:

3.1) choose in s.t. ( ), and
;

3.2) if then if

then ;
end of loop

end of loop
Output

Theorem 2. Let F = (Σ, I
∐
STR) be a specification where Σ is a finite signature,

and I and STR are finite sets. Let X be a finite set of variables which contains all
variables occurring in I

∐
STR. Then, G(X, IΣ(X)) is deterministic if and only if

for every pair of str-formulas in STR, < ctr1|subs1 : pre1
e(x1,...,xn)−→ post1 > and

< ctr2|subs2 : pre2
e(y1,...,yn)−→ post2 >, the above algorithm terminates and answers

false.
9 The boolean satisfiability problem is solved by SAT solvers, e.g. GRASP [18] and Chaff [19].
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3.2 Invariant Preserving

Let F = (Σ,STR
∐
I) be a specification. Let X be a set of variables which contains

all variables occurring in F . By definition, we have:

∀Ψ ∈ I,∀s ∈ IΣ(X), ∀ι : X → X,G(X, IΣ(X)) |=ι,s Ψ

The question ViolInv is equivalent to the following one: are invariants preserved for
states in S′ \ IΣ(X)? where S′ is the set of states of G(X, IΣ(X)).

When STR, I and X are finite sets, the above problem is computable as expressed
by the following algorithm:

Input A finite specification F = (Σ, I
∐
STR). A finite set of variables X which

contains all the variables that occur in axioms of F . An invariant< ctr|ϕ > in I .
Initialisation Compute IΣ(X) and G(X, IΣ(X)). Let us note S′ the set of states

of G(X, IΣ(X)) and XX the whole set of endofunction from X to X . Tmp :=
S′ \ IΣ(X) and answer := false.

Loop while Tmp 	= ∅ and answer = false do:
1) choose s in Tmp and Tmp := Tmp \ {s};
2) Tmp′ := XX ;
3) Loop while Tmp′ 	= ∅ and answer = false do:

3.1) choose ι in Tmp′ and Tmp′ := Tmp′ \ {ι};
3.2) if ∀x 	= y ∈ ctr, ι(x) 	= ι(y)

then answer := not((ι, s) |= ϕ)
end of loop

end of loop
Output return(answer)

Theorem 3. G(X, IΣ(X)) satisfies I if and only if for every invariant in I , the above
algorithm terminates and answers false.

4 Methodology and Experiments

When integrating a new feature, we enter upon the problem of how to apply the algo-
rithms and in which order, to ensure the consistency of the resulting specification.

4.1 The Design Phase Process

We have seen in Section 2.5 that to avoid introducing inconsistency during integration,
choices are needed about which formulas are preserved, lost, modified or added. We
propose an interactive approach based on the algorithms introduced before. Interactions
are detected and presented to an expert who makes integration choices.

A service specification F provides modifications with respect to an implicit sys-
tem. From a formal point of view, the integration of F on a system Sys is a compo-
sition which is parameterised by the required choices, i.e., it is abstractly denoted by
Sys+choicesF . It generally leads to some modifications of Sys; thus, we do not easily
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get the addition of two services together to a system (Sys+c {F1,F2}) from the addi-
tion of each of them, SY S+c1F1 and SY S+c2F2. Indeed, it would suppose not only
to confront the specifications F1 and F2, but also to re-examine c1 and c2 because c1
was thought on Sys and not on Sys modified by c2, and conversely. Thus our approach
is to integrate services one by one. Therefore, given POTS and servicesF1, . . . ,Fn, we
build an integration (. . . (POTS +c1 Fi1) +c2 · · ·+cn Fin), where the order i1, · · · , in
is significant with respect to the choices c1, · · · , cn.

Note Sysj−1 = (Σj−1, STRj−1
∐
Ij−1) the system specification resulting from

(. . . (POTS +c1 Fi1) +c2 . . .+cj1
Fij−1 ) and Fij = (Σij , STRij

∐
Iij ). In order to

determine the next choice +cij
for integrating Fij , the following process is applied:

1. (a) Checking the invariant consistency of Ij−1 ∪ Iij using the algorithm ConsInv
by considering one by one the invariants of Iij

(b) Solving inconsistency as soon as it occurs by modifying one of the involved
invariants and starting again Point 1.a after each encountered inconsistency.

This first step generates a consistent set IΣj−1∪Σij
, or more simply I , of invariants

which will be used in the reference specification for the next two following points.
2. (a) Performing the algorithm NonDet on every pair (ψ1, ψ2) where ψ1 ∈ STRj−1

and ψ2 ∈ STRij such that ψ1 and ψ2 satisfy the condition of the input part of
the algorithm (i.e. the event which occurs in ψ1 and ψ2 is the same).

(b) Solving non-determinism conflicts as soon as they occur, and starting again
Point 2.(a) after each one of them. This gives rise to a new set of str-formulas
STR.

3. (a) Performing the algorithm ViolInv on every invariant in I with respect to the
Σj−1 ∪ Σij -model G(X, IΣj−1∪Σij

(X)) computed from I and the set STR
resulting from Point 2. above.

(b) Solving inconsistency conflicts as soon as they occur.
4. Point 3. possibly modifies both sets STR and I , and then gives rise to two new sets

STR′ and I ′. If this is the case, then starting again the above process for I ′ and
STR′. Otherwise, the process is terminating.

To ensure termination of the above process, a strategy is to impose that:

1. for every pair (ψ1, ψ2) where ψ1 and ψ2 are two str-formulas satisfying condi-
tions of Point 2.(a), if all non-determinism conflicts for ψ1 with all str-formulas of
STRj−1 have been already handled (i.e. ψ2 is a str-formula which has been added
or modified during some previous steps of the first algorithm) then the choice of
the expert to solve the non-determinism conflict between ψ1 and ψ2 (when it ex-
ists) necessarily rests on ψ2.

2. when a consistency conflict occurs on invariants by the algorithm ViolInv, the
choice of the expert necessarily rests on invariants (i.e. str-formulas of STR are
preserved).

4.2 Implementation

In the ValiServ project framework, the process presented in the previous section has
been implemented. We have then defined a prototype to help the expert for specifying
and validating service-oriented telecommunication systems. To produce more efficient
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implementations of algorithms, a first step of the above process has been to restrict the
cardinality of the set of variablesX occurring in axioms of the specification under con-
sideration. This has allowed to reduce the invariant consistency InvCons to a proposi-
tional satisfiability problem of reasonable size and to decrease the complexity of the step
3) in both algorithms NonDet and ViolInv in Section 3. The point is to translate a set of
invariants into an equivalent single invariant. To achieve this purpose we first transform
any axiom into its Skolem form. To simplify, let us consider an invariant of the form
< ctr|φ > where X is its vector of variables occurring in ctr and φ. Obviously, such a

formula can be written under its equivalent Skolem form: ∀X,
∧

xi �=yi∈ctr

xi 	= yi ⇒ φ. If

we consider two such formulas ψi of the form < ctri|φi > for i = 1, 2 with Xi their
respective variable set and provided that X1 ∩ X2 = ∅, a naive approach consists on
putting ∀X1∪X2 as a global universal variable vector quantifier. But such a solution has
the main drawback of building formulas with too many variables. Under the hypothesis
that the size of X1 is less or equal to the one of X2, in order to minimise the number of
variables, we search for substitutions ι : X1 → X1 ∪X2 such that every inequality on
two variables of X1 is preserved by ι in X1∪X2. There necessarily exist such substitu-
tions (e.g. the identity). In fact, we are looking for such substitutions which minimise for
the size of the set ι(X1)∪X2. When such a substitution is found, then ι(X1)∪X2 will
become the variable vector used to universally quantify the resulting Skolem formula
∀ι(X1)∪X2,

∧
xi �=yi∈ι(ctr1)∪ctr2

xi 	= yi ⇒ φ. The computation of an optimal substitution

is done by means of systematic study of all substitutions compatible with the inequal-
ity constraints. By iterating such a variable factorisation between all invariants, we can
control the whole number of variables to be considered. The boolean satisfiability prob-
lem corresponding to a formula ∀X,

∧
xi �=yi∈ctr

xi 	= yi ⇒ φ is then simply given by the

propositional formula
∨

σ:X→X,∀xi �=yi∈ctr,σ(xi) �=σ(yi)

σ(φ) where the atoms p(x1, . . . , xn)

occurring in σ(φ) are viewed as simple propositional variables.

4.3 Case Study

The above methodology has been applied on many telecommunication examples.
Among other, it has been applied on the example presented in Section 2. Here, we
give the report of this case study. Its interest is it is significant enough but short enough
to be presented in this paper. We incrementally integrate several services yielding
the system (((POTS+c1TCS)+c2CFB)+c3INTL). The main steps have been the
following:

• POTS+c1TCS: a non-determinism has been detected between φ2 and ψ1. We have
modified φ2, intuitively giving the priority to TCS on POTS.

• ((POTS+c1TCS)+c2CFB): a non-determinism has been detected between φ3 and
χ3. We have modified φ3. We have then detected that χ3 violates the TCS invariant
ψ1. We have corrected it by adding¬Tcs(C,A) to the subscription set of χ3. Then,
we add the following str-formula for the case we have Tcs(C,A):
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χ′
3 : < B �= C | Cfb(B,C), T cs(C,A), dialwait(A), idle(B), idle(C)

dial(A,B)−→
busytone(C), idle(C) >

Thus, TCS has the priority on CFB and CFB has the priority on POTS.
• (((POTS+c1TCS)+c2CFB)+c3INTL): a non-determinism has been detected

between φ1 and κ1. We have modified φ1, intuitively giving the priority to INTL on
POTS, TCS and CFB.

The specification of POTS, TCS, CFB and INTL together contains twenty formulas.
During the integration process, we have modified four of them and introduced a new
one. The ValiServ tool automatically detects current interactions, presents the detected
interactions to the expert under a detailed form and allows the expert to modify the
related specification part so that the considered interaction is suppressed according to
its judgment. Such an approach allows to manage the intrinsic complexity of service-
oriented systems since the expert only intervenes to solve interactions according to their
subjective status. Thus, our service integration method may be viewed as a sequence of
expert choices in a set of resolution options, each of these expert choices coming from
an automatic feature interaction detection.

5 Related Work

Several previous works have been interested by feature integration and interaction de-
tection issues from a high level of abstraction. In particular, new architectures have been
designed for telecommunications systems in order to facilitate the addition of a new ser-
vice. [5] or [13] present such approaches, useful for designing and implementing new
services but not to found rigorous interaction detection methods. [23] gives a general
framework to systematically combine services together. Only consistent combinations
of services are considered. When an inconsistency is detected for a given combina-
tion of services, this means that there exists an interaction between combined features.
However, the paper is not concerned by the need of providing theoretical and method-
ological help in order to combine service in presence of interactions. Some other works,
like [9], are also based on the use of model-checking tools in order to detect interac-
tions. This allows to consider general temporal properties. The main drawback of all
these approaches is that they require to instantiate a priori different configurations to
build all the interesting subscription patterns among a small number of fixed phones.

We claim that the use of symbolic techniques for dealing with phone variables is
the key to deduce interactions built over an appropriate number of phones equipped
with their subscriptions. Some other works manipulate generic variables to represent
phones, without restricting the number of phones to be considered. In particular, sev-
eral approaches rely on STR-like specifications. [10] precisely explains the interest of
using STR formulas, invariants and inequality preconditions. The authors were already
concerned with providing guidelines to integrate a service on the basic call system
and hints on how to perform non-determinism checks. Unfortunately, the described
detections are mainly guided by hand-waving and thus, there was no study of how to
systematically support this process. Our framework which is largely inspired by their
process, addresses this weakness. [20,24] have proposed specialised techniques for in-
teraction detection based on STR-like specifications. From a given initial state, they
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analyse properties of reachability graphs in terms of non-determinism or deadlock or
contradictions raised by the simultaneous application of two STR sentences . . . Works
introduced in [26,25] discuss the advantage of dealing with static methods, without
building any intermediate graph. They introduce techniques for finding interactions
from non-determinism criteria or from elicitation knowledge between two services.
They compute a lot of interactions, but as they do not look for service integration, they
do not exploit their presence to compose services in an adequate way. Moreover, as they
do not use invariants, they cannot help the specifier in designing STR specifications. Let
us remark that we handle the preservation of invariants as in [6]. However, the under-
lying proof-based techniques require too much expertise to our point of view. [22,7,11]
introduce systematic mechanisms of service composition avoiding a lot of interactions.
Roughly speaking, all of these works are based on some precedence relations between
services: the last integrated feature seems to have the highest priority level. However, if
undesirable interactions subsist, then it is not possible to review the integrated system,
except if a new design process is managed from the beginning.

6 Conclusion and Perspectives

We presented a methodology for service-oriented development that takes interaction
and integration issues into account. We introduced a dedicated formalism taking into
account subscriptions. and manipulating two kinds of formulas, state invariants and
state transition rules. We gave algorithms allowing the specifier to check the consis-
tency of the specification under consideration. The service integration results from the
incremental insertion of formulas preserving at each step the consistency of the target
specification. Each detected consistency problem represents an interaction and requires
an expert decision to modify, and to replace the formula(s) causing inconsistency. The
whole methodology has been validating by the industrial partner France Telecom of the
project ValiServ.

This work can be pursued in several ways. We want to study state reachability issues
to ensure that each detected non-determinism case corresponds to a real interaction
case. We also want to study how it is possible to introduce different types on variables
to capture different rôles (users, phone numbers or IP addresses) in order to apply our
algorithms and methodology to application domains such as voice over IP [15]. From
a methodological point of view, we aim to strengthen expert assistance by minimis-
ing choices and backtrack at design step. Such improvement should rely not only on
theoretical consideration but also on expertise about the telecommunication domain.
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Abstract. UML sequence diagrams is a specification language that has
proved itself to be of great value in system development. When put to
applications such as simulation, testing and other kinds of automated
analysis there is a need for formal semantics. Such methods of auto-
mated analysis are by nature operational, and this motivates formalizing
an operational semantics. In this paper we present an operational seman-
tics for UML 2.0 sequence diagrams that we believe gives a solid starting
point for developing methods for automated analysis. The operational
semantics has been proved to be sound and complete with respect to a
denotational semantics for the same language. It handles negative be-
havior as well as potential and mandatory choice. We are not aware of
any other operational semantics for sequence diagrams of this strength.

1 Introduction

Unified Modeling Language (UML) sequence diagrams [1] and their predecessor
Message Sequence Charts (MSC) [2] are specification languages that have proved
themselves to be of great practical value in system development. When sequence
diagrams are used to get a better understanding of the system through modeling,
as system documentation or as means of communication between stakeholders
of the system, it is important that the precise meaning of the diagrams is un-
derstood; in other words, there is need for a well-defined semantics. Sequence
diagrams may also be put to further applications, such as simulation, testing
and other kinds of automated analysis. This further increases the need for a
formalized semantics; not only must the people who make and read diagrams
have a common understanding of their meaning, but also the makers of methods
and tools for analyzing the diagrams must share this understanding.

Methods of analysis like simulation and testing are in their nature operational;
they are used for investigating what will happen when a system is executing.
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Fig. 1. Sequence diagram

When developing techniques for such analysis, not only do we need to understand
the precise meaning of a specification, we also need to understand precisely the
executions that are specified. This motivates formalization of semantics in an
operational style. In this paper we present an operational semantics for UML
sequence diagrams that we believe gives a solid starting point for developing
such methods of analysis.

Sequence diagrams is a graphical specification language defined in the UML
2.0 standard [1]. The standard defines the graphical notation, but also an ab-
stract syntax for the diagrams. Further the UML standard provides an informal
semantics of the diagrams. Figure 1 shows a sequence diagram d in the graphical
notation. A sequence diagram consists of a frame, representing the environment
of the specified system, and one or more lifelines, representing components of the
system. Arrows represent messages sent between lifelines or between a lifeline
and the environment, and if the beginning or end of an arrow is at a lifeline this
represents an event. Combined fragments are operators, like the choice operator
alt, and each combined fragment has one or more operands.

The semantics of UML 2.0 sequence diagrams is trace based. The standard
states that the semantics of a sequence diagram is a pair of traces (p, n) such that
p is interpreted as valid (positive) traces and n is interpreted as invalid (negative)
traces. Further, the union of p and n need not exhaust the trace universe.

Several properties of sequence diagrams prevent us from adopting a simple
automata or process algebra approach to defining the formal semantics. First of
all, sequence diagrams are partial specifications, and invalid behavior is speci-
fied explicitily by an operator neg. This means we cannot treat valid and invalid
behavior as complementary sets. Further, communication between lifelines is
asynchronous and lifelines are non-synchronizing, but choices, like the alt oper-
ator, are global. This means that sequence diagrams have a semi-global nature.
Finally, the choice operator alt is ambiguous, and may be interpreted as either
potential choice or mandatory choice. In our approach, this ambiguity is resolved
by interpreting alt as potential choice and introducing a new operator xalt to do
the job as mandatory choice.
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In [3,4,5] a denotational semantics for sequence diagrams is formalized. We re-
fer to this as the STAIRS semantics. STAIRS has a more general semantic model;
the semantics of a diagram is a set of pairs {(p1, n1), (p2, n2), . . . , (pm, nm)}. A
pair (pi, ni) is referred to as an interaction obligation. The word “obligation”
is used in order to emphasize that an implementation of a specification is re-
quired to fulfill every interaction obligation of the specification. This seman-
tic model makes it possible to distinguish between potential and mandatory
choice.

A trace is a (finite or infinite) sequence of events 〈e1, e2, . . . , ei, . . .〉. We let
t1


t2 denote concatenation of the traces t1 and t2 and 〈〉 denote the empty trace.
Let H be the trace universe. For each interaction obligation (pi, ni) we have that
pi ∪ ni ⊆ H. All interaction obligations are independent of each other, and an
interaction obligation is allowed to be inconsistent (i.e., we allow pi ∩ ni 	= ∅).

The contribution of this paper is an operational semantics for UML 2.0 se-
quence diagrams. Obviously, choices must be made where the UML standard is
ambiguous, but as far as possible the semantics is faithful to the standard. The
semantics is easy to extend and modify. This allows us to give a “default” or
“standard” interpretation, but also to experiment with the semantics and make
variations on points unspecified by the standard. Specifically it has a formalized
meta-level which allows definition of different execution strategies. It is not based
on transformations to other formalisms, which makes it easy to work with. Fur-
ther it has been proved to be sound and complete with respect to the STAIRS
semantics.

The structure of this paper is as follows: In Sect. 2 we present the syntax
over which the semantics is defined and in Sect. 3 the operational semantics.
Soundness and completeness is treated in Sect. 4. In Sect. 5 we present related
work and, finally, in Sect. 6 conclusions are provided. A short presentation of
the denotational semantics of STAIRS is provided in Appendix A.

2 Syntax

The graphical notation of sequence diagrams is not suited as a basis for defining
semantics, and the abstract syntax of the UML standard contains more infor-
mation than we need for the task. Our operational semantics is defined over
a simpler abstract syntax defined in [4, 5]. This is an event centric syntax in
which the weak sequential operator seq is employed as the basic construct for
combining diagram fragments.

The atom of a sequence diagram is the event. An event consists of a message
and a kind where the kind decides whether it is the transmit or the receive
event of the message. A message is a signal, which represents the contents of
the message, together with the addresses of the transmitter and the receiver.
Formally a signal is a label, and we let S denote the set of all signals. The
transmitters and receivers are lifelines. Let L denote the set of all lifelines. A
message m is defined as a triple (s, t, r) ∈ S × L × L with signal s, transmitter



A Fully General Operational Semantics for UML 2.0 Sequence Diagrams 383

t and receiver r. M denotes the set of all messages. On messages we define a
transmitter function tr. ∈ M→ L and a receiver function re. ∈M→ L:

tr.(s, t, r) def= t re.(s, t, r) def= r

We let K = {!, ?} be the set of kinds, where ! represents transmit and ? represents
receive. An event e is then a pair of a kind and a message: (k,m) ∈ K ×M. E
denotes the set of all events. On events we define a kind function k. ∈ E → K
and a message function m. ∈ E →M:

k.(k,m) def= k m.(k,m) def= m

We let the transmitter and receiver functions also range over events, tr. , re. ∈
E → L, and define a lifeline function l. ∈ E → L that returns the lifeline of an
event:

tr.(k,m) def= tr.m re.(k,m) def= re.m l.e
def=
{
tr.e if k.e = !
re.e if k.e = ?

A sequence diagram is built out of events, the binary operators seq, par, alt and
xalt, and the unary operators neg and loop. Related to the graphical syntax, the
operators represent combined fragments and their arguments the operands. In
addition we let skip represent the empty sequence diagram. Let D be the set of
all syntactically correct sequence diagrams. D is defined recursively as follows:

skip ∈ D
e ∈ E ⇒ e ∈ D
d1, d2 ∈ D ⇒ d1 seq d2 ∈ D ∧ d1 par d2 ∈ D ∧

d1 alt d2 ∈ D ∧ d1 xalt d2 ∈ D
d ∈ D ⇒ neg d ∈ D
d ∈ D ∧ I ⊆ N∞ ⇒ loop I d ∈ D
d ∈ D ∧ n ∈ N∞ ⇒ loop〈n〉 d ∈ D

In the definitions of the two loops we have N∞
def= N∪{∞}, where∞ is a number

greater than all other numbers and has the property ∞− 1 = ∞. The intention
behind loop I d is that d should be looped any number n ∈ I times. The UML
standard describes two loops loop(n) and loop(n,m), where n is the minimum
number and m the maximum number of iterations. We may define these as:

loop(n) d def= loop [n..∞] d loop(n,m) d def= loop [n..m] d

As can be expected, we have associativity of seq, par, alt and xalt. We also
have commutativity of par, alt and xalt. Furthermore the empty sequence diagram
skip is the identity element of seq and par. The combination of skip and loop is
discussed in Sect. 3.2.

In this abstract syntax the diagram of Fig. 1 is expressed as:1

d = (?, (a, env, i)) seq ((!, (b, i, j)) seq (?, (b, i, j)) alt (!, (c, i, j)) seq (?, (c, i, j)))
1 Here we let env denote the environment of the diagram. Formally this is a gate, but

gates are outside the scope of this paper. Also note that seq binds stronger than alt.
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3 Operational Semantics

An operational semantics of a language defines an interpreter for the language.
In our case the input to the interpreter is a sequence diagram represented in the
abstract syntax defined above. The output of the interpreter is a trace of events
representing an execution. It is defined as the combination of two transition
systems, which we refer to as the execution system and the projection system.
The execution system is a transition system over

[ , ] ∈ B ×D

where B represents the set of all states of the communication medium and D
the set of all syntactically correct sequence diagrams. The projection system is
a transition system over

Π( , , ) ∈ P(L)× B ×D

where P(L) is the powerset of the set of all lifelines. The projection system is
used for finding enabled events at each stage of the execution and is defined
recursively.

These two systems work together in such a way that for each step in the
execution, the execution system updates the projection system by passing on the
current state of the communication medium, and the projection system updates
the execution system by selecting the event to execute and returning the state
of the diagram after the execution of the event.

We also formalize a meta-level that encloses the execution system. At this
meta-level we may define several meta-strategies that guide the execution and
that are used for formalizing our notions of negative, potential and mandatory
behavior.

3.1 The Execution System

The execution system has two rules. The first rule represents the execution of a
single event and uses the projection system to find an enabled event to execute.
It is defined as

[β, d] e−→ [update(β, e), d′] if Π(ll.d, β, d) e−→ Π(ll.d, β, d′) ∧ e ∈ E (1)

where e is an event and ll.d is a function returning the set of lifelines in d.
In general we assume the structure of the communication medium, i.e. the

means of communication, to be underspecified. The only requirement is that the
following functions are defined:

– add ∈ B ×M→ B: Adds a message.
– rm ∈ B ×M→ B: Removes a message.
– ready ∈ B ×M → B: Returns true if the communication medium is in a

state where it can deliver the message and false otherwise.
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The function update ∈ B × E → B is defined as:

update(β, e) def=
{
add(β,m.e) if k.e = !
rm(β,m.e) if k.e = ?

Since receiver information is embedded into the messages, these functions are
sufficient. In this paper we assume the most general communication model, i.e.:
no ordering on the messages. This means that, e.g., message overtaking is pos-
sible. Formally then, B may be defined as the set of all multisets over M, add
as multiset union, rm as multiset minus and ready as multiset containment.

The second rule of the execution system executes silent events. The rules
of the projection system handle the sequence diagram operators alt, xalt, neg
and loop. Resolving these operators, such as choosing the branch of an alt are
considered silent events. We define the set of silent events to be

T = {τalt, τxalt, τneg , τpos, τloop}

with E ∩ T = ∅. The reason for introducing all these different silent events is
that they give high flexibility in defining execution strategies by making the
silent events and their kinds available at the meta-level. The rule is simple:

[β, d] τ−→ [β, d′] if Π(ll.d, β, d) τ−→ Π(ll.d, β, d′) ∧ τ ∈ T (2)

The empty diagram skip cannot be rewritten, but we assert that it produces the
empty trace, i.e.:

[β, skip]
〈〉−→ [β, skip] (3)

This also means that execution terminates when skip is reached.

3.2 The Projection System

The Empty Diagram. It is not possible to rewrite Π(L, β, skip). skip being
the identity element of seq and par, skip seq d, d seq skip, skip par d and d par skip
are treated as identical to d.

loop〈∞〉 skip is more problematic. Seen as a program this construct is similar
to the java fragment while(true) { }, i.e., a program that produces nothing
and never terminates. When related to the denotational semantics, however, the
semantics of loop〈∞〉 skip should be the empty trace 〈〉, since the denotational
semantics characterize observation after infinite time. A simple solution would
be to syntactically disallow the construct all together. Because we do not want
to make too many syntactic constraints, and because we want to stay close to
the denotational semantics we choose to let loop〈∞〉 skip reduce to skip, even
though this may be seen as counter-intuitive from an operational point of view.

Event. The simplest case is the diagram consisting of only one event e. In this
case the system delivers the event if the event is enabled given the set of lifelines
and the state of the communication medium. This means firstly that the event
must belong to one of the lifelines, and secondly that either the event must be a
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transmit event or its message must be available in the communication medium.
The need for L will be evident in the definition of rules for seq below.

Π(L, β, e) e−→ Π(L, β, skip) if l.e ∈ L ∧ (k.e = ! ∨ ready(β,m.e)) (4)

Weak Sequencing. The weak sequencing operator seq defines a partial order
on the events in a diagram; the ordering of events on each lifeline and between
the transmit and receive of a message is preserved, but all other ordering of
events is arbitrary. Because of this, there may be enabled events in both the
left and the right argument of a seq if there are lifelines represented in the right
argument of the operator that are not represented in the left argument. This
leads to two rules for the seq operator.

If there is an overlap between the given set of lifelines and the lifelines of the
left hand side of the seq, this means that the lifelines in this intersection may
have enabled events on the left hand side only. Hence, with respect to these
lifelines, the system must look for enabled events in the left operand.

Π(L, β, d1 seq d2)
e−→ Π(L, β, d′1 seq d2)

if ll.d1 ∩ L 	= ∅ ∧Π(ll.d1 ∩ L, β, d1)
e−→ Π(ll.d1 ∩ L, β, d′1)

(5)

If the lifelines of the left hand side do not exhaust the given set of lifelines, this
means there are lifelines only represented on the right hand side, and that there
may be enabled events on the right hand side of the operator. This means the
system may look for enabled events at the right hand side of the seq, but only
with respect to the lifelines not represented on the left hand side.

Π(L, β, d1 seq d2)
e−→ Π(L, β, d1 seq d′2)

if L \ ll.d1 	= ∅ ∧Π(L \ ll.d1, β, d2)
e−→ Π(L \ ll.d1, β, d

′
2)

(6)

Note that the two conditions ll.d1 ∩ L 	= ∅ and ll.d1 \ L 	= ∅ are not mutually
exclusive. If both these condition are true at the same time there may be en-
abled events at both sides of the seq operator. These events are then interleaved
arbitrarily. In such a case the rules may be applied in arbitrary order.

Because the transitions of the system are used as conditions in the recursion
of these rules, the rules will not be applied unless an enabled event is found
deeper in the recursion. Because of this the system will always be able to return
an enabled event if enabled events exist.

Interleaving. The parallel operator par specifies interleaving of the events from
each of its arguments; in other words parallel merge of the executions of each
of the arguments. The rules of par are similar to the rules of seq, but simpler
since we do not have to preserve any order between the two operands. One of
the operands is chosen arbitrarily. As with the seq rules, the use of transitions
as the conditions of the rules ensures that an enabled event is found if enabled
events exist.

Π(L, β, d1 par d2)
e−→ Π(L, β, d′1 par d2)

if Π(ll.d1 ∩ L, β, d1)
e−→ Π(ll.d1 ∩ L, β, d′1)

(7)
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Π(L, β, d1 par d2)
e−→ Π(L, β, d1 par d′2)

if Π(ll.d2 ∩ L, β, d2)
e−→ Π(ll.d2 ∩ L, β, d′2)

(8)

Choice. The rules for choices end the recursion; the choice is resolved and a
silent event is produced. By resolving the choice instead of looking for events
deeper down, we ensure that the same choice is made for all the lifelines covered
by the choice operator.

Π(L, β, d1 alt d2)
τalt−→ Π(L, β, dk), for k ∈ {1, 2} (9)

Π(L, β, d1 xalt d2)
τxalt−→ Π(L, β, dk), for k ∈ {1, 2} (10)

The rules for alt and xalt are identical except for the kind of event they produce.
This reflects the fact that the operators are indistinguishable at the execution
level, but since they produce different events, the kind of the choice is available at
the meta-level and this will be used in the definition of meta-strategies. Because
we have that ll.(d1 alt d2) ∩ L 	= ∅ and ll.(d1 xalt d2) ∩ L 	= ∅ no conditions or
restrictions on L are needed.

Negative. The operator neg is treated as a choice with one negative branch
and one empty branch. Silent events are used to flag which branch is chosen,
and hence the choice is made available at the meta-level.

Π(L, β, neg d)
τpos−→ Π(L, β, skip) (11)

Π(L, β, neg d)
τneg−→ Π(L, β, d) (12)

Similar to the choice rules, we have that ll.(neg d) ∩ L = ll.d ∩ L 	= ∅.

Iteration. Informally, in loop I d there is a non-deterministic choice between the
numbers of I. If n ∈ I is picked, d should be iterated n times. This is formalized
by a rule that chooses which number to use:

Π(L, β, loop I d) τalt−→ Π(L, β, loop〈n〉 d) if n ∈ I (13)

loop〈n〉 d is a loop with a counter. In the rule the counter is decreased by one for
each iteration. We also produce a silent event to represent the iteration of a loop.
Even though iteration of a loop in itself is not the most relevant information at
the meta-level, it may be useful for defining execution strategies, for example if
we want to give iteration of the loop low priority.

Π(L, β, loop〈n〉 d) τloop−→ Π(L, β, d seq loop〈n− 1〉 d) (14)

Also here we have the property that ll.(loop〈n〉 d) ∩ L = ll.d ∩ L 	= ∅. Since we
have that ∞− 1 = ∞, loop〈∞〉 d specifies an infinite loop. Further we assert
that loop〈0〉 d is equal to skip, i.e., loop〈0〉 d def= skip, so we do not need a special
rule for this situation.
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3.3 Meta-strategies

There are several strategies we may choose when executing a sequence diagram
and generating the histories of its possible executions. Examples of this may be
generating one or a specific number of random traces, all traces, all prefixes of
a certain length, etc. We wish to have the possibility of varying the execution
strategy. The way to do this is to define different meta-strategies for executing
the diagrams with the operational semantics. Two examples are given below. In
both we make use of a meta-system over

{| , |} ∈ H × EX

where H is the set of all traces and EX denotes the set of states of the execution
system. The first place of this pair is a “container” for a trace and the second
place is the current state of the execution system.

One Random Trace. The strategy may be defined by the means of two rules,
one rule for normal events and one rule for silent events:

{|t, V |} −→ {|t
〈e〉, V ′|} if V e−→ V ′ ∧ e ∈ E (15)

{|t, V |} −→ {|t, V ′|} if V τ−→ V ′ ∧ τ ∈ T (16)

The initial state for execution of a sequence diagram d is:

{|〈〉, [∅, d]|}

All Traces. With this strategy we want to generate all possible traces of a
diagram d and place them in the correct semantic structure of STAIRS. As
explained in Sect. 1, the semantic model of STAIRS is a set of interaction obli-
gations {(p1, n1), . . . , (pm, nm)}. For each interaction obligation (pi, ni), pi is a
set of positive traces and ni is a set of negative traces.

Instead of sets of traces we will use “interaction obligations” of sets of positive
and negative executions, i.e. meta-system states. Initially we have a set consisting
of a single interaction obligation with the initial state of d as the only positive
element and no negative elements:

{({{|〈〉, [∅, d]|}}, ∅)}

In the following we define rules that for each execution state deduce the next
steps to be made, and in executing these steps rewrite the whole structure.
To make the rules more readable, we only show as much of the context, the
surrounding structure, as is needed for defining the rules.

If we want all traces, we need to make a branch in the execution every time
there is a possibility of more than one event occurring first. The rule for executing
events asserts that for a given state, the generation must branch for every enabled
event:

T ∪ {{|t, V |}} −→ T ∪ {{|t
〈e〉, V ′|} |V e−→ V ′ ∧ e ∈ E} (17)
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The rule for resolving an alt is similar. For each branch of the alt, the execution
must branch:

T ∪ {{|t, V |}} −→ T ∪ {{|t, V ′|} |V τalt−→ V ′} (18)

The rule for iteration of loop is defined in the same fashion:

T ∪ {{|t, V |}} −→ T ∪ {{|t, V ′|} |V τloop−→ V ′} (19)

The rules for resolving a neg are more complicated since they concern an inter-
action obligation and not only one of the sets in an interaction obligation. Let
P, P ′, N,N ′ be sets. The rule for resolving a neg in a valid execution is then:

(P ∪ {{|t, V |}}, N) −→ (P ′, N ′) (20)

where
P ′ = P ∪ {{|t, V ′|} |V τpos−→ V ′}
N ′ = N ∪ {{|t, V ′|} |V τneg−→ V ′}

In an already invalid execution, there is no difference between choosing the
positive or negative branch:

(P,N ∪ {{|t, V |}}) −→ (P,N ′) (21)

where
N ′ = N ∪ {{|t, V ′|} |V τpos−→ V ′ ∨ V τneg−→ V ′}

Resolving an xalt involves splitting an interaction obligation, and hence, the rules
for xalt need even more context:

O ∪ {(P ∪ {{|t, V |}}, N)} −→ O ∪ {(P ∪ {{|t, V ′|}}, N) |V τxalt−→ V ′} (22)

O ∪ {(P,N ∪ {{|t, V |}})} −→ O ∪ {(P,N ∪ {{|t, V ′|}}) |V τxalt−→ V ′} (23)

Using these rules will in some cases give a result that differs from the denotational
semantics. For example, consider the diagram

d = (e1 alt e2) seq (e3 xalt e4)

where (for simplicity) the events e1, e2, e3, e4 are all on the same lifeline. The
denotation of d is:

[[ d ]] = {({〈e1, e3〉, 〈e2, e3〉}, ∅), ({〈e1, e4〉, 〈e2, e4〉}, ∅)}

The operational semantics gives us executions:

[β0, (e1 alt e2) seq (e3 xalt e4)]
τalt−→ [β0, ei seq (e3 xalt e4)]

ei−→ [β1, e3 xalt e4]
τxalt−→ [β1, ej]

ej−→ [β2, skip]
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with i ∈ {1, 2} and j ∈ {3, 4}. With the above strategy the execution first
branches because of the alt, and then the xalt splits the interaction obligation
for each of these executions. Because of this we get four interaction obligations:

{({〈e1, e3〉, 〈e2, e3〉}, ∅), ({〈e1, e4〉, 〈e2, e4〉}, ∅),
({〈e1, e3〉, 〈e2, e4〉}, ∅), ({〈e1, e4〉, 〈e2, e3〉}, ∅)}

To deal with this we need to give priority resolving xalts over resolving the other
kinds of choices. We define a special rule allowing xalts on the right hand side of
a seq being resolved regardless of the lifeline constraints:

Π(L, β, d1 seq d2)
τxalt−→ Π(L, β, d1 seq d′2) if Π(L, β, d2)

τxalt−→ Π(L, β, d′2) (24)

In addition (22) and (23) are given priority over (18)-(21). The execution strategy
then gives the same interaction obligations as the denotational semantics.

4 Soundness and Completeness

The operational semantics is sound and complete with respect to the denota-
tional semantics presented in [3,4, 5]. Informally, the soundness property means
that if the operational semantics produces a trace from a given diagram, this
trace should be included in the denotational semantics of that diagram. By
completeness we mean that all traces in the denotational semantics of a diagram
should be producible applying the operational semantics on that diagram. In this
section we state our soundness and completeness results and provide sketches of
the proofs. The full proofs are found in [6].

Let O be the set of all interaction obligations. [[ d ]] ∈ P(O) is the denotation
of d (the formal definition is found in Appendix A). We write t ∈ [[ d ]] for
t ∈
⋃

(p,n)∈[[d ]](p ∪ n). E S©t denotes the trace t with all events not in E filtered
away. env!

M.d is the multiset of messages m such that the receive event but not
the transmit event of m is present in d.

Theorem 1 (Termination). Given a diagram d ∈ D without infinite loop.
Then execution of [env!

M.d, d] will terminate.

Proof. Define a function w ∈ D → N such that w(skip) def= 0, w(e) def= 1,
w(d1 seq d2) = w(d1 par d2)

def= w(d1)+w(d2)+1, w(d1 alt d2) = w(d1 xalt d2)
def=

max(w(d1), w(d2)) + 1, w(neg d) def= w(d) + 1, w(loop〈n〉 d) def= n(w(d) + 2) and
w(loop I d) def= max(I)(w(d) + 2) + 1. It is easy to see that for all d ∈ D,
w(d) ≥ 0, and that for every execution step [β, d] e−→ [β′, d′] or [β, d] τ−→ [β, d′],
w(d) > w(d′). Thus, execution of [env!

M.d, d] must terminate. ��

Theorem 2 (Soundness). Given a diagram d ∈ D without infinite loop. For
all t ∈ (E ∪ T )∗, if there exists β ∈ B such that [env!

M.d, d] t−→ [β, skip] then
E S©t ∈ [[ d ]].
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Proof. We show this by induction on the structure of d. The induction start
d = skip or d = e is trivial. As induction hypothesis, we assume that the the-
orem holds for d1 and d2. There are seven cases to consider. We start with
d = d1 seq d2. Assume that [env!

M.d, d1 seq d2]
t−→ [β, skip], then by (1), (2),

(5), (6), t is obtained by executing d1 and d2 in an alternate fashion. This means
we have [env!

M.dk, dk] tk−→ [βk, skip] such that t is a merge of t1 and t2. By the
induction hypothesis E S©tk ∈ [[ dk ]] so we must show that the merge preserves the
causality of messages and ordering of events on each lifeline. The first is assured
by (1) and (4), and the second by (5) and (6). The proof for d = d1 par d2
is similar except we do not have to think about preserving the ordering along
lifelines. For d = d1 alt d2 we must show that E S©t ∈ [[ dk ]] for k = 1 or k = 2.
We observe that, by (2) and (9), [env!

M.d, d] τalt−−→ [env!
M.d, dk] t−→ [β, skip], so

by induction hypothesis E S©t ∈ [[ dk ]]. Because τalt 	∈ E it is sufficient simply to
choose the right k. The case of d = d1 xalt d2 is identical. So is d = neg d1 by
observing that this is a choice between d1 and skip. d = loop I d1 is treated in
the same way as alt, and d = loop〈n〉 d1 as n consecutive seqs. ��

Theorem 3 (Completeness). Given a diagram d ∈ D without infinite loop.
For all t ∈ E∗, if t ∈ [[ d ]] then there exist trace t′ ∈ (E ∪ T )∗ and β ∈ B such

that [env!
M.d, d] t′

−→ [β, skip] and E S©t′ = t.

Proof. By induction on the structure of d. The induction start d = skip or d = e
is trivial. We assume that the theorem holds for d1 and d2 as the induction
hypothesis. There are seven cases to consider. Assume t ∈ [[ d1 seq d2 ]]. Then
tk ∈ [[ dk ]] must exist such that t is a merge of t1 and t2, but in such a way that
(a) the causality of messages is preserved and (b) for all lifelines l, the events on
lifeline l in t1 precede the events on lifeline l in t2. By the induction hypothesis

[env!
M.dk, dk]

t′
k−→ [βk, skip] and E S©t′k = tk. This means we may obtain t′ such

that t′ = E S©t by executing d1 and d2 in an alternating fashion. (a) ensures
that this execution never is blocked by (4) and (b) ensures that execution is
never blocked by (6). The case for d = d1 par d2 is similar, but we do not
have to take (b) into consideration. For t ∈ [[ d1 alt d2 ]] we must have that
t ∈ [[ dk ]] for k = 1 or k = 2. By the induction hypothesis we have t′′ such that

[env!
M.dk, dk] t′′

−→ [βk, skip] and E S©t′′ = t. By choosing the appropriate k, and

letting t′ = 〈τalt〉
t′′ we easily see that [env!
M.d, d] t′

−→ [β, skip] (by (2) and (9))
and E S©t′ = t (because τalt 	∈ E). As above, xalt, neg and loop I are treated in
the same way as alt, and loop〈n〉 is treated as n consecutive seqs. ��

With respect to diagrams that contain infinite loop, we must assume weak fair-
ness between diagram fragments for the operational semantics to be sound. This
means that an arbitrary diagram fragment may not be reachable by the projec-
tion system for infinitely many consecutive execution steps without being exe-
cuted. With this assumption we avoid situations where some part of a diagram
only is executed finitely often even though it is inside an infinite loop.
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5 Related Work

Several approaches to defining operational semantics for UML sequence diagrams
and MSC have been made. The MSC semantics presented in [7] is similar to our
execution system, but lacks the formal meta-level. In [8] semantics for the MSC
variant Live Sequence Charts (LSC) is defined. This semantics has a meta-level,
formalized by pseudo-code, which is used for assigning meaning to invalid execu-
tions. In both [9] and [10] LSC semantics is applied to UML sequence diagrams,
but none of them conform to the intended UML semantics. In [11] safety and
liveness properties are used for distinguishing valid from invalid behavior, but
the approach is based on a large amount of transformation and diagrams are not
composed by weak sequencing. The MSC semantics presented in [12] has some
of the same variability and extendibility that we are aiming at in our semantics,
but is heavily based on synchronization of lifelines. The UML semantics of [13]
is similar to ours in that it is defined by rewrite rules operating directly on a
syntactical representation of sequence diagrams, but treats invalid behavior as
the complement of valid behavior.

On inspection of these and other approaches to operational semantics for
sequence diagrams and MSCs, like [14, 15, 16, 17, 18, 19, 20], we find that they
differ from our semantics in one or more of the following:

– Non-conformance with the intended semantics of UML.
– No notion of explicit negative behavior and no distinction between negative

behavior and unspecified behavior
– No distinction between potential and mandatory choice.
– Lack of a proper meta-level that may be used for assigning meaning to

negative and potential/mandatory behavior.
– Lack of possibility and freedom in defining and formalizing a meta-level.
– Lack of modifiability and extensibility, e.g., with respect to the communica-

tion model.
– Requiring transformations from the textual syntax into the formalism of the

approach.

Our aim has been to stay close to the UML standard in both syntax and seman-
tics. Further we have aimed to facilitate ease of extension and modification when
adapting the semantics to different interpretations and applications of sequence
diagrams.

6 Conclusions

In this paper we have presented an operational semantics for UML 2.0 sequence
diagrams. We are not aware of any other operational semantics for UML 2.0
sequence diagrams or MSCs with the same strength and generality as ours.
Several approaches have been made, but all with significant shortcomings.

Our operational semantics for UML 2.0 sequence diagrams is simple and is de-
fined with extensibility and variation in mind. It does not involve any translation
or transformation of the diagrams into other formalisms, which makes it easy
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to use and understand. It is sound and complete with respect to a reasonable
denotational formalization of the UML standard.

The operational semantics have a formalized meta-level for defining execution
strategies. This meta-level is used for distinguishing valid from invalid traces, and
for distinguishing between traces of different interaction obligations. Further it
may be used for defining different meta-strategies that guide the execution. We
have shown two examples: generating a single trace and generating all traces
with a white box view of the diagram. Other examples may be to generate a
specific number of traces or prefixes of a specific length. It is also possible to
define strategies that take a black box view of the diagram.

The semantics is implemented in the term rewriting language Maude [21],
and forms the basis of a tool for analysis of sequence diagrams currently under
development. Recent work includes test generation from sequence diagrams; see
[22] for more details.
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A Denotational Semantics

On diagrams we have the constraints that a given message should syntactically
occur only once, and if both the transmitter and the receiver lifelines of the
message are present in the diagram, then both the transmit event and receive
event of that message must be in the diagram. In each trace, a transmit event
should always be ordered before the corresponding receive event. We letH denote
the set of all traces that complies with this requirement.
O is the set of interaction obligations. The semantics of a diagram is defined by

a function [[ ]] ∈ D → P(O). For the empty diagram and the diagram consisting
of a single event, the semantics is given by:

[[ skip ]] def= {({〈〉}, ∅)} [[ e ]] def= {({〈e〉}, ∅)}

We define weak sequencing of trace sets:

s1 � s2
def= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L : e.l S©h = e.l S©h1


e.l S©h2}
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where e.l denotes the set of events that may take place on the lifeline l. The seq
construct is defined as:

[[ d1 seq d2 ]] def= {o1 � o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]}

where weak sequencing of interaction obligations is defined as:

(p1, n1) � (p2, n2)
def= (p1 � p2, (n1 � p2) ∪ (n1 � n2) ∪ (p1 � n2))

In order to define par, we first define parallel execution on trace sets:

s1 ‖ s2
def= {h ∈ H | ∃p ∈ {1, 2}∞ :π2(({1} × E) T©(p, h)) ∈ s1 ∧

π2(({2} × E) T©(p, h)) ∈ s2}

In this definition, the oracle p resolves the non-determinism in the interleaving.
π2 is a projection operator returning the second element of a pair, and T© is
an operator for filtering pairs of traces (see [6] for formal definitions). The par
construct itself is defined as:

[[ d1 par d2 ]] def= {o1 ‖ o2 | o1 ∈ [[ d1 ]] ∧ o2 ∈ [[ d2 ]]}

where parallel execution of interaction obligations is defined as:

(p1, n1) ‖ (p2, n2)
def= (p1 ‖ p2, (n1 ‖ p2) ∪ (n1 ‖ n2) ∪ (p1 ‖ n2))

The semantics of alt is the inner union of the interaction obligations:

[[ d1 alt d2 ]] def= {(p1 ∪ p2, n1 ∪ n2) | (p1, n1) ∈ [[ d1 ]] ∧ (p2, n2) ∈ [[ d2 ]]}

The xalt is defined as the union of interaction obligations:

[[ d1 xalt d2 ]] def= [[ d1 ]] ∪ [[ d2 ]]

The neg construct defines negative traces:

[[ neg d ]] def= {({〈〉}, p ∪ n) | (p, n) ∈ [[ d ]]}

The semantics of loop is defined by a semantic loop construct μn, where n is
the number of times the loop should be iterated. Let � be a generalization of
potential choice (inner union of interaction obligation). loop is then defined as:

[[ loop I d ]] def=
⊎
i∈I

μi [[ d ]]

For n ∈ N (finite loop), μn is defined as

μ0 O
def= {({〈〉}, ∅)} μn O

def= O � μn−1 O if n > 0

For a treatment of infinite loop, see [5] or [6].
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Abstract. Many programming languages provide exceptions as a struc-
tured way for detecting and recovering from abnormal conditions. How-
ever, using exceptions properly is non-trivial. Programmers are often
careless when handling exceptions, and exception related mistakes are
common in software products. We present a technique for verifying that
exceptions are used in a safe way. This technique integrates static anal-
ysis with model checking to visit all possible exception-raising execution
paths. To demonstrate the potential utility of our approach, we applied
it to two open source Java applications.
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1 Introduction

Exception handling is used in programming languages as a structured way to
detect and recover from abnormal conditions such as data corruption, precon-
dition violation or environmental errors. Exceptions help the programmer to
simplify program structure by eliminating the clutter associated with inspecting
and acting on return codes. They also ensure that errors are handled at rela-
tively well-defined points in the program. However, exceptions complicate the
potential control flow paths in a program and make it difficult for the pro-
grammer to reason about the program behavior under interacting error sit-
uations. It has been reported that up to two thirds of system crashes and
fifty percent of system security vulnerabilities are caused by mishandled ex-
ceptions [13].

Despite the importance of exception handling, programmers are often careless
when using exceptions. Exception related mistakes like “swallow exceptions and
do nothing” or “forget about the clean-up actions when handling exceptions”
are very common in software products. We are interested in techniques which
can verify that a program is “exception reliable” and “exception safe” — terms
that we will elaborate on shortly.

In this paper, we present a verification framework which combines static anal-
ysis and model checking techniques to do exhaustive checking of a program’s
exceptional behaviors. The program is instrumented with support for exploring
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all exceptional flows of control so that the back-end model checker is able to in-
spect all possible exceptions. To avoid the state explosion problem, we propose
some program slicing criteria which attempt to preserve the control flow in the
face of environmental and data diversity.

In Section 2, we describe general exception handling issues and introduce
exception reliability and safety. In section 3, we discuss our framework for
exceptional program behavior verification. Section 4 discusses implementation
details about the framework. Section 5 presents two small case studies support-
ing the efficacy of our method. Section 6 concludes with the next steps in this
effort.

2 Exception Handling Issues

2.1 Exception Classification

Leino et al. [12] classify exceptions into client failure and provider failure. Client
failure occurs when a precondition of an operation is violated. For instance, the
operation is expecting a number but got a string instead. Provider failure occurs
when an operation finds it is unable to satisfy its post-conditions. For example,
a socket read operation does not satisfy its postcondition when it encounters a
broken connection during the read of a record. Furthermore, provider failures can
be divided into two subclasses, observed program error and admissible failure.
Observed program error refers to an intrinsic program error such as array index
out of bounds, or program out of memory. On the other hand, admissible failure
refers to an exception where one can recover from the failure state. For instance,
an operation is intended to read bits from a network channel but the received
bits contain too many parity errors, so a retry is initiated. In Java terminology,
a checked exception is an admissible failure. An unchecked exception is a client
failure or observed program error.

Several exception handling patterns are identified by Goodwin et al. in [8]. In
general, two exception handling philosophies are used:

1. Catch what you can handle: For a client failure and an admissible failure,
the callee must be given enough information about the failure so that it can
attempt to fix the problem. If the callee is unable to fix the problem itself, it
should be permitted to report the problem to the caller or simply terminate
the whole program. Detailed information about the failure and the current
execution stack should be preserved.

2. Let exceptions propagate: In general, it is impossible to correct an ob-
served program error. The general approach is to release any resources ac-
quired in the current control context, add additional diagnostic information
to the caught exception, and then re-throw and propagate the exception. In
some situations one might consider terminating the program and reporting
the details about the exception and current execution stack.
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2.2 Exception Reliability and Safety

Exception reliability is a fundamental requirement for a robust program. In gen-
eral, we call a program exception handling reliable when the following two con-
ditions are satisfied:

1. All raised exceptions are handled.
2. Every handler is reachable by some exception.

The second condition is supposed to capture the idea that every handler is
intended to catch some particular exceptions, and if it does not catch any, then
it is likely that some other handler is inadvertently do an earlier catch. An
example of unreachable exception handler is a handler for IOException right
after a handler for Exception.

Based on Stroustrup’s [16] definition, we define exception safety in terms of
the following four guarantees of increasing quality:

1. No-leak guarantee: The program is exception reliable and no resource leaks.
2. Basic guarantee: In addition to the no-leak guarantee, the basic invariants

of classes are maintained.
3. Strong guarantee: In addition to the basic guarantee, every operation either

succeeds or has no effect.
4. No-throw guarantee: In addition to the basic guarantee, no exception is

thrown.

In this paper we focus on automatically verifying the no-leak guarantee. Of
course, robust software should at a minimum provide basic exception safety. This
is a future goal.

2.3 Related Work

There are several static analysis tools and techniques proposed to tackle the
exception handling analysis problem.

Robillard and Murphy [15] developed the Jex tool, which gathers exception-
related information for a Java program. Based on a class-hierarchy analysis, Jex
can conservatively determine the control-flow graph of the program and then
trace exception propagation. Jex can also handle unchecked exceptions.

Jo et al. [10] proposed an inter-procedural exception analysis based on a set-
constraints framework. Compared to conventional analysis methods based on the
control-flow graph, it can more precisely determine the type of exceptions that
can be propagated by each method. But this analysis doesn’t include unchecked
exceptions.

Both techniques can be used to solve the exception reliability problem but not
the exception safety problem. Weimer and Necula [18] present a static analysis
tool for finding run-time error-handling mistakes. Our eventual goal is to handle
both the exception reliability problem and the exception safety problem.
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3 A Model Checking Framework for Exceptional
Program Behavior Verification

To be useful, any verification processes must be efficient in both human and
machine resources. Efficient static analysis techniques only inspect the code at
compile time; they are imprecise as they only approximate the inter-procedural
control-flow. Using model checking [9] we can explore some possible run-time
behavior of the simplified program and thus more accurately analyze control-
flow.

Model checking addresses the behavior of finite-state closed systems whose
future behavior is completely determined by the current state of the system. To
deal with open systems that interact with their environment the model checker
must also model the environment. This is typically done by modelling all possible
sequences of events and inputs that can come from the environment. The state
space of a typical program is too large to be explored, so model checking is done
in the context of an abstraction function that limits the number of explored
variables and their associated ranges, thus keeping the size of the state space
manageable.

Since exceptions are typically the result of unusual circumstances, the possible
exceptional flows of control raised by rarely encountered data or environmental
errors should be explored by the model checker if we want to assure proper
exception handling. Therefore, choosing the appropriate abstraction function is
a challenge.

Configuration

File

�
�

��

�
�

��
Original

Java Program
� Static

Analyzer
� Slicer � Model

Checker

Fig. 1. Verification Process

In our framework, the verification process is iterative, with each cycle divided
into three steps (Figure 1).

1. With support from a static analyzer, the program is instrumented such that
all possible exceptions can be easily raised.

2. The instrumented program is fed into a slicer to remove all irrelevant pro-
gram constructs.

3. The sliced program is fed into a model checker to detect exception specifi-
cation violations.

Since the model checker typically finds only one problem at a time, each iteration
corrects a single problem and the process is repeated.
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To illustrate the process, Figure 2 presents a sample Java program. This pro-
gram first tries to acquire two resources: socket and dataOutputStream, then
performs some operations. When leaving the try, it attempts to release these
two resources. At the first glance, it should work properly since all the close()
operations are inside a finally block. But the code is flawed. First, failure to
close dos object (Figure 2 line 12) will raise an exception and lead to line 13
socket.close() being bypassed. Therefore, resource socket leaks. Second, if
operation serverSocket.accept() on line 4 or new DataOutputStream() on
line 5 fails, variable socket or dos will be null on line 12 or 13. Then a null
pointer dereferencing error will happen. While these errors can’t be discovered
by static analysis tools like ESC/Java [7], our tool can. Note that we do not de-
tect the typical error of acquiring a resource (like DataOutputStream) a second
time without closing the previous instance since this is not an error that results
in an exception.

01 Socket socket = null;
02 DataOutputStream dos = null;
03 try {
04 socket = serverSocket.accept();
05 dos = new DataOutputStream(socket.getOutputStream());
06 // other operations
07 }
08 catch (IOException e) {
09 // handling exceptions here
10 }
11 finally {
12 dos.close();
13 socket.close();
14 }

Fig. 2. Example of Original Program

In the first step, we parse and type check the Java code files and produce
an abstract syntax tree (AST) for each file. The instrumentation of a file is
accomplished by traversing the AST. For each statement, the analyzer instru-
ments possible exceptions according to the Java language specification [3]. For
example, a statement attempting a division might raise ArithmeticException
and therefore need to be instrumented. For each method call, the analyzer first
determines if the method source code is available. If available, the analyzer in-
struments the method directly. If not, the analyzer instruments the exception
interface extracted from the byte code of that method.

The result of the first step of static analysis and instrumentation is shown in
Figure 3. Notice how lines 5, 7, 15, 17 in Figure 3 are added to represent possible
exceptions raised by lines 4, 6, 14, 16. (We are assuming that the method source
code is unavailable.) The instrumentation call Verify.getBoolean() models
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01 Socket socket = null;
02 DataOutputStream dos = null;
03 try {
04 socket = serverSocket.accept();
05 if (Verify.getBoolean()) throw new java.io.IOException();
06 dos = new DataOutputStream(socket.getOutputStream());
07 if (Verify.getBoolean()) throw new java.io.IOException();
08 // other operations
09 }
10 catch (IOException e) {
11 // handling exceptions here
12 }
13 finally {
14 dos.close();
15 if (Verify.getBoolean()) throw new java.io.IOException();
16 socket.close();
17 if (Verify.getBoolean()) throw new java.io.IOException();
18 }

Fig. 3. Example of Instrumented Program

the environment by nondeterministically returning a Boolean value. This ensures
that future model checking explores all exception-triggered execution paths in
the original program.

The second step of our process applies a program slicer to remove all program
constructs that are irrelevant for checking exception safety. The sliced program
contains nothing but the execution flow constructs and all resource or exception
related information. A configuration file specifies the abstraction function that
informs the slicer about what kind of objects should be considered as a resource
in this verification process. The slicer replaces each of these objects with a generic
representation Resource.

Figure 4 shows the generic resource representation. This Resource class is
extendible to support additional resource related operations. Figure 5 presents
the sliced program based on Figure 3. In Figure 5, lines 1–3 and lines 24–28
are the resource leak specification part as generated by the slicer. Lines 6–23
correspond the same lines in Figure 3. Since all the statements are relevant
to resources or exceptions, they are preserved by the slicer, although the type
of object socket and dataOutputStream have been changed to a unified type
Resource. The resource allocation operation is simulated nondeterministically,
that is, the resource allocation operation either succeeds or fails. If it fails, null
is returned.

The third step of our analysis feeds the sliced program into the software
model checker, Java Pathfinder, JPF, [17]. Based on the given program and
associated environment abstraction, JPF systematically exhausts all possible ex-
ecution paths. It checks if there is any uncaught exception or assertion violations
in the sliced program. If so, JPF dumps out an execution path leading to the
violation. The execution path can help the programmer to fix the problem. This
verification process is iterated until no further violation is reported.
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public class Resource { ... ...
public boolean inuse = true;

public void open() {
inuse = true;

}

public void close() {
inuse = false;

}
... ... }

Fig. 4. Resource Class Example

The current version of JPF works directly on Java byte code and can handle all
Java features including commonly used libraries. The environment is modelled
by nondeterministic choice expressed as method calls to a special class Verify.
For example, the method getBoolean() from class Verify returns a boolean
value nondeterministically.

We selected JPF as our model checker for a number of reasons: Compared
to other model checkers like Bandera [4] or Bogor [14], JPF can handle more
Java features. As an explicit state model checker, JPF adopts several efficient
state reduction techniques like heap symmetry reduction and partial order reduc-
tion. JPF provides nondeterministic constructs for modelling environment-driven
choices. JPF is an open source project.

4 Implementation Issues

4.1 Program Instrumenting

Our verification framework takes a set of Java source files and a configuration file
as input. The configuration file is used to provide application related information.
Figure 6 gives out an example of a configuration file. The <exception> item
is used to identify these exceptions which are ignored by the static analyzer.
By default our analyzer instruments every possible exception, but the user can
choose to skip some kinds of exceptions. <import> specifies the Java packages
to be verified. <resource> item identifies these objects which are considered
as a resource. In this example, all instances from Socket, FileInputStream or
BufferedReader are considered as resources.

Our static analysis is built on top of KJC, the Kopi open source Java com-
piler [2], and the Jex tool [15] for exception analysis. Jex is implemented as an
extension to the KJC project. Jex first produces an abstract syntax tree (AST)
for each file. While traversing the AST, Jex computes the type and origins of
exceptions that could be thrown by each statement according to the Java Lan-
guage Specification[3]. For each method call, Jex first uses conservative class
hierarchy analysis to determine all possible dynamic bindings for the call and
then calculates the exceptions which might be propagated by the method call.
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01 Resource socket= null;
02 Resource dos= null;
03 try {
04 socket = null;
05 dos = null;
06 try {
07 if (Verify.getBoolean()) socket = new Resource();
08 else socket = null;
09 if (Verify.getBoolean()) throw new java.io.IOException();
10 if (Verify.getBoolean()) dos = new Resource();
11 else dos = null;
12 if (Verify.getBoolean()) throw new java.io.IOException();
13 // other operations
14 }
15 catch (java.io.IOException e) {
16 // handling exceptions here
17 }
18 finally {
19 dos.close();
20 if (Verify.getBoolean()) throw new java.io.IOException();
21 socket.close();
22 if (Verify.getBoolean()) throw new java.io.IOException();
23 }
24 }
25 finally {
26 assert socket == null || socket.inuse == false;
27 assert dos == null || dos.inuse == false;
28 }

Fig. 5. Example of Sliced Program

This process may iterate several times until a global fixed point is reached for
all methods in the system.

Our static analyzer is built on the Jex tool with several modifications.

1. We do not need inter-procedural analysis to determine the control flow graph
since this is effectively achieved in the model checking phase. Our analysis
procedure is much simpler, and we only have to traverse the AST once.

2. Since Jex generates only the type and the origins of exceptions, our analyzer
needs to record the exact place where that exception might be thrown, such
that we can instrument the code with a statement like

if (Verify.getBoolean()) throw new ExceptionType();

In most cases, this statement is inserted immediately after the statement
that can throw the exception. But in some cases, it is added somewhere else.
For example, if a return statement may throw exceptions, these exceptions
should be instrumented before that return statement.

3. Jex is designed to address all exceptions that can be raised in a Java pro-
gram, so it supports both checked and unchecked exceptions. By default,



404 X. Li, H.J. Hoover, and P. Rudnicki

.. ... <exception> java.lang.OutOfMemoryError

... ...
<exception>javalang.ArrayStoreException
<exception> java.lang.ClassCastException
<dir> /Users/xinli/examples
<import> jnfs
<import> jnfs.security
<import> jnfs.security.acl
<resource> java.net.Socket
<resource> java.io.FileInputStream
<resource> java.io.BufferedReader
... ...

Fig. 6. Example of Configuration File

we consider all possible exceptions flagged by Jex (although not all possible
exceptions are reported by the tool) but also can specify which exceptions
to ignore. For example, the unchecked exception, OutOfMemoryError could
be raised after every new operation and method call. The user might want to
turn off the instrumentation of this exception until the more common modes
of failure have been addressed.

4.2 Program Slicing

Directly applying model checking to a full program quickly leads to state explo-
sion. It is necessary to reduce the size of the program state as much as possible,
while still preserving properties of interest. Program slicing [19] is a technique
to reduce the program size while keeping all the interesting program constructs.
Our program slicing rules are described below

For brevity, we consider a subset of Java with almost all language features [5]
Its abstract syntax is in Figure 7. In this figure, RType represents those types
which are defined as resource types of interest to the user. LType represents
those types that come from the Java library, or from third party application
whose source code is not available.

The following rules give our slicing criteria in the form of program transfor-
mation rules based on the abstract syntax from Figure 7. A rule of the form

[ A ] B
C
D

means that when visiting program construct A, and while condition B is true,
program fragment C (one of the variants of A) is be transformed to D. In these
rules, we frequently use the following two operations

– type(expr) returns the type of parameter expr.
– eval(expr) returns true iff expr is not resource related.
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Prog ::= Class∗

Class ::= class CId extends CName
{CMember∗}

CMember ::= Field | Method
Field ::= VarType VarId;
Method ::= MHeader MBody
MHeader ::= (void | VarType) MId ((VarType PId)∗) throws CName∗

MBody ::= {Stmts [return Expr ]}
Stmts ::= (stmt; )∗

Stmt ::= if Expr then Stmts else Stmts
| Var = Expr | Expr.MName(Expr∗)
| throw Expr
| while Expr Stmts
| try Stmts (catch CName Id Stmts)∗ finally Stmts
| try Stmts (catch CName Id Stmts)+

Expr ::= Value | Var | Expr.MName(Expr∗)
| new CName() | this

Var ::= Name | Expr.VarName | Expr[Expr]
Value ::= PrimValue | RefValue
RefValue ::= null | ..
PrimValue ::= intValue | charValue | boolValue | ...
VarType ::= PrimType | CName | RType | LType
PrimType ::= bool | char | int | ...

Fig. 7. Abstract Syntax of Core Java

In conditional statements, if the guard expression does not involve resources
(that is eval(expr) returns true), we use Verify.getBoolean() to replace the
expr to ensure that model checking examines all possible paths.

[Field] VarType 	∈ RType
VarType VarId

[ ]
(1)

The above rule concerns class fields: every class field that is not a resource type
is removed.

[MBody] type(Expr) 	∈ PrimType ∪ RType
{Stmts [return Expr]}
{Stmts [return null]} (2)

This rule concerns return statements: if the type of Expr is not a primary type
or a resource type, we return null instead.

[MBody] type(Expr) ∈ PrimType
{Stmts [return Expr]}

{Stmts [return PrimValue]} (3)

When the type of the return expression is primitive, then a predefined value of
the corresponding primitive type (see below) is returned.

[Stmt] eval(Expr)
if Expr · · ·

if Verify.getBoolean() · · · (4)
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If the guard expression Expr is not resource relevant, it is replaced by
Verify.getBoolean().

[Stmt] eval(Expr)
while Expr Stmts

if Verify.getBoolean() Stmts
(5)

For while loops, if the guard expression Expr is not resource relevant, it is re-
placed by Verify.getBoolean(). Therefore, the loop body is executed once
or not at all. Please note that this slicing is incapable of handling arrays of
resources.

[PrimValue]
intValue | boolValue | · · ·

3 | true | · · · (6)

Every primitive value is replaced by a predefined value. For instance, we use 3
to replace any int value.

[Stmt] type(Expr) ∈ PrimType ∪ LType
Var = Expr

[ ]
(7)

All assignment statements of primitive types or library type objects are removed.

[Stmt] type(Expr) ∈ LType
Expr.MName(Expr∗)

[ ]
(8)

Each library call is removed (as its exceptions have been already instrumented).

[Stmt] type(Expr1) 	∈ LType & type(expr) 	∈ PrimType∪RType

Expr1.MName(expr, Expr∗)
Expr1.MName(null, Expr∗)

(9)

If we invoke a method not from a library, and the parameter is not of primitive
type or resource type, we use null to replace that parameter.

In addition to the above, other Java program constructs not included in
Figure 7 are handled as follows:

1. Abstract classes and interfaces are sliced like a standard class
2. Array types are sliced in the same way as the basic type of the array
3. All thread related program constructs are preserved since they are essential

for program execution. This can be seen as treating them like RType in their
slicing rules.

Since we relax the guards of all program control statements, there is a possi-
bility that we generate false alarms, that is, we generate an assertion violation
execution path which never happens in the original program. It requires substan-
tial human effort to inspect the output of the model checker in order to dismiss
a false alarm. Reducing the frequency of false alarms is one of our future goals.
Surprisingly, we have not met such situations in our experiments, see Section 5.
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4.3 Generating Specifications for Resource Leaks

Since JPF can automatically detect all unhandled exceptions and report them as
a program error, no specification is needed for exception reliability verification.
In order to do the resource leak verification, some specification annotations are
inserted as assertions into the sliced Java program. Some of these specifications
are inserted automatically. JPF then examines all the execution paths, and if
along any path there is an assertion violation, we have a resource leak.

Program resources may be declared at two levels: method and class. At the
method level, resources are declared as local objects that should be released
before termination of the method. (Note: this only works for the situation that
the return type is not a resource type.) Our slicer automatically inserts a new
try-finally block. The new try block embeds all of the original method body
while assertions that all resources have been released are inserted into the new
finally block. In that way, JPF can check if there is any assertion violation at the
end of method execution.

01 public String RETR( String name ) throws Exception
02 {
03 // ... ...
04 Socket dConnection =buildDataConnection(name,getDataType(),obj.size());
05 OutputStream out = dConnection.getOutputStream();
06 obj.read( out, dataMode, restartOffset );
07 restartOffset = 0;
08 dConnection.close();
09 return "226 " + getDataType() + " transfer complete.";
10 }

Fig. 8. Example: Assertions for Resource leak (Original Program)

In order to observe scope issues, all method level resource objects should be
predefined before the new try-finally block. Figure 9 contains a sliced example
of the original program in Figure 8.

In Figure 9, line 2 declares resource object dConnection. Lines 3–15 are the
newly formed try block. Lines 4–14 are the original method body sliced and
instrumented. Lines 16–18 form the newly added finally block. Line 17 asserts
that resource dConnection is released.

At the class level, it is usually difficult to decide the exact point where a
resource should be released. Additional information about the interactions be-
tween classes is required, and users may need to insert additional specifications.
However, for transaction style applications (such as web applications), the ob-
jects that handle a transaction have a well defined life cycle. When a class is
a descendant of Thread or Runnable, all related external resources should be
released before the run method terminates. Therefore, in this particular case,
we can add assertions to the run method just as for ordinary method.
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01 public java.lang.String RETR(String name) Exception {
02 Resource dConnection = null;
03 try {
04 {
05 //... ...
06 dConnection = buildDataConnection(null, null, 0);
07 if (Verify.getBoolean()) throw new java.io.IOException();
08 if (Verify.getBoolean()) throw new kmy.net.ftpd.FTPDException();
09 if (Verify.getBoolean()) throw new java.lang.InterruptedException();
10 obj.read((java.io.OutputStream)null, 2, 0);
11 dConnection.close();
12 if (Verify.getBoolean()) throw new java.io.IOException();
13 return (java.lang.String)null;
14 }
15 }
16 finally {
17 assert dConnection == null || dConnection.inuse == false;
18 }
19 }

Fig. 9. Example: Assertions for Resource Leak (Sliced Program)

5 Experimental Results

We present experimental results1 obtained by using our tool on two Java web
applications. Table 1 shows the running time and state space size of these ex-
periments. As resources we have considered Socket from java.net and from
java.io: FileInputStream, DataOutputStream, and BufferedReader.

Table 1. Running time and state space size for the experiments

NanoHTTP FizmezWebServer

Time 57.6 s 75.3 s

Visited States 15905 38875

5.1 NanoHTTPD

Project NanoHTTPD [6] is a simple embeddable HTTP server application writ-
ten in Java. After instrumentation and slicing, model checking discovered an un-
caught NumberFormatException. Examining the execution path that triggered
the exception we found that in the main function, there is a call to the library
function Integer.parseInt(). The fact that this may raise an exception was
1 All experiments were performed on a PowerBook with PowerPC G4, 1.67 GHz, 2.0

GB RAM, running Mac OS X 10.4.6, Sun Java SDK build 1.5.0 06-112 and Java
Pathfinder Version 3.1.2.
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totally neglected by the programmer. After fixing this problem, the application
has been verified as exception reliable code.

Next we explored potential resource leaks. First, the object mySocket of type
java.net.Socket is defined as a field in class NanoHTTPD. It is initialized when
an HTTPSession is created and should be closed before this HTTP session is
terminated, that is before the corresponding run method ends. The program
does call mySocket.close() by the end of the run() procedure, but this call
may be not executed as it is not enclosed in a finally block. JPF shows us an
execution path which under high load causes an exception prior to the socket
closure, and leads to the mySocket leak. Thus the application can fail under a
very high number of requests.

We also found two other resource leak problems. A BufferedReader type
object in is declared in method run() in class HTTPSession and a FileInput
Stream type object fis is declared in method serveFile() in class NanoHTTPD.
The author closes these resources at the end of the corresponding try block but
again not in a finally section. As a result, when exceptions are thrown these
resources are never closed and thus may leak.

5.2 FizmezWebServer

Project FizmezWebServer [1] is an open source Web server application im-
plemented in Java. Applying our tool to this application detected several er-
rors. First, the application has a potential unhandled exception. In method
getServerSocket(), the socket port number is provided in string format, and
therefore needs to be transformed into integer format. The transformation pro-
cess might throw NumberFormatException and is neglected by the programmer.
This puts the application into an exception unreliable situation.

There are several resource leak problems in this application. Inside method
getConfig(),althoughthe programmer comments thebufferedReader.close()
saying that “close the mime file so others can use it!” there is still a resource
leak problem with the object bufferedReader because it is not protected by a
finally block. The same problem happens again in method getMimeTypes(),
leading to another BufferedReader type of object execBufferedReader not
being properly closed.

At the class level, a java.net.Socket type of object socket is defined as a
field in class WebServer. The author intends to close it by the end of the try
block in run method. But since there are many operations which might throw
exceptions inside the try prior to the close operation, we find yet another leak.

We also find an interesting program error. After fixing all the above problems,
JPF reported that there was an uncaught NullPointerException where the
close() method is being called on a null object. After inspecting the execution
path JPF provided, we discovered that although the object dataOutputStream
is closed in a finally block, there is a possibility that some exceptions are
raised before initializing dataOutputStream. The control flow then jumps to
the exception handler and executes the close operation on dataOutputStream
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in finally block. Since the pointer is not guarded with a test for null, a
NullPointerException is thrown and the application crashes.

6 Conclusion

In this paper, we describe an approach to exception safety verification that
combines static analysis and model checking. Model checking gives increased
confidence in the run-time handling of exceptions, and our initial case studies
indicate that it can catch problems that elude static analysis.

A basic guarantee of exception safety requires that there be no resource leaks
and preservation of program invariants. How much of this can be done with JPF
as the model checker? Basic class invariants can be annotated using Java Mod-
eling Language (JML) [11], a behavioral specification language which is widely
used to specify the behavior of Java modules. It should be possible to extend the
program slicer to translate these class invariants into JPF assertions and insert
them into the sliced code.

Another future direction is to extend the existing exception safety framework
to other interesting properties beyond the model checking capabilities of JPF.
With a proper back-end model checker, we can verify resource usage properties
(stated in temporal logic) like “all resources are acquired before any attempting
manipulations.” A target is a framework to model check Java programs anno-
tated with full JML features.
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Abstract. Non-determinism of the thread schedule is a well-known problem
in concurrent programming. However, other sources of non-determinism exist
which cannot be controlled by an application, such as network availability. Test-
ing a program with its communication resources being unavailable is difficult, as
it requires a change on the host system, which has to be coordinated with the test
suite. Essentially, each interaction of the application with the environment can
result in a failure. Only some of these failures can be tested. Our work identifies
such potential failures and develops a strategy for testing all relevant outcomes
of such actions. Our tool, Enforcer, combines the structure of unit tests, coverage
information, and fault injection. By taking advantage of a unit test infrastructure,
performance can be improved by orders of magnitude compared to previous ap-
proaches. Our tool has been tested on several real-world programs, where it found
faults without requiring extra test code.

1 Introduction

Testing is a scalable, economic, and effective way to uncover faults in software [19,21].
Even though it is limited to a finite set of example scenarios, it is very flexible and
by far the most widespread quality assurance method today. Testing is often carried
out without formal rigor. However, coverage measurement tools provide a quantitative
measure of the quality of a test suite [7,21]. Uncovered (and thus untested) code may
still contain faults.

In practice, the most severe limitation of testing is non-determinism, given by both
the thread schedule and the actions of the environment. It may cause a program to
produce different results under different schedules, even with the same input. Non-
determinism has been used in model checking to model choices that have several pos-
sible outcomes [25]. Usually, three kinds of non-determinism are distinguished [20]:
non-determinism arising from different thread schedules, from choices made by the
environment, and from abstractions within an application. The latter is an artifact of
abstraction in static analysis and not of concern here. Non-determinism arising from
different thread schedules has been tackled by previous work in run-time verification
and is subject to ongoing study [1,23]. This paper focuses on non-determinism arising
from unexpected failures by the environment, such as system library calls.

For system calls, there are usually two basic outcomes: success or failure. Typically
the successful case is easy to test, while the failure case can be nearly impossible to
trigger. For instance, simulating network outage is non-trivial. If a mechanism exists,
though, testing both outcomes will be very efficient, only requiring a duplication of a
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particular test case. Existing ad-hoc approaches include factoring out small blocks of
code in order to manually test error handlers, or adding extra flags to conditionals that
could trigger outcomes that are normally not reachable by modeling test data alone.
Figure 1 illustrates this. In the first example, any exception handling is performed by
a special method, which can be tested separately, but does not have access to local
variables used by the caller. In the second example, which has inspired our work, the
unit test has to set a special flag which causes the error handling code to run artificially.

try {
    socket = new ServerSocket();
} catch (IOException e) {
    handleIOException();
    // error handling code
}

try {
    if (testShouldFail) {
        throw new IOException();
    }
    socket = new ServerSocket();
} catch (IOException e) {
    // error handling code
}

Factoring out error handling. Extra conditional for testing.

Fig. 1. Two manual approaches for exception handler coverage

The Java programming language uses exceptions to signal failure of a library or sys-
tem call [12]. The ideas in this paper are applicable to any other programming language
supporting exceptions, such as C++ [24], Eiffel [17], or C# [18]. When an exception is
thrown, the current stack frame is cleared, and its content replaced with a single instance
of type Exception. This mechanism helps our goal in two ways:

– Detection of potentially failed system calls is reduced to the analysis of exceptions.
– No special context data is needed except for information contained in the method

signature and the exception.

Our tool is built on these observations. It systematically analyzes a program for untested
exceptional outcomes of library method calls by using fault injection [13]. Automati-
cally instrumented code measures coverage of unit tests w.r.t. exceptions, utilizing the
Java reflection API to extract information about the current test case. After execution
of the test suite, a number of tests is re-executed with fault injection enabled, triggering
previously untested exceptions. Our tool wraps invocation of repeated tests automati-
cally, i.e., only one launch of the test suite is required by the user.

Similar tools have analyzed exception handling in Java code and improved cover-
age by fault injection [4,11]. Previous tools have not been able to connect information
about unit tests with exception coverage. Our tool gathers method signature informa-
tion statically and the remaining data at run-time. Being integrated with unit testing, it
avoids re-executing the entire program many times, and therefore can scale to test suites
of large programs. It also supports tuples of failures when analyzing test outcomes at
run-time. Our tool is fully automated and can test the outcome of significant failure sce-
narios in real software. By doing so, it finds faults in previously untested code, without
requiring a single extra line in the test setup or test code.
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The contribution of our work is as follows:

– We present a fully automated, high-performance approach at gathering specialized
coverage information which is integrated with JUnit.

– Fault injection is based on a combined static and dynamic analysis.
– Tuples of faults are supported based on dynamically gathered data.

Section 2 gives the necessary background about sources of failures considered here,
and possible implementation approaches. Section 3 describes our implementation used
for experiments, of which the results are given in Section 4. Section 5 describes related
work. Section 6 concludes and outlines future work.

2 Background

An exception as commonly used in many programming languages [12,17,18,24] indi-
cates an extraordinary condition in the program, such as the unavailability of a resource.
Exceptions are used instead of error codes to return information about the reason why
a method call failed. Java also supports errors, which indicate “serious problems that
a reasonable application should not try to catch” [12]. A method call that fails may
“throw” an exception by constructing a new instance of java.lang.Exception or a
subtype thereof, and using a throw statement to “return” this exception to the caller. At
the call site, the exception will override normal control flow. The caller may install an
exception handler by using the try/catch statement. A try block includes a sequence
of operations that may fail. Upon failure, remaining instructions of the try block are
skipped, the current method stack frame is replaced by a stack frame containing only the
new exception, and control is transferred to the exception handler, indicated in Java by
the corresponding catch block. This process will also be referred to as error handling.

The usage and semantics of exceptions covers a wide range of behaviors. In Java,
exceptions are used to signal the unavailability of a resource (e.g., when a file is not
found or cannot be written), failure of a communication (e.g., when a socket connec-
tion is closed), when data does not have the expected format, or simply for program-
ming errors such as accessing an array at an illegal index. Two fundamentally different
types of exceptions can be distinguished: Unchecked exceptions and checked excep-
tions. Unchecked exceptions are of type RuntimeException and do not have to be de-
clared in a method. They typically concern programming errors, such as array bounds
overflows, and can be tested through conventional means. On the other hand, checked
exceptions have to be declared by a method which may throw them. Failure of external
operations results in such checked exceptions [4,10]. This work therefore focuses on
checked exceptions. For the remainder of this paper, a checked method call refers to a
call to a method which declared checked exceptions.

Code instrumentation consists of injecting additional code into an application, in or-
der to augment its behavior while not affecting the original behavior, or only changing
it in a very limited way. It corresponds to a generic form of aspect-oriented program-
ming [14], which organizes code instrumentation into a finite set of operations. A unit
test is a procedure to verify individual modules of code. A test harness executes unit
tests. Test suites combine multiple unit tests into a single set. Execution of a single
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unit test is defined as test execution, running all unit tests as test suite execution. In
this paper, a repeated test suite denotes an automatically generated test suite that will
re-execute certain unit tests, which will be referred to as repeated tests.

Program steering [15] allows overriding normal execution flow. Program steering
typically refers to altering program behavior using application-specific properties [15],
or as schedule perturbation [23], which covers non-determinism in thread schedules.
Fault injection [13] refers to influencing program behavior by simulations failures in
hardware or software.

Coverage information describes whether a certain piece of code has been executed
or not. In this paper, only coverage of checked method calls is relevant. The goal of
our work was to test program behavior at each location where exceptions are handled,
for each possible occurrence of an exception. This corresponds to the all-e-deacts cri-
terion [22]. Treating each checked method call individually allows distinction between
error handling before and after a resource, or several resources, have been allocated.

The first source of potential failures considered here are input/output (I/O) failures,
particularly on networks. The problem is that a test environment is typically set up to
test the normal behavior of a program. While it is possible to temporarily disable the
required resources by software, such as shell scripts, such actions often affect the entire
system running, not just the current application. Furthermore, it is difficult and error-
prone to coordinate such system-wide changes with a test harness. The same applies to
certain other types of I/O failures, such as running out of disk space, packet loss on a
UDP connection, or communication timeout. While the presence of key actions such as
resource deallocations can be checked statically [6,26], static analysis is imprecise in
the presence of complex data structures. Testing can analyze the exact behavior.

The second goal is to cover potential failures of external programs. It is always pos-
sible that a system call fails due to insufficient resources or for other reasons. Testing
such failures when interacting with a program through inter-process communication
such as pipes is difficult and results in much testing-specific code.

Our tool, Enforcer, is written in Java and geared towards failures which are signaled
by Java exceptions. There exist other hard-to-test operations that are not available in
Java: In C programs, pointer arithmetic can be used. The exact address returned by
memory allocation cannot be predicted by the application, causing portability and test-
ing problems for low-level operations such as sorting data by their physical address.
Other low-level operations such as floating point calculations may also have different
outcomes on different platforms.

The idea of using program steering to simulate rare outcomes may even be expanded
further. Previous work has made initial steps towards verifying the contract required
by hashing and comparison functions, which states that equal data must result in equal
hash codes, but equal hash codes do not necessarily imply data equality [2,12]. The
latter case is known as a hash code collision, where two objects containing different
data have the same hash code. This case cannot be tested effectively since hash keys
may vary on different platforms and test cases to provoke such a collision are hard to
write for non-trivial hash functions, and practically impossible for hash functions that
are cryptographically secure. Other mathematical algorithms have similar properties,
and are subject of future work.



416 C. Artho, A. Biere, and S. Honiden

3 Implementation

Java-based applications using JUnit [16] for unit testing have been chosen as the tar-
get for this study. Java bytecode is easy to understand and well-documented. JUnit is
widely used for unit testing. In terms of programming constructs, the target consists
of any unthrown exceptions, i.e., checked method calls where a corresponding catch
statement exists and that catch statement was not reached from an exception origi-
nating from said method call. Only checked exceptions were considered because other
exceptions can be triggered through conventional testing [4,10]. Artificially generated
exceptions are initialized with a special string denoting that this exception was triggered
by Enforcer.

A key goal of the tool is not to have to re-execute the entire test suite after coverage
measurement. Therefore the project executes in three stages:

1. Code instrumentation, at compile time or at class load time. This includes injecting
code for coverage measurement and for execution of the repeated test suite.

2. Execution of unit tests. Coverage information is now gathered.
3. Re-execution of certain tests, forcing execution to take new paths. This has to be

taken into account by coverage measurement code, in order to require only a single
instrumentation step.

As a consequence of treating each checked method call rather than just each unit test
individually, a more fine-grained behavior is achieved. Each unit test may execute sev-
eral checked method calls. Our approach allows for re-executing individual unit tests
several times within the repeated test suite, injecting a different exception each time.
This achieves better control of application behavior, as the remaining execution path
after an exception is thrown likely no longer coincides with the original test execution.
Furthermore, it simplifies debugging, since the behavior of the application is generally
changed in only one location for each repeated test execution. Unit tests themselves are
excluded from coverage measurement and fault injection, as exception handlers within
unit tests serve for diagnostics and are not part of the actual application. We did not
consider random fault injection [8], as our goal is to achieve high coverage in a reli-
able way, and to take advantage of the structure of unit tests for making fault injection
scalable. Simply injecting exceptions at random would require re-running the entire test
suite, and does not necessarily guarantee high coverage.

The intent behind the creation of the Enforcer tool is to use technologies that can be
combined with other approaches, such that the system under test (SUT) can be tested
in a way that is as close to the original test setup as possible, while still allowing for
full automation of the process. Code instrumentation fulfills this requirement perfectly,
since the code generated can be executed on the same platform as the original SUT.
Instrumentation is performed directly on Java bytecode [27]. This has the advantage
that the source code of libraries is not required.

3.1 Re-execution of Test Cases

After execution of the original test suite, coverage information is evaluated. For each
exception that was not thrown, the test case that covered the corresponding checked
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method call is added to the repeated test suite. Execution of the repeated test suite
follows directly after coverage evaluation. Instrumented code handling test execution
re-executes the repeated test suite as long as uncovered exceptions exist, and progress
is being made w.r.t. coverage (for nested try/catch blocks, see below). Each time, a
new repeated test suite is constructed on the fly by the Enforcer run-time library, and
then executed.

3.2 Injecting Exceptions

The final change to the application by instrumentation will force tests to go through a
different path when re-executing. Two points have to be taken into consideration: Where
the exception should be thrown, and how.

In our implementation, exceptions are triggered just before checked method calls.
A try block may include several checked method calls. By generating an exception
before each corresponding checked method call, steering simulates actions that were
successful up to the last critical operation. If the program is deterministic, it can be
assumed that the try block will not fail before that point in repeated test execution, as
all inputs leading up to that point are equal.

try {

    curr_id = __ID__; /* to register exception coverage */
    /* fault injection code */
    if (enforcer.rt.Eval.reRunID == __ID__) { // __ID__ = static
        throw new ...Exception();
        // Exception type depends on catch block argument.
    }

    /* checked method call in the original code */
    call_method_that_declares_checked_exceptions();

    /* coverage code */
    enforcer.rt.Coverage.recordMethodCoverage(__ID__);

    // same instrumentation for each checked method call

} catch(...Exception e) {
    enforcer.rt.Coverage.recordCatchCoverage[curr_id] = true;
    // one instrumentation for each catch block

    /* original catch block follows */
}

Fig. 2. Instrumented code in try/finally blocks

Generating exceptions when running the repeated test suite is achieved by inserting
code before and after checked method calls. It is possible that the same test case calls
several such methods, but only a single exception should be artificially triggered for
each test execution. Achieving this is difficult because the checked method call ID is
not known by the test suite or the test case at run time. Due to this, a test wrapper is used
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to wrap each test and set the necessary steering information prior to each individual test
execution. Figure 2 shows the resulting code to be added to each try/catch block,
which records coverage in the initial test execution and applies program steering when
executing the repeated test suite. At each checked method call, code is inserted before
and after that method call. Note that the value of __ID__ is determined statically and
replaced by a unique constant each time when instrumentation takes place.

The inserted code before each checked method call injects faults. It compares its
static ID to the index of the exception to be generated. This index, reRunID, is set by
the test wrapper. Due to the uniqueness of the ID, it is therefore possible to instrument
many checked method calls, but still only inject a fault in a single such method call. If
the IDs match, an exception of the appropriate type is constructed and thrown. A num-
ber of possible constructors for exception instances are supported, covering all com-
monly used exception constructors where reasonable default arguments can be applied.
Sometimes the signature of a called method cannot be determined at compile time. In
such cases it is conservatively assumed that the method may throw an exception of the
type declared in the catch clause.1

3.3 Coverage Measurement

Coverage of exceptions thrown is recorded by instrumented code inside each try block,
and at the beginning of each catch block. Coverage within try blocks is recorded
as follows: Whenever a checked method call that may throw an exception returned
successfully, the test case further up in the calling chain is recorded, such that this test
case can be re-run later. This is performed by a call to the Enforcer run-time library
with the static ID of the checked method call as argument (see Figure 2). The run-time
library evaluates the stack trace in order to find the class and method name of the current
unit test.

Coverage information about executed exception handlers is recorded by inserting
code at the beginning of each catch block. Before each checked method call, the ID of
that method is stored in local variable curr_id. This allows the coverage measurement
code within the exception handler to know which checked method caused an exception.
A try block may contain several checked method calls, each one requiring instrumen-
tation; the corresponding catch block, however, only requires a single instrumenta-
tion, because the usage of curr_id allows for registering coverage of several checked
method calls.

3.4 Extension to Nested Exception Handlers

Nested exceptions can be responsible for program behavior that only occurs in ex-
tremely rare circumstances, such as when both a disk and a network failure are present.
A graceful recovery from such failures is difficult to implement, and therefore we found
it very important to support combined failures by injection of tuples of faults.

Nested try statements cause no additional problems for the algorithm described
above. Figure 3 shows an example with two nested try blocks. There are three possi-
ble final values for i in this program: 2, when no exception occurs; 3, when the inner

1 This assumption has to be made if the type of the method cannot be determined due to incom-
pleteness of alias analysis, or usage of dynamic class loading. It may introduce false positives.
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exception e2 occurs; and 4, if the outer exception e1 is thrown. Both try statements are
reachable when exceptions are absent. Therefore, if either e1 or e2 are not covered by
the normal test suite, our algorithm either forces e1 after i has been set to 1, or e2 when
i equals 2.

int i = 0;
try {                        // try 1
    call_method_throwing_exceptions();
    i = 1;
    try {                    // try 2
        call_method_throwing_exceptions();
        i = 2;
    } catch (Exception e2) { // catch 2
        i = 3;
    }
} catch (Exception e1) {     // catch 1
    i = 4;
}

Fig. 3. Nested try statements

However, the design described so far is limited to try blocks which do not occur
inside other exception handlers. Fortunately, even this case of nesting can be covered
quite elegantly. In nested try blocks, execution of the inner try block may depend on
the outer catch block being executed. Suppose the outer catch block is not executed
by initial tests, but only by the repeated test suite. The repeated test suite may again not
cover the inner catch block. Figure 4 illustrates such difficulties arising with nested
try/catch statements. The compiler generates two exception handlers for this code.

int i = 0;
try {                        // try 1
    call_method_throwing_exceptions();
    i = 1;
} catch (Exception e1) {     // catch 1
    try {                    // try 2
        call_method_throwing_exceptions();
        i = 2;
    } catch (Exception e2) { // catch 2
        i = 3;
    }
}

Fig. 4. A try block inside an exception handler

When no exceptions occur in this example, the final value of i equals 1. Let us call
that scenario run 0, the default test execution without steering. Subsequent re-runs of
this test will try to force execution through each catch block. The outer catch blocks
can be triggered with the algorithm described so far. Repeated test execution 1 thus
forces corresponding catch clause 1 to be executed, setting i to 2. Furthermore, cover-
age measurement will now register the repeated test as a candidate for covering catch
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block 2. This will constitute the new repeated test suite containing run 2, which has the
goal of forcing catch block 2 to be reached. However, injecting exception e2 requires
reaching catch block 1. This is only the case in run 1; run 2 therefore would never
reach the fault injection code if only e2 was injected. In order to solve this problem, one
has to inject sets of faults, not just single faults. In the example of Figure 4, e1 has to
be injected for both runs 1 and 2. Coverage measurement in run 1 registers that run 1
has executed try block 2; therefore both e1 and e2 are injected in run 2. In our imple-
mentation, we restricted the nesting depth of exception handlers to one, as this does not
require nested dynamic data structures for the run-time library. In practice, a nesting
depth greater than two is rare, and can be supported by using vectors of sets.

Because of such initially uncovered try blocks, coverage of nested exceptions may
require the construction of several repeated test suites. The first one includes a unit
test for each uncovered checked method call. Execution of this repeated test suite may
cover other previously unreached try blocks, which are target of the next iteration.
The iteration of repeated test suites terminates when no progress is made for coverage.
Hence, certain unit tests may be executed several times within the same iteration (for
different exceptions) and across iterations.

3.5 Complexity

The complexity incurred by our approach can be divided into two parts: Coverage mea-
surement, and construction and execution of repeated test suites. Coverage is measured
for each checked method call. The code which updates run-time data structures runs in
constant time. This overhead is of coverage measurement is proportional to the number
checked method calls executed at run-time.

Execution of repeated test suites may incur a larger overhead. For each uncovered
exception, a unit test has to be re-executed. However, each uncovered exception incurs
at most one repeated test. Nested exceptions may require multiple injected faults for a
repeated test. The key to a good performance is that only one unit test, which is known
to execute the checked method call in question, is repeated. Large projects contain hun-
dreds or thousands of unit tests; previous approaches [4,10,11] would re-execute them
all for each possible failure, while our tool only re-executes one unit test for each fail-
ure. This improves performance by several orders of magnitude and allows our tool
to scale up to large test suites. Moreover, the situation is even more favorable when
comparing repeated tests with an ideal test suite featuring full coverage of exceptions
in checked method calls. Automatic repeated execution of test cases does not require
significantly more time than such an ideal test suite, because the only minor overhead
that could be eliminated lies in the instrumented code. Compared to manual approaches,
our approach finds faults without incurring a significant overhead, with the additional
capability of covering outcomes that are not directly testable.

4 Experiments

To ensure solid quality of the implementation, 30 test classes were written to test dif-
ferent aspects and problem cases for code instrumentation, coverage measurement, and
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test execution. Due to rigorous testing, the tool is mature enough to be applicable to
large and complex programs. Therefore, several real-world applications and libraries
were used to demonstrate the usefulness of the approach. Unfortunately, realistic Java
programs using both network I/O and JUnit-based test suites are hard to come by. A web
search for Java applications and JUnit returns tools and libraries enhancing JUnit, but
not applications using it. Therefore a different approach was chosen: Based on the list-
ing of all Java program on freshmeat.net [9], 1647 direct links to downloadable archives
could be extracted. These resulted in 926 successful automatic downloads, where no
registration or manual redirection was used. Out of these applications, 100 used JUnit
test suites and also employed at least some networking functionality. Further criteria,
such as the use of multiple threads and the absence of a GUI, were used to narrow down
the selection to 29 applications. Out of these, nine could be compiled and run on Java
1.5 with no or minor modifications, and no installations of third-party libraries or tools
that were not shipped with the original archives.

Table 1. Applications of which the unit tests were used in the experiments

Application Description # Size # test Test code
or library classes [LOC] classes size [LOC]
Echomine Communication services API 144 14331 46 3550
Informa News channel API 150 20682 48 6855
jConfig Configuration library 77 9611 39 2974
jZonic-cache Caching library 26 2142 14 737
SFUtils Sourceforge utilities 21 6222 9 1041
SixBS Java beans persistency 34 4666 9 1072
Slimdog Web application testing framework 30 1959 11 616
STUN Extensible programming system 27 1706 3 229
XTC Napster search tool 455 77114 57 8070

The main reason for this low number is the fact that the entire pool of applications
included many projects that have been abandoned or not yet been completed. Table 1
shows an overview of the applications used. The first two columns briefly describe
each application, while the other columns give an indication of the size of each project,
showing the number of classes and the lines of code used for them. This information is
shown separately for unit test code. The presence of helper classes was responsible for
a rather large number of test classes in some cases.

Enforcer was then used on these example applications. Table 2 gives an overview
of the test results. Tests were executed on a dual-processor 2.7 GHz PowerPC G5 with
8 GB of RAM and 512 KB of L2 cache per CPU running Mac OS 10.4.5. The ta-
ble is divided into three parts. The first part shows the test results when running the
given test suite. A test failure in JUnit corresponds to an incorrect value of a property,
while uncaught exceptions are shown as errors. Note that failures or errors can either
be caused due to incorrect code or missing components in the installation. Although it
was attempted to fix any installation-related errors, not all cases could be covered.

Part two of the table shows the overhead of the instrumentation code for measuring
test coverage. Original and instrumented execution time of the normal test suite are
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Table 2. Results of unit tests and injected exception coverage

Application # # # Time Time, Time, # instr. # exec. # unex. Cov. # unr. Cov.
or library tests fail. err. [s] inst. [s] re-ex. [s] calls calls catch (orig.) catch (inst.)
Echomine 170 2 0 6.3 6.3 1.7 165 61 54 8 % 0 100 %
Informa 119 15 32 33.2 34.4 132.2 306 139 136 2 % 28 80 %
jConfig 97 3 0 2.3 4.7 n/a 299 169 162 3 % 65 61 %
jZonic-c. 16 2 0 0.4 0.7 0.02 22 8 6 25 % 0 100 %
SFUtils 11 1 3 76.3 81.6 0.001 112 6 2 67 % 0 100 %
SixBS 30 0 0 34.6 55.6 38.7 56 31 28 10 % 2 94 %
Slimdog 10 4 0 228.6 233.6 n/a 41 15 14 7 % n/a n/a
STUN 14 0 0 0.06 0.7 0 2 0 0 0 % 0 0 %
XTC 294 0 0 28.8 30.6 4.9 168 112 112 0 % 9 92 %

shown first.2 The final execution time measurement shows the time needed to execute
repeated test suites. This figure depends much on the coverage of the test suite and the
nature of exception handlers, and is given for completeness; it cannot be used to draw
conclusions about the quality of the test suite or the Enforcer tool. A better measure
is actual coverage of exceptions in checked method calls, as shown by part three of
Table 2.

Part three shows details about code instrumentation and coverage. The number of
instrumented checked method calls is given first, followed by the number of checked
method calls executed by unit tests. Usually a large number of checked method calls
never triggered an exception, as shown by the next column, “unexec. catch”. The fol-
lowing column indicates the percentage of executed checked method calls that did gen-
erate an exception. As can be seen, that percentage is typically very low. These untested
exception cases may each cause previously undiscovered failures and were targeted by
the Enforcer tool. In most cases, Enforcer could successfully force inject exceptions;
in some cases, deeply nested exceptions or the lack of a fully deterministic test setup
prevented full coverage. The rightmost two columns show the number of such uncov-
ered checked method calls, and the final exception coverage after Enforcer was used.
As can be easily seen, Enforcer could often change a nearly nonexistent coverage to a
nearly full coverage. However, it depends on a test suite that is able to execute checked
method calls in the first place. This criterion is fulfilled if full statement coverage is
achieved, which is often the case for larger projects [1] but was not the case for the
given programs.

In some cases, injected exceptions affected background threads that were assumed
to be running throughout multiple test cases. When these threads failed to terminate
properly, or to restart, the test suite would wait indefinitely for them. This was the
case for applications jConfig and Slimdog. In jConfig, such problems prevented higher
coverage. For Slimdog, two tests had to be disabled even when running without instru-
mentation, because the multi-threaded test code was too fragile to execute reliably. In
test setup, the background thread may allocate a port but then fail to complete initial-
ization, throwing an exception. JUnit does not release any resources allocated in such

2 The time required for code instrumentation itself was negligible.
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a failed setup. This problem has been discussed in the mailing list and is going to be
addressed in the future. Stopping and restarting the background thread before each test
run is expected to fix this problem, at the cost of slowing down test execution.

The overhead caused by coverage measurement was usually negligible, as can be
seen by comparing columns one and two of part two of Table 2. SixBS is an exception,
where coverage measurement caused a resulting overhead of factor two. The reason for
this is that instrumentation significantly increased the run time of the thread controlling
the XML parser. This thread contains several exception handlers but relatively little
other code, hence amplifying the usual effect of instrumentation on run-time. Reducing
the overhead is going to entail the use of additional data structures in order to avoid
expensive calls to the Java reflection API at run time.

Our tool generated a total number of 352 exceptions for checked method calls in
all applications. The majority of these exceptions (200 instances) concerned I/O, either
on a network or a file. 56 exceptions were generated as parse exceptions, while 69 ex-
ceptions were of generic type java.lang.Exception and could not be classified more
closely. Finally, 27 exceptions were of other types, such as IllegalAccessException.
Exceptions that do not concern I/O were not originally the target of our tool. Nonethe-
less, the fact that these were also triggered frequently shows that our tool may partially
replace test case generation when no tests exist for certain exceptional scenarios.

In most of the 352 cases where an exception was injected, the application ultimately
rethrows the exception in question, usually in a slightly different form. It was not possi-
ble for us to tell whether this simple behavior was adequate. Because these exceptions
were encountered within unit tests, it is possible that the main application front end
performs some kind of cleanup before shutting down. However, in general, a call to a
low-level library should take exceptions into account. Otherwise, an I/O exception can
lead to the termination of the entire thread, and usually the entire program. If untested
parts of the application catch such exceptions where unit tests do not, then the unit
tests are incomplete since they do not reflect the behavior of the application, failing to
account for exceptional behavior. However, considering the fact that some benchmark
programs were libraries to be used by an application, rethrowing exceptions may be ac-
ceptable in some cases. Therefore we did not analyze these 352 cases in detail. Many of
them were redundant, as triggering the same exception handlers from different places in
the same try block often produces equivalent results. Some cases were false positives
arising from incomplete type information at instrumentation time.

Much more interesting than rethrown exceptions were exceptions that were triggered
by failed error handling. These exceptions were not just rethrown, but caused by an-
other part of the program that tried to deal with the initial exceptions.3 A few of these
cases resulted in rethrown exceptions, which were not counted for the reasons stated
above. Table 3 shows the failures resulting from incorrect error handlers. Each unique
program location was only counted once. We found 12 faults in the nine given appli-
cations this way. As can be seen, the lack of testing in error handlers caused typical
programming errors to appear (null pointers, illegal arguments, failed class casts). In
applications jConfig and Slimdog, the error handling code tried to re-open a socket

3 Distinguishing these “secondary” exceptions was trivial as the injected exceptions were all
marked as such by having a special message string.
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that was already in use, which resulted in termination of the entire test suite. That de-
fect therefore masked other potential failures. Informa contained various problems in
its fallback code concerning I/O (file not found, generic I/O exception, feed manager
failure). These problems could perhaps be solved by a different configuration; we used
the configuration that came with the default installation. Certainly, it is clear that for
some of the given applications, our tool did not only significantly improve coverage of
exceptions, but also found several defects in the code.

Table 3. Failures resulting from incorrect error handling

App./lib. FileNotFound NullPointer IO FeedManager IllegalArgument Bind ClassCast Total
Echomine 1 1 2
Informa 1 4 2 1 1 9
jConfig 1 1
Slimdog 1 1

Total 1 5 2 1 1 1 1 12

To summarize, our tool was very successful in improving the exception coverage of
realistic test suites in a variety of projects. Coverage measurement usually only caused
a minor overhead. Without writing any additional code, extra faults were found, where
error handlers for exceptions contained defects. With the exception of certain multi-
threading problems, normal operation of the application tests was not affected by steer-
ing. Some of the triggered exceptions should be tested by conventional means. It can
be expected that a higher-quality test suite will not have any such uncovered exceptions
left, so our tool would likely produce even better results for thoroughly tested code.

5 Related Work

Test cases are typically written as additional program code for the system under test.
White-box testing tries to execute as much program code as possible [19]. In traditional
software testing, coverage metrics such as statement coverage [7,21] have been used to
determine the effectiveness of a test suite. The key problem with software testing is that
it cannot guarantee execution of parts of the system where the outcome of a decision
is non-deterministic. In multi-threading, the thread schedule affects determinism. For
external operations, the small possibility of failure makes testing that case extremely
difficult. Traditional testing and test case generation methods are ineffective to solve
this problem.

Static analysis investigates properties “at compile time”, without executing the actual
program. Non-deterministic decisions are explored exhaustively by verifying all possi-
ble outcomes. For analyzing whether resources allocated are deallocated correctly, there
exist static analysis tools which consider each possible exception location [26]. How-
ever, static analysis can only cover a part of the program behavior, such as resource
handling. For a more detailed analysis of program behavior, code execution (by testing)
is often unavoidable.
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Model Checking explores the entire behavior of a system by investigating each reach-
able state. Model checkers treat non-determinism exhaustively. Results of system-level
operations have been successfully modeled this way to detect failures in applications [5]
and device drivers [3]. However, model checking suffers from the state space explosion
problem: The size of the state space is exponential in the size of the system.

Therefore approaches that directly tackle testing are very promising, as potential
failures of library calls are independent of non-deterministic thread scheduling. Such
failures can be simulated by fault injection [13]. Random fault injection is a black-box
technique and useful on an application level [8]. Our goal was to achieve a high test
coverage, and therefore we target white-box testing techniques.

Java is a popular target for measuring and improving error handling, as error han-
dling locations are relatively well defined [4,10,11]. Our approach of measuring excep-
tion handler coverage corresponds to the all-e-deacts criterion [22]. The static analysis
used to determine whether checked method calls may generate exceptions have some
similarity with a previous implementation of such a coverage metric [11]. However, our
implementation does not aim at a precise instrumentation for the coverage metric. We
only target checked exceptions, within the method where they occur. As the generated
exceptions are created at the caller site, not in the library method, an interprocedural
analysis is not required. Unreachable statements will be reported as instrumented, but
uncovered checked method calls. Such uncovered calls never incur an unnecessary test
run and are therefore benign, but hint at poor coverage of the test suite. Furthermore,
unlike some previous work [11], our tool has a run-time component that registers which
unit test may cause an exception. This allows us to re-execute only a particular unit test,
which is orders of magnitude more efficient than running the entire test suite for each
exception site. Furthermore, our tool can dynamically discover the need for combined
occurrences of failures when error handling code should be reached. Such a dynamic
analysis is comparable to another fault injection approach [4], but the aim of that project
is totally different: It analyzes failure dependencies, while our project targets code exe-
cution and improves coverage of error handling code.

Similar code injection techniques are involved in program steering [15], which al-
lows overriding the normal execution flow. However, such steering is usually very prob-
lematic because correct execution of certain basic blocks depends on a semantically
consistent program state. Thus program steering has so far only been applied using
application-specific properties [15], or as schedule perturbation [23], which only covers
non-determinism in thread schedules. Our work is application-independent and targeted
to fault injection.

6 Conclusions and Future Work

In software, non-deterministic decisions are not only taken by the thread scheduler,
but also by the environment. Calls to system libraries may fail. Such failures can be
nearly impossible to test. Our work uses fault injection to achieve coverage of such
untestable properties. During test execution, coverage information is gathered. This in-
formation is used in a repeated test execution to execute previously untested exception
handlers. The process can be fully automated and still leads to meaningful execution of
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exception handlers. Unlike previous approaches, we take advantage of the structure of
unit tests in order to avoid re-execution an entire application. This makes our approach
orders of magnitude faster for large test suites. The Enforcer tool which implements
this approach has been successfully applied to several complex Java applications. It has
executed previously untested error handlers and uncovered several faults. Furthermore,
our approach may even partially replace test case generation.

The area of such generic program steering likely has further applications that have
not yet been covered. Future work includes elimination of false positives by including
run-time information for method calls whose signature is unknown. Another improve-
ment is analysis of test case execution time, in order to select the fastest test case for
re-execution. The treatment of difficult-to-test outcomes can be expanded to other prop-
erties mentioned in this paper. Finally, we are very interested in applying our Enforcer
tool to high-quality commercial test suites. It can be expected that exception coverage
will be incomplete but already quite high, unlike in cases tested so far. This will make
evaluation of test results more interesting.
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Abstract. We present an original approach for the automated com-
putation of model-based test cases from specifications written in Java
Modeling Language (JML). We aim at activating all the behaviors from
the JML method specifications. Therefore, we extract each behavior and
we compute the pertinent test data for the input parameters; we select
the boundary values of the ordered domains, and we consider specific
features for the objects, involving inheritance and aliasing. Finally, a
preamble for each test case is computed by symbolic animation of the
JML specification using constraint logic programming techniques. Thus,
we are able to automatically generate executable Java test sequences to
be run on the system under test. Moreover, this process requires the less
possible intervention from a validation engineer.

Keywords: Test generation, model-based, Java Modeling Language, au-
tomated, boundary values.

1 Introduction

Model-based testing (MBT) [21] has become an efficient way for validating an
implementation. While the program is being developed, based on informal re-
quirements, the formal model is written, validated and verified. Tests are then
derived from the model and run on the system under test (SUT). Different kinds
of testing can be performed. In particular, conformance testing aims at observing
the responses of the SUT w.r.t. a specification-compliant use of this latter. If the
program is correct, then the test should succeed. On the other hand, robustness
testing consists in observing the responses of the SUT w.r.t. an incorrect use of
the system. These non-nominal cases also have to be specified in the model.

The Java Modeling Language (JML) [12,13] is an assertion language for Java,
that can be used either to design a formal model or to strengthen the code with
assertions. The main advantage of JML is that it makes it possible to provide
both model and code in the same file, sharing the same class attributes and
methods. This is a very interesting point since one important problem in MBT
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is to “connect” the variables of the specification with the variables of the SUT. In
object-oriented testing, a key issue is to compute the oracle, which is the expected
result of the test case. Thanks to its assertions JML provides a natural oracle for
the Java programs. Indeed, the JML Run-Time Assertion Checker [7] compiles
JML-annotated source to a Java byte-code containing on-the-fly checking of the
JML assertions.

A previous work [3] has presented a way to express an interesting subset of
the JML specifications within a set-theoretic framework, so that we were able to
perform a symbolic animation of the JML specification. Using underlying con-
straints solvers, we represent object system states as constraints systems. From
there, we simulate the invocation of methods by solving a constraint satisfaction
problem involving the state before, the before-after predicates that describes the
behavior of the method, and the state after. We present in this paper the direct
application of this work, which is the generation of boundary test cases applied
both to conformance and robustness testing. This approach has been applied
on model-based test generation from B machines within the BZ-Testing-Tools
project [1]. The symbolic representation of the system is employed to compute
the test data, and the symbolic animation engine is employed to compute the
preamble of the test cases.

The main contributions of the paper are the following. We introduce an ap-
proach to model-based testing for Java based on the JML specifications. We use
model coverage for selecting our tests involving structural coverage of the speci-
fication and data coverage using a boundary analysis for numerical data. This is,
to our knowledge, a novelty for Java/JML. This approach is fully model-based,
and aims at generating automatically functional test cases, i.e., black-box test
cases, by using the specification both as an oracle, and as a support for comput-
ing the test data.

The paper is organized as follows. Section 2 introduces the Java Modeling
Language, and presents an example to illustrate its principles, it also describes
the symbolic representation of a JML-specified system, introducing the notion
of underlying constraint stores. Section 3 presents the test selection we apply
to JML, decomposed into two parts: the structural coverage of the JML spec-
ifications, detailed in Section 4, and the test data computation, explained in
Section 5. Section 6 details the generation of the test cases, by computing the
preamble. The implementation of our approach and an experimental result on a
case study is given in Section 7. Section 8 presents the related work on model-
based test generation for Java and states on the originality of our approach.
Finally, Section 9 concludes and announces the future work.

2 Java Modeling Language

This section presents the Java Modeling Language [13] and introduces an ex-
ample that will be used throughout the remainder of the paper to illustrate our
approach. Then, we describe the symbolic representation of an object-oriented
system using underlying constraint solvers. This representation will later on be
used for the computation of the tests.
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2.1 Overview of JML

The Java Modeling Language is the specification language dedicated to the Java
programming language. The model is expressed by assertions embedded within
the Java code. These assertions describe the specification associated to the class,
in terms of static or dynamic properties. The static properties are the invariant
(invariant clause), and the history constraints (constraints clause), which
are applied to the entire class. On the contrary, the dynamic properties are
applied to the methods, through method specifications, and they describe the
behavior of the method using a pre- and post-condition semantics. The method
specification may contain several clauses, such as the preconditions (requires
clause), the frame condition (assignable clauses), the normal post-condition
(ensures clause) and the exceptional post-conditions (signals clauses). Since
JML is based on the Design By Contract principles [17], the pre-condition repre-
sents the contract that the system has to fulfill for the method to be executed. In
this case, the normal post-condition describes a property that is established when
the method terminates normally, i.e., without throwing an exception. The excep-
tional post-conditions state the properties that are established when the method
terminates by throwing a specified exception. Apart from that, the frame condi-
tion indicates which fields are modified during by the execution of the method.
Method clauses are gathered within method behaviors, separated by also.

The syntax of the JML predicates is similar to the Java syntax, enriched with
special keywords, beginning with a \, such as \result which represents the re-
turn value of a method, or \not_modified(X) whose meaning is obvious. The
JML clauses are written using these first-order logic predicates. The history con-
straints and the postconditions are written using before-after predicates in which
it is possible to refer to the before value of an expression expr by surrounding
it by \old(expr).

Figure 1 illustrates the use of JML through an example. The specification
describes an electronic purse (Purse class), that is extended by a limitation
(LimitedPurse class) which requires the balance of the purse to be limited by
a given value max. It is possible to add money to the purse (credit(short)
method) or to remove money from it (debit(short) method). Moreover, it
is possible to transfer the content of a purse (transfer(Purse) method) by
copying its balance.

2.2 Symbolic Representation of Object-Oriented Systems

Our symbolic representation of object-oriented and especially Java/JML sys-
tems, involves the use of underlying constraint solvers. They manage a con-
straint store, involving symbolic variables that are used to designate different
elements of the system, such as the instances, the value of the attributes, etc.
Thus, this representation relies on an solver on finite domain integers, CLP(FD),
and a set-theoretic solver, named CLPS-BZ [4], and part of the BZ-Testing-Tools
project [1]. This latter is able to manage constraints on sets, functions and rela-
tions. This section summarizes our previous work presented in [3].
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Fig. 1. Example of a JML specification

In our approach, an object-oriented system state is defined by: (i) a set of
existing instances, whose dynamic types are classes, and (ii) each instance pos-
sesses attributes, whose values are either a built-in type value (such as integers,
characters, etc.), or an object-typed value (i.e., another instance).

Definition 1 (Symbolic States). We represent a symbolic states as a pair
composed of an environment and an associated constraint system Cs(V ), that
manages constraints on the environment’s variables. An environment is defined
by a set of specification variables identified by a module name M and a data
name N , mapped to a kind K (input, output, constant, variable, prime), a
type T , and a set of variables V that occurs in Cs(V ).

〈Cs(V ),M ×N → V ×K × T 〉 (1)

We define a special module, named model that describes the heap, and stores the
dynamic type of the different instances. The heap is a set of atoms, containing
memory addresses represented as atoms null,addr0,addr1,. . .,addrN where
N is a user-defined number. The set of addresses that is used is stored in set
variable, named instances, constrained to be a subset of the heap. The dynamic
type of the instances is known by a function that maps the created instance to
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a corresponding class name. Each class is considered as a module. Each module
has a variable named instances that represents the set of created instances of
this class. Each class attribute is a module variable. If this attribute is not static,
its value depends on the considered instance and so, it is represented as a total
function –a set of pairs– mapping the instance to its value. If the attribute is
static, its value is directly given.

Example 1 (Symbolic representation of the system states). Consider the classes
presented in the example in Fig. 1. The symbolic state representing all the pos-
sible configurations of the system is defined by:

〈{A = {null, addr0, . . . , addrN}, B ⊆ A, null �∈ B, C ⊆ B, D ∈ B → {Purse, Limited-
Purse}, E ⊆ C, F ∈ E → −32768..32767, G ⊆ E, H ∈ −32768..32767},

{(model, heap) 	→ (A,constant, set(atom)), (model, instances) 	→ (B, variable,
set(atom)), (model, accessible) 	→ (C, variable, set(atom)), (model, typeof) 	→
(D, variable, set(atom)), (Purse, instances) 	→ (E,variable, set(atom)), (Purse,
balance) 	→ (F, variable, set(pair(atom,int))), (LimitedPurse, instances) 	→
(G, variable, set(atom)), (LimitedPurse, max) 	→ (H,variable, int)}〉

where A,B,C,D,E, F,G and H are environment variables on which constraints
are applied within the store.

From this representation, we are able to perform the symbolic animation of the
JML specification, by considering the predicates extracted from the method
specifications and translated in our internal representation’s syntax. Thus, exe-
cuting a method for animating the specification is equivalent to solving a con-
straint satisfaction problem between two symbolic states. More details about it
can be found in [3].

3 Test Selection Criteria for JML

The test selection criteria defines what motivates the way we build our test cases.
It can be either a test case specification provided by a validation engineer, such as
in TOBIAS [14] or STG [8], a stochastic/probabilistic approach as in Jartege [19],
or a model coverage criteria, which is our choice for the JML specifications.

This criteria focuses on producing the tests by exploiting the informations con-
tained in the specification at two levels. The first level is the structural coverage,
composed by the transition coverage, and the data coverage. The transition cov-
erage aims at activating the behaviors of the system, and the decision coverage
aims at covering the decisions within the predicates describing the behaviors.
The second level is the data coverage, achieved, in our case, by performing the
boundary analysis of the data w.r.t. the behaviors.

Figure 2 summarizes the process of our approach. A JML model is analyzed
and partitioned w.r.t. model coverage criteria, selected by the validation engineer
and automatically applied on the specification. This produces test targets, which
will be used to generate the executable Java test cases.
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Fig. 2. Summary of our approach

Definition 2 (Test Target). A test target is defined by the activation of a
behavior B within a specific context defined by:

Inv ∧ B ∧ Pspe (2)

where Inv is the system invariant, B designates the behavior expressed as a
before-after predicate and Pspe designates a specialization predicate that specifies
additional constraints.

The specialization predicate can be specified by the validation engineer; by de-
fault, it is set to true. Pspe is then enriched during the computation of the
test data, in order to require a particular parameter or attribute to be set at a
particular value, e.g. an extremum of its domain, as explained in section 5. Be-
fore that, the next section explains the structural coverage applied to the JML
specification.

4 Structural Coverage of the JML Specification

This section firstly focuses on the extraction of the behaviors from the JML
method specifications. Secondly, we present the different rewritings to apply on
the decisions nested in the predicates of the considered behavior. These rewrit-
ings have to be selected by the validation engineer.

4.1 Extraction of the Behaviors from the Method Specifications

The partitioning of the JML method specifications into behaviors is illustrated
by Fig. 3. In this figure, Pk(k ∈ 1..N) are the precondition predicates,A gives the
frame condition, Qk(k ∈ 1..N) are the normal postconditions, Sp(p ∈ 1..M) are
the exceptional postconditions related to the exceptions Ep. The terminations
are distinguished by T , which might be either no exception indicating a normal
behavior, or any of the declared exceptions Ep. We call a behavior a branch
of this graph. Each behavior represents a particular transition of the system
according to the different possible terminations. We require the terminations to
be exclusive between the normal termination and the exceptional terminations.

From this before-after predicate expressed in the Java/JML logic, we ap-
ply user-defined decision coverage criteria as defined hereafter. Notice that the
inconsistent behaviors are filtered.
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Fig. 3. Extraction of the behaviors from a JML method specification

4.2 Application of the Decision Coverage Criteria

In order to exploit the specification, we perform a flow-graph coverage, based on
the rewriting of the disjunctions contained in the first-order logic predicates com-
posing the behaviors. We distinguish 4 possible rewritings, presented in Fig. 4,
each one of them corresponding to a different decision coverage criteria. They cre-
ate an additional deployment of the original method specification, adding more
granularity to the test targets. In the figure, we denote by [] (read “choice”) the
choice-point between predicates.

Rewriting 1 consists in leaving the disjunction unmodified. Thus, the first
branch that succeeds at being evaluated is enough. This rewriting satisfies
the Decision Coverage (DC). As an extension, it also satisfies the Statement

Id Rewriting of P1 ∨ P2 Decision Coverage
1 P1 ∨ P2 DC and SC
2 P1 [] P2 D/CC
3 (P1 ∧ ¬P2) [] (¬P1 ∧ P2) FPC
4 (P1 ∧ P2) [] (P1 ∧ ¬P2) [] (¬P1 ∧ P2) MCC

Fig. 4. Definition of the rewritings of the disjunctive predicates
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Coverage criteria (SC). Rewriting 2 consists in creating a choice between the
two predicates. Thus, the first branch and the second branch independently have
to succeed when being evaluated. This rewriting satisfies the decision/condition
coverage criteria (D/CC) since it satisfies the DC and the Condition Coverage
(CC) criteria. Rewriting 3 consists in creating an exclusive choice between the
two predicates. Only one of the sub-predicates of the disjunction is checked at
one time. This rewriting satisfies the full predicate coverage (FPC) [18] criteria.
Rewriting 4 consists in testing all the possible values for the two sub-predicates
to satisfy the disjunction. This rewriting satisfies the multiple condition coverage
criteria (MCC).

Example 2. Consider the method credit from class LimitedPurse given in the
example presented in Fig. 1. The application of rewriting 4 on the behavior from
the method specification gives the following deployment.

Behavior predicates
a >= 0 && balance + a <= max && balance == \old(balance) + a (1)
a < 0 && balance + a > max && balance == \old(balance) (2)
a < 0 && balance + a <= max && balance == \old(balance) (3)
a >= 0 && balance + a > max && balance == \old(balance) (4)

Notice that the behavior (2) is inconsistent w.r.t. the LimitedPurse class in-
variant balance >= 0 && balance <= max, and thus will not be considered for
the test target computation.

Once the structural coverage is defined, we need to set up the test data that will
be inputted in terms of method parameters. Therefore, we use the specialization
predicate of the test target to define additional constraints on the test data, such
as selecting their boundary values.

5 Test Data Computation

For each behavior that we want to activate, we generate specific test data, ac-
cording to the type of the data. Our approach is based on selecting the boundary
values, which is known as a good strategy for finding errors [20]. This section
presents the computation of the boundary values for data whose domains are
ordered (e.g. integers, characters, etc.), and the computation of the boundary
values for objects, which consists in selecting a boundary value to one of the
object’s attribute. Whereas the first part provides numerical input values that
have no relation with the rest of the environment, the second one provides either
a context-independent object value (this or null), or a symbolic value for an
object instance, depending on the context which provides boundary values.

The definition of the boundary goal computation is done in two steps. We con-
sider Di as the set of object attributes and input parameters that occur in the
behavior Bi targeted by the test. These data are determined through a static
analysis of the behavior. We decompose Di into two subsets Dord, represent-
ing data whose domain are ordered (e.g. integers, characters, etc.), and Dobj ,
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representing object data (i.e., without order relation on their domain), so that
Di = Dord ∪Dobj .

5.1 Built-In Typed Data

If the data type is a built-in type (integer, character, etc., that can be considered
as an integer value), it has an ordered domain, and we select the values at
the bounds of this domain. These bounds are computed based on the range of
values for the considered type, whose domain is reduced by the constraints from
the class invariant, and the behavior we want to test. As a consequence, the
data value conforms to the specification and no irrelevant tests values will be
produced.

Definition 3 (Built-in Typed Data Coverage). Let Dord be the ordered-
domain data occurring in a behavior Bi extracted from the method under test,
let Inv be the system invariant, and let f be an optimization function, so that
f(X) =

∑
x∈X(x). The test data are defined by the boundary values of Dord,

computed using the functions:

BV min
i (Bi) = minimize(f(Dord), Inv ∧Bi) (3)

BV max
i (Bi) = maximize(f(Dord), Inv ∧Bi) (4)

where minimize (resp. maximize) is the labeling function that computes the min-
imal (resp. maximal) value of its parameter, by selecting the lower (resp. upper)
bound of its domain.

Additional constraints are thus added to the specialization predicate Pspe defin-
ing the test target in order to force the considered variables to meet their bound-
ary values. Thus, we call the test target a boundary goal.

5.2 Object Typed Data

If the data is an object, a special mechanism is applied, based on object concepts
of inheritance and aliasing. Contrary to built-in types, we are not looking for a
direct value for the test data, but for a symbolic value, that will represent an
object in the environment that has been created and which possesses particu-
lar properties. These properties will be required in the test target through the
specialization predicate Pspe.

Definition 4 (Object Typed Data Coverage). Let Dobj = {〈T1, o1〉,
〈T2, o2〉, . . .} be the set of object data (composed by a couple 〈static type, variable〉)
of the behavior Bi extracted from method under test. We call IDobj the set of
input data (IDobj ⊆ Dobj). The test data is defined for each 〈Ti, oi〉 ∈ Dobj by:

1. oi == null
2. oi == this
3. oi != null && oi != this && \typeof(oi) == \type(Ti)
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4. oi != null && oi != this && \typeof(oi) <: \type(Ti)
5. oi != null && oi != this && oi == oj where oj ∈ IDobj

These predicates, expressed in the JML syntax, can lead to inconsistencies,
depending on the context in which they are employed. In this case, the value is
filtered, and thus not selected.

We now explain informally these predicates. (1) We assign a null reference
to the object oi, if this particular value is not forbidden by the specification. (2)
If the type is compliant, we assign to oi the reference of the object under test,
this. (3) We try to assign any object whose dynamic type (\typeof(oi)) is the
static type of the object (\type(Ti)). This object will have to be created during
the preamble of the test case. (4) In order to check inheritance compliance,
and according to Liskov’s Substitution Principle –”Whenever an instance of a
class is expected, one can always substitute an instance of any of its subclasses”–
we assign to the object an instance of each of its direct subclasses, i.e., whose
dynamic type is a subtype (operator <:) of the static type. (5) In order to check
aliasing, and if the type is compliant, we assign the same object for two different
parameters.

Example 3 (Test Data Computation). Consider the method transfer from class
Purse, inherited by an object of dynamic type (LimitedPurse). This method
has only one behavior, which does not contain any disjunction. After a static
analysis, this behavior involves two attributes this.balance and p.balance
nested behind the this.equals(p) pure method call. These two attributes are
of type short, and thus we will select the bounds of their domains to build a
pertinent context. Moreover, we also apply the mechanism on the parameter p of
the transfer method. The test targets extracted for the activation of the only
behavior of the method specifications are given by:

balance >= 0 && balance <= max && p != null && Pspe

where Pspe is given in the table below. In this table, we have removed the Pspe

producing an inconsistent context. Rord (resp. Robj) designates the computation
rule that applies on ordered-domains (resp. objects) data.

Specialization predicate Pspe Rord Robj

(a) this.balance == 0 && p == this minimize (1)
(b) this.balance == 10000 && p == this maximize (1)
(c) this.balance == 0 && p != null && p != this && minimize (3)

\typeof(p) == \type(Purse) && p.balance == 0
(d) this.balance == 10000 && p != null && p != this && maximize (3)

\typeof(p) == \type(Purse) && p.balance == 32767
(e) this.balance == 0 && p != null && p != this && minimize (4)

\typeof(p) == \type(LimitedPurse) && p.balance == 0
(f) this.balance == 10000 && p != null && p != this && maximize (4)

\typeof(p) == \type(LimitedPurse) && p.balance == 10000

The context defined in equation (2), and illustrated by the previous example,
provides both constraints on the environment and values for the input parame-
ters. By adding these constraints to the symbolic representation of the system,
we build a boundary goal. For example, adding the constraints of the specializa-
tion predicate (d) leads to the following boundary goal:
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〈{A = {null, addr0, . . . , addrN}, B ⊆ A,C ⊆ B, D ∈ B → {Purse, LimitedPurse},
null �∈ B, E ⊆ C, F ∈ E → −32768..32767, G ⊆ E, H = 10000, I ∈ G, I ∈ E,
J ∈ E, J ∈ C, (I 	→ LimitedPurse) ∈ D, (I 	→ 10000) ∈ F, J �= null, J �= I,
(J 	→ Purse) ∈ D, (J 	→ 32767) ∈ F},

{(model, heap) 	→. . . , (LimitedPurse, this) 	→ (I,input(transfer), atom),
(LimitedPurse, p) 	→ (J, input(transfer), atom), }〉

6 Preamble Computation

Once a boundary goal is identified, we need to compute the preamble that will,
from the initial state, build the method sequence that will lead to the boundary
state from which the test itself, i.e., the activation of the considered behavior,
will be performed.

6.1 Computation of the Preamble Using Symbolic Animation

As we have seen in the previous section, a boundary state is defined w.r.t. the
inputs and the attributes of objects that occur within the considered behavior.
Thus, the preamble is driven by two objectives. (i) Activating the considered
behavior: this requires to create the considered object which will invoke the
method under test, but this may also require that its attributes have a specific
value given by the behavior. (ii) Creating the objects to provide method param-
eters and setting their attributes to a specific value. Both of these objectives are
expressed within a symbolic state, associated to a constraint system. The sym-
bolic animation of the model is then performed using a “best-first” algorithm
guided by specific heuristics (see [9] for more details). Once a satisfying state is
reached all the remaining method parameters that are still constrained are in-
stantiated so that a specific execution sequence can be produced. This execution
sequence is then reified into an executable Java test case. Since the reachability
problem can not be decided, we parameterize the boundary goal research by a
user-defined depth.

Example 4. Consider the test target computed in example 3. The corresponding
Java test cases for targets and their results at when performed using the JML
Run-Time Assertion Checking are the given in Fig. 5. In this figure, a1 and
a2 are automatically generated variables names. We notice that the failed test
case reveals a conceptual error since method transfer has not been redefined in
the LimitedPurse subclass, and allows any value of the parameter Purse to be
transferred, especially objects whose attribute is greater than the limitation max.

6.2 Reachability of the Boundary State

As the experienced reader may have noticed, the constraints defining the bound-
ary state may be too strong to be easily reachable automatically, especially to
assign a boundary value to a given attribute. Indeed, in object programming,
the class attributes are rarely visible as public, and thus their value can not be
accessed and modified directly. This leads to considering two options that may
solve this potential problem.
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Target Java Test case Verdict

(a) LimitedPurse a1 = new LimitedPurse(0);
a1.transfer(a1);

Success

(b) LimitedPurse a1 = new LimitedPurse(10000);
a1.transfer(a1);

Success

(c)
LimitedPurse a1 = new LimitedPurse(0);
Purse a2 = new Purse(0);
a1.transfer(a2);

Success

(d)
LimitedPurse a1 = new LimitedPurse(10000);
Purse a2 = new Purse(32767);
a1.transfer(a2);

Failure → JMLInvariantException

(e)
LimitedPurse a1 = new LimitedPurse(0);
LimitedPurse a2 = new LimitedPurse(0);
a1.transfer(a2);

Success

(f)
LimitedPurse a1 = new LimitedPurse(10000);
LimitedPurse a2 = new LimitedPurse(10000);
a1.transfer(a2);

Success

Fig. 5. Resulting test cases for the transfer method from the example

The first solution is that the modeler provides specific methods, in the different
classes, that are in charge of assigning a given value to a non-public field of the
class. We have noticed that it is a good programming practice, and thus, this
restriction should not be a problem. Moreover, the properties that can never be
reached (such as an attribute that may never be null) have to be stated in the
class invariant, so that the unreachable values for the test data are filtered and
removed from the test target.

The second solution is to weaken the constraints of the boundary state, con-
sidering the test data computation, only once the context allowing the activation
of the behavior is reached, with Pspe reduced to true. The boundary values are
then computed w.r.t. the resulting configurations. If this solution increases the
reachability of the test targets, the resulting test data might be less pertinent
that with the original approach. For example, the bug found in the global bound-
ary approach would not have been found.

7 Experimentations with JML-Testing-Tools

This approach has been implemented in a tool-set, namedJML-Testing-Tools–
JML-TT– which proposes both an animation tool [2] and a test generation tool,
and experimented on a case study.

7.1 JML-Testing-Tools

The architecture of JML-TT is depicted hereby. The Java/JML source file is
translated into an intermediate format file from which the animation and the
test generation are performed.

The animation uses three Prolog modules (named Executer, Reducer and
Solvers). The test generation modules are used to extract the test targets, com-
pute the test data, and build the test cases.

JML-TT takes as an input a JML-annotated Java class description, and gath-
ers all the additional classes (exceptions, attributes types, etc.) that are required
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to performed the animation,
and to build a context for the
test generation data. The user
chooses (i) the methods to test,
(ii) the specification coverage cri-
teria, using disjunction rewritings,
(iii) the data coverage criteria ap-
plied on the method parameters
and the object attributes, and (iv)
the maximal preamble depth.

The test generation tool computes the test suite, composed by a sequence of
object creations and method invocations, ended by the invocation of the method
under test. It produces a Java test file, that can be run on the RAC-compiled
classes to perform the test. A screen-shot of the tool is given in Fig. 6.

Fig. 6. Screen-shot of JML-Testing-Tools test criteria selection

7.2 Experimental Results

We have applied our approach on a case study: a JML specification of the
Demoney Java Card applet [16]. It is composed of 35 classes (of which 19 ex-
ceptions). The main class contains 12 methods to test, decomposed into 14 nor-
mal behaviors and 17 exceptional behaviors. This specification has first been
validated on the JML-Testing-Tools symbolic animator to check its confor-
mance w.r.t. the initial informal requirements. The results of the test generation
are given in Fig. 7 in terms of behaviors and test cases for each possible rewrit-
ing. The results are very promising since all behaviors have been covered twice
(one by minimization, one by maximization of numerical attributes).

8 Related Work

Many work has been done on producing test cases from Java programs, using a
structural, or white-box, approach. This section only focuses on the JML-related
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Criteria RW 1 RW 2 RW 3 RW 4
Nb of behaviors 31 33 33 35

Nb of test targets 62 66 66 70

Nb of test cases 62 (100%) 66 (100%) 66 (100%) 70 (100%)

Fig. 7. Results of the test generation for the case study

test generation work. The first obvious reference is the JMLUnit approach de-
veloped by Leavens and Cheon [6]. This approach uses the JUnit framework
to write the test cases and the JML Run-Time Assertion Checker as an oracle
for the tests. This combination is enriched by the automatic building of JU-
nit test frameworks, for automatically generating systematic test data (e.g. for
integers: 0, 1, −1, Integer.MIN VALUE, Integer.MAX VALUE, and a random
value between 0 and each of the integer’s extrema). This approaches produces
many irrelevant test cases that are filtered at run-time. On the same principle,
Jartege [19] aims at generating random test cases for Java. If the process is
fully automated, and well-known for being efficient at finding bugs, it faces the
problem of building irrelevant test cases w.r.t. the specification, compensated by
the number of generated test cases. In our approach, the tests are based on the
specification and is guided by the activation of a specific behavior, described in
the specification.

The TOBIAS tool [14] produces combinatorial test cases from a given user-
defined pattern. The tests are then filtered using the JML annotations to elim-
inate the irrelevant test cases. The major advantage of this tool is that it is
an efficient way to produce a huge number of test cases, and to potentially find
numerous bugs. Nevertheless, this approach requires a lot of experience from the
validation engineer, since he has to provide the test pattern and the test data.
On the contrary, our point of view is to automate the test generation the most
possible.

TestEra [11] and Korat [5], from Khurshid et al., have also interesting argu-
ments. These tools are able to build all the possible input data, for a given finite
structure size, that satisfy a given Java predicate. Our approach is quite similar
since we also consider a context, given by the precondition and a boundary value
analysis, in which the methods can be invoked. But, our originality is (i) the use
of boundary values to select the possible input data, and (ii) the automated
computation of a preamble using the symbolic animation of the model in order
to reach this context.

9 Conclusion and Future Work

We have presented an original approach to the test generation for Java programs,
based on the Java Modeling Language, to be used not only as an oracle, but
especially as a reference for functional test generation. This approach is based
on the symbolic representation of object states, and the symbolic animation of
the JML specifications, that make it possible to respectively compute the test
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data to generate, and to build the preamble for the test cases. Boundary testing
is a pertinent way to find bugs within an implementation. The combination of
boundary testing for numerical data, and object-oriented features appears to be
interesting, and not targeted before. Moreover, our technique is fully automated
and requires a minimal user intervention.

Experimentations have shown interesting results on realistic examples, in both
test data generation and preamble computation. Nevertheless, there is a trade-
off between full automation and efficiency of the approach. If the preamble can
not be computed, we plan to ask the user to intervene, in order to provide a
satisfying method sequence.

The computation of boundary test data, to produce test data given one par-
ticular context, is efficiently performed using our technology. Thus, we plan, for
the future, to reinvest this capability to serve other test selection criteria, such
as combinatorial or randomized/probabilistic test generation. This will make it
possible to compare these approaches on a relevant case study. We would also
like to extend the subset of JML that we can deal with, in order to take floats
into account, by integrating a floating point data solver. Finally, we notice that
our approach may also be adapted to other object-oriented modeling languages,
so we will consider adapting it to Spec# [15], which is close to JML.
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Abstract. We present an extension to JAVA CARD Dynamic Logic, a
program logic for reasoning about JAVA CARD programs, to handle JAVA

CARD’s so-called non-atomic methods. Although JAVA CARD DL already
supports the atomic transaction mechanism of JAVA CARD, non-atomic
methods present an additional challenge: state updates triggered by such
a non-atomic method are not subjected to any transaction that may pos-
sibly be in progress. The semantics of a non-atomic method itself seems to
be simple and straightforward to formalise, however experimental stud-
ies showed that non-atomic methods affect the whole semantics of the
JAVA CARD transaction mechanism in a subtle way, in particular, it af-
fects the notion of a transaction roll-back. In this paper we show how
to adapt JAVA CARD DL to accommodate this newly discovered complex
transaction behaviour. The extension completes the formalisation of all
of JAVA CARD in Dynamic Logic.

1 Introduction

Overview. The work we present in this paper can be seen as a final step to com-
plete formalisation of JAVA CARD in Dynamic Logic [2]. JAVA CARD Dynamic
Logic (JAVA CARD DL) is a program logic specifically designed to reason about
sequential JAVA programs and, in particular, programs written in JAVA CARD, a
JAVA dialect used to program smart cards. JAVA CARD DL is implemented in the
KeY system [1], an integrated design and verification system for object-oriented
programs. In an earlier paper we presented an extension to JAVA CARD DL to
handle the JAVA CARD’s transaction mechanism [3]. The transaction mechanism
is a feature specific to JAVA CARD technology. In the context of the persistent
data stored in smart card’s memory, it allows to ensure that a given program
block is executed atomically (to completion or not at all), even when loss of
power occurs. The transaction mechanism is deeply embedded in the language
specification, i.e. transaction triggering methods in JAVA CARD are native, their
implementation cannot be expressed in terms of pure JAVA code. The support for
handling transactions in JAVA CARD DL is important for two reasons: to be able
to formally verify atomicity properties in the event of unexpected/premature
program termination, and to properly model program state updates caused by
transaction roll-back (i.e. undoing updates). Indeed, the extended logic allowed
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us to prove many interesting properties about real JAVA CARD programs with the
KeY system [7,15]. Although we have treated the transaction mechanism thor-
oughly in our extension to JAVA CARD DL, one particular detail was omitted,
namely, two specific non-atomic native methods provided by the JAVA CARD API.
The intuitive semantics of non-atomic methods seems to be straightforward—a
non-atomic method simply excludes the updates it performs from any transac-
tion that might be in progress. However, recent experimental studies [10] show
that the intended semantics of JAVA CARD transactions, in particular transaction
roll-back, and non-atomic methods is more complex than described in the offi-
cial JAVA CARD platform documentation [18]. In this paper we present further
extensions to JAVA CARD DL to accommodate the extended semantics of the
transaction mechanism.

Non-atomic methods are rarely used in JAVA CARD programming, but certain
security requirements actually necessitate the use of these methods. An often
quoted example concerns PIN try counters. Such a counter is decremented each
time a PIN code provided by the user is verified against the code stored on the
smart card and the card “shuts down” if too many incorrect guesses are done. By
calling the PIN verification routine inside a transaction and deliberately abort-
ing that transaction, the update to the try counter would be rolled back together
with all the other updates performed within the transaction. This would be a
major security breach, giving a malicious user an infinite number of tries to
check PIN validity (the try counter would never be decremented). To avoid such
situation a non-atomic method is used to exclude the try counter decrement
from the transaction mechanism. Thus, it is really important to be able to rea-
son about non-atomic JAVA CARD methods so that similar security properties
can be formally verified. We briefly discuss verification of such a property in
Sect. 7.

Related Work. There exist numerous tools and formal systems to reason about
JAVA programs on the source code level. Just to name the most important ones:
ESC/JAVA2 [6] performs extended static checking of JAVA programs, the LOOP
tool [12] employs a Hoare-like logic encoded in higher-order logic (PVS) [11],
higher-order logic is also used to formalise a JAVA fragment in Isabelle [19] and
in the Krakatoa tool [13]. The Jive system [14] is based on an extended Hoare
style calculus, Jack [4] on weakest precondition calculus, and KIV on yet another
version of Dynamic Logic for JAVA CARD [17]. Despite the multiplicity of formal
systems designed for JAVA CARD and other “small” JAVA dialects, it seems that
(so far) only our framework can truly deal with all of JAVA CARD, including the
intricate details of the transaction mechanism. The only other work that inves-
tigated JAVA CARD transactions is [9], however the proposed formalism has not
been implemented in a tool. The same authors performed experimental studies
of the JAVA CARD transaction mechanism [10] that we refer to in this paper.

Structure of the Paper. Sect. 2 and 3 give an overview of the KeY system and
JAVA CARD DL, in Sect. 4 we describe the JAVA CARD transaction mechanism
and non-atomic JAVA CARD methods. Sect. 5 gives a high-level description of
how transactions are treated in JAVA CARD DL, then in Sect. 6 we extend this
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description to cover non-atomic methods with a sample of actual calculus rules.
Finally, Sect. 7 discusses verification examples and Sect. 8 summarises the paper.

2 The KeY System

JAVA CARD DL has been designed to be the logical infrastructure of the KeY
prover. The KeY prover is the core verification component of the KeY sys-
tem1 [1]—a tool that enhances a commercial software engineering tool with
functionality for formal specification and deductive verification of object ori-
ented programs to be used in real-world software development. Accordingly, the
design principles for the software verification component of the KeY system are:

– The specification language should be usable by people who do not have years
of training in formal methods. The Object Constraint Language (OCL),
which is incorporated into current version of the Unified Modelling Lan-
guage (UML), is one specification language that can be used for formal
specification. The other language is JAVA Modelling Language (JML), which
has recently become very popular among formal JAVA programmers.

– The programs that are verified should be written in a real object-oriented
programming language. The KeY system supports most of sequential JAVA,
and in particular the whole JAVA CARD standard. Since smart card applica-
tions are often safety and security critical, JAVA CARD seems to be a perfect
target for formal verification.

Our recent research shows that the KeY system performs its job very well—
verification of advanced security properties for industrial JAVA CARD applets of
non-trivial size is highly feasible and time-wise very efficient [7,15]. In the KeY
verification process the OCL or JML specifications are automatically translated
into JAVA CARD DL proof obligations, whose validity can then be (in most part
automatically) established with the KeY prover. Apart from OCL and JML,
JAVA CARD DL can be used explicitly for writing specifications. In the following
we briefly describe JAVA CARD DL.

3 JAVA CARD Dynamic Logic

Dynamic Logic [8] can be seen as an extension of Hoare logic. It is a first-
order modal logic with modalities [p] and 〈p〉 for every program p (p can be any
sequence of JAVA CARD statements). In the semantics of these modalities a state
w is accessible from the current state, if the program p terminates in w when
started in the current state. The formula [p]φ expresses that φ holds in all final
states of p, and 〈p〉φ expresses that φ holds in some final state of p. In versions
of DL with a non-deterministic programming language there can be several such
final states. Here, since JAVA CARD programs are deterministic, there is exactly
one such state (if p terminates) or there is no such state (if p does not terminate).

1 http://www.key-project.org
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The formula φ → 〈p〉ψ is valid if, for every state s satisfying precondition φ, a
run of the program p starting in s terminates, and in the terminating state
the postcondition ψ holds (total correctness). The formula φ → [p]ψ expresses
the same, except that termination of p is not required, i.e. ψ must only hold if
p terminates (partial correctness).

Syntax of JAVA CARD DL. As said above, a dynamic logic is constructed by
extending some non-dynamic logic with modal operators 〈·〉 and [·]. The non-
dynamic base logic of our DL is a typed first-order predicate logic. We do not
describe in detail what the types of our logic are (basically they are identical with
the JAVA types) nor how exactly terms and formulae are built. The definitions
can be found in [2]. Note that terms (which we often call “logical terms” in the
following) are different from JAVA expressions—they never have side effects.

In order to reduce the complexity of the programs occurring in DL formulae,
we introduce the notion of a program context. The context consists of API and
any additional classes/interfaces used in the program. Syntax and semantics of
DL formulae are then defined w.r.t. a given context; the programs in DL formulae
are simply blocks of executable JAVA code (method bodies). Programs occurring
in DL formulae can also contain special constructs not available in plain JAVA

CARD, whose purpose is, among other things, the handling of method calls and
the transaction mechanism. For transactions, e.g. JAVA CARD DL recognises
special “low-level” transaction statements bT, cT, and aT, which are triggered
by the “high-level” API transaction methods beginTransaction, etc.

Semantics of JAVA CARD DL. The semantics of a program p is a state
transition, i.e. it assigns to each state s the set of all states that can be reached
by running p starting in s. Since JAVA CARD is deterministic, that set either
contains exactly one state (if p terminates normally) or is empty (if p does not
terminate or terminates abruptly). For formulae φ that do not contain programs,
the notion of φ being satisfied by a state is defined as usual in first-order logic.
A formula 〈p〉φ is satisfied by a state s if the program p, when started in s,
terminates normally in a state s′ in which φ is satisfied.

As mentioned above, we consider programs that terminate abruptly to be
non-terminating. Thus, e.g. 〈throw x;〉φ is unsatisfiable for all φ. Nevertheless,
it is possible to express and (if true) prove that a program p terminates abruptly
by a simple program transformation. For example, the formula

exc = null → 〈try{p}catch(Exception e){exc = e;}〉(¬(exc = null) ∧ φ)

is true in a state s if and only if the program p, when started in s, terminates
abruptly by throwing an exception and condition φ is satisfied. The try-catch
block around program p ensures that the program fragment inside the modality
always terminates in a non-abrupt fashion. The postcondition requires p to throw
an exception (as otherwise no object is bound to exc) and formula φ can be
established in the abrupt termination state (in fact, this is how JML signals
clauses are represented in JAVA CARD DL).

Sequents are notated following the scheme φ1, . . . , φm � ψ1, . . . , ψn which
has the same semantics as the formula (φ1 ∧ . . . ∧ φm) → (ψ1 ∨ . . . ∨ ψn).
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Strong Invariants. On top of the notion of total (resp. partial) correctness
stipulated by the 〈·〉 (resp. [·]) modality, JAVA CARD DL also allows expressing
strong invariant properties. A strong invariant specifies that a certain prop-
erty should be maintained throughout the execution of the program (in all the
intermediate computation states), which in JAVA CARD DL is expressed with
the throughout modality [[·]]. This allows one to prove that a given property is
preserved even when a premature termination (e.g. card tear) of the program
occurs. Such properties were the motivation to include support for the transac-
tion mechanism in JAVA CARD DL in the first place [3]. The semantics of the
[[·]] modality relies heavily on the notion of atomicity in JAVA CARD, which is af-
fected by non-atomic methods. Because of this, small subtleties are introduced to
the formal semantics of [[·]] and a few extra calculus rules are needed. However,
in principle, the formalisation for the [[·]] (as well as [·]) modality in the con-
text of non-atomic methods does not differ substantially from the formalisation
of 〈·〉, thus, we are not going to discuss the rules for [[·]]. We stress though,
that we did implement necessary rules for [[·]] and tested them on relevant
examples.

State Updates. We allow updates of the form {x := t} resp. {o.a := t} to
be attached to terms and formulae, where x is a program variable, o is a term
denoting an object with attribute a, and t is a term. The intuitive meaning of
an update is that the term or formula that it is attached to is to be evaluated
after changing the state accordingly, i.e. {x := t}φ has the same semantics as
〈x = t;〉φ.

Rules of the Sequent Calculus. Here we present two sample rules to give
the reader intuition of how the JAVA CARD DL sequent calculus works.

Notation. The rules of our calculus operate on the first active statement p of a
program π pω. The non-active prefix π consists of, e.g. an arbitrary sequence of
opening braces “{”, labels, beginnings “try{” of try-catch blocks. The prefix
is needed to keep track of the blocks that the (first) active command is part
of, such that the abruptly terminating statements throw, return, break, and
continue can be handled appropriately.2 The postfix ω denotes the “rest” of the
program, i.e. everything except the non-active prefix and the part of the program
the rule operates on. For example, if a rule is applied to the following JAVA block
operating on its first active command i=0; then the non-active prefix π and the
“rest” ω are the marked parts of the block:

l:{try{︸ ︷︷ ︸
π

i=0; j=0; }catch(Exception e){ k=0; }}︸ ︷︷ ︸
ω

2 In DL versions for simple artificial programming languages, where no prefixes are
needed, any formula of the form 〈pq〉φ can be replaced by 〈p〉〈q〉φ with a sequential
composition rule. In our calculus, splitting of 〈πpqω〉φ into 〈πp〉〈qω〉φ is not possible
(unless the prefix π is empty) because πp is not a valid program; and the formula
〈πpω〉〈πqω〉φ cannot be used either because its semantics is in general different from
that of 〈πpqω〉φ.
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In the following rule schemata, U stands for an arbitrary list of updates, U{u}
for an update u appended to U , and Uφ for φ evaluated by applying updates
in U .

The Rule for if. As the first simple example, we present the rule for the if
statement:

Γ, U(b = TRUE) � U〈π pω〉φ Γ, U(b = FALSE) � U〈π q ω〉φ
Γ � U〈π if(b)p else q ω〉φ (R1)

The rule has two premises, which correspond to the two cases of the if statement.
The semantics of this rule is that, if the two premises hold in a state, then the
conclusion is true in that state. In particular, if the two premises are valid,
then the conclusion is valid. In practice, rules are applied from bottom to top:
from the old proof obligation new proof obligations are derived. As the if rule
demonstrates, applying a rule from bottom to top corresponds to a symbolic
execution of the program to be verified. For every JAVA programming construct
there is such a symbolic execution rule, later we explain how transactions are
handled rather in terms of symbolic execution, than by discussing all of the
relevant calculus rules.

The Assignment Rule and Handling State Updates. The assignment rule:

Γ � U{loc := expr}〈π ω〉φ
Γ � U〈π loc = expr;ω〉φ (R2)

adds the assignment to the list of updates U . Of course, this does not solve
the problem of computing the effect of an assignment, which is particularly
complicated in JAVA because of aliasing. This problem is postponed and solved
by rules for simplifying updates that are attached to formulae whenever possible
(without branching the proof). The assignment rule can only be used if the
expression expr is a logical term. Otherwise, other rules have to be applied first
to evaluate expr (as that evaluation may have side effects). For example, these
rules replace the formula 〈x = i++;〉φ with 〈x = i; i = i + 1;〉φ.

4 JAVA CARD Transaction Mechanism

The memory model of JAVA CARD [5,18] differs slightly from JAVA’s model. In
smart cards there are two kinds of writable memory: persistent memory (EEP-
ROM), which holds its contents between card sessions, and transient memory
(RAM), whose contents disappear when power loss occurs, in particular, when
the card is removed from the card reader (card tear). Thus every memory el-
ement in JAVA CARD (variable or object field) is either persistent or transient.
Based on the JAVA CARD language specification the following rules can be given:

– All objects (including the reference to the currently running applet, this,
and arrays) are created in persistent memory. Thus, in JAVA CARD all as-
signments like o.attr = 2, this.a = 3, and arr[i] = 4 have permanent
character, i.e. the assigned values will be kept after the card loses power.
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– A programmer can create an array with transient elements by calling a cer-
tain method from the JAVA CARD API (e.g. JCSystem.makeTransientByte-
Array), but currently there is no possibility to make objects (fields) other
than array elements transient.

– All local variables are transient.

The distinction between persistent and transient objects is very important since
these two types of objects are treated in a different way by JAVA CARD’s trans-
action mechanism. The following are the JAVA CARD API calls for transactions:

– JCSystem.beginTransaction() begins an atomic transaction. From this
point on, all assignments to fields of persistent objects are executed condi-
tionally, while assignments to transient variables or transient array elements
are executed unconditionally.3

– JCSystem.commitTransaction() commits the transaction. All conditional
assignments are committed (in one atomic step).

– JCSystem.abortTransaction() aborts the transaction. All the conditional
assignments are rolled back to the state in which the transaction started (at
least that is what [18] suggests, we explain what really happens shortly).
Assignments to transient data remain unchanged (as if there had not been
a transaction in progress).

Considering the persistent objects, the whole program block inside the trans-
action is seen by the outside world as if it were executed in one atomic step,
completely (upon commit), or nor at all (upon abort). A transaction can be
aborted explicitly by the programmer, but also implicitly by the JAVA CARD

Runtime Environment, when a transaction cannot be completed due to lack
of resources or other unexpected program termination (e.g. card tear). In the
first case, the JAVA CARD program continues its execution with the assignments
performed inside the transaction rolled back, in the second case the program is
terminated immediately and updates are rolled back during transaction recovery
process next time the JAVA CARD applet is initialised. The possibility of an ex-
plicit transaction abort has important consequences for the design of the logic to
handle transactions; in the logic aborting a transaction can be seen as undoing
assignment and needs appropriate handling.

Transactions do not have to be nested properly with other program constructs,
e.g. a transaction can be started within one method and committed within an-
other method. However, transactions must be nested properly with each other.
In the current version of JAVA CARD (2.2.2) the nesting depth of transactions is
restricted to 1—only one transaction can be active at a time.

On top of that, JAVA CARD API provides the programmer with two native
non-atomic methods: arrayCopyNonAtomic and arrayFillNonAtomic from the
3 Terms “conditional and unconditional assignments” that are used in the official JAVA

CARD documentation may be a little bit misleading in the context of this work. For
our purposes, unconditional assignment should be interpreted as “irreversible” or
“immediately permanent”, while conditional assignments should be interpreted as
“assignments made on copies”, so that they can be reverted.
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Util class. In [10], based on extensive experiments performed with JAVA CARD

devices, the behaviour of the two methods is thoroughly analysed. Here we only
present the highlights that motivated our work.

Methods arrayCopyNonAtomic and arrayFillNonAtomic copy resp. reset an
array, bypassing any transaction that might be in progress, i.e. any changes
made to the array will not be rolled-back. We have already motivated the need
for exclusion of certain persistent memory locations from the transaction mech-
anism with the PIN try counter example in the introduction.4 In the current
version, JAVA CARD only allows such non-atomic updates for elements of byte
arrays, and hence there are only two API methods to take care of non-atomic
updates. The consequence for our logic is the following. Apart from commit-
ting or aborting, a transaction can also be suspended to perform unconditional
updates to persistent array elements and later resumed to continue updating
persistent data conditionally, following the rules of the transaction mechanism
again. With the notion of transaction suspension it is also possible to incorporate
other non-atomic methods that may appear in future versions of JAVA CARD.

This, however, is not all. The experiments in [10] show that the notion of
transaction roll-back is under-specified in the official JAVA CARD documenta-
tion [18].5 Consider two short pieces of JAVA CARD code in Fig. 1. Persistent
array a stores elements of type byte and the arrayFillNonAtomic method has
the following signature:

/** Fill elements off..off+len-1 of bArray with value */
public static void native arrayFillNonAtomic(
byte[] bArray, short off, short len, byte value);

Thus, the call to arrayFillNonAtomic in the two examples is equivalent to a[0]
= 2, with the difference that it bypasses the transaction mechanism. The main
difference in the two programs is the value of a[0] after the transaction abort.
In the program on the left, a[0] is rolled-back to 0, the value it was assigned
before the transaction was started. In the program on the right, a[0] is rolled
back to 2, the most recent value it was assigned before the first conditional
update happened. To put it in a simpler form, the value to be restored in case
of an abort is recorded just before the first conditional update happens, and
not when the transaction is started. This is not what the official JAVA CARD

documentation would make us believe, it would suggests that the value of a[0]
4 Another reason for introducing native, non-atomic methods for array operations is

efficiency, which in the context of this work is not relevant.
5 Actually, parts of this under-specification are deliberate to account for nondetermin-

istic behaviour of some JAVA CARD devices w.r.t. non-atomic methods [10]. Despite
this liberal approach there still exist JAVA CARD devices that do not implement
non-atomic methods in a correct way—they still go beyond the level of nondeter-
minism allowed by the official JAVA CARD specification [10]. In our formal model we
assume that cards are well behaved (deterministic). Although we present one fixed
approach in this paper, the underlying principles of our extension allow us to eas-
ily formalise other variants of the transaction model, including a nondeterministic
(random) behaviour allowed by the official specification.
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a[0] = 0; a[0] = 0;
beginTransaction(); beginTransaction();
a[0] = 1; arrayFillNonAtomic(a,0,1,2);
arrayFillNonAtomic(a,0,1,2); a[0] = 1;

abortTransaction(); abortTransaction();

Fig. 1. Two transaction roll-back examples

should be 0 in both cases. To properly handle the transaction mechanism, our
extended logic should distinguish the two situations described above.

5 Symbolic Execution of the Transaction Mechanism

Before we describe how non-atomic methods are handled in JAVA CARD DL, we
explain how the basic transaction mechanism is modelled [3]. The main idea is
to partly imitate what is actually happening in the JAVA CARD Virtual Machine
(or, what we imagine is happening); generally, when a transaction is in progress,
instead of modifying the original data (unconditional update), the updates are
performed on the backup copies of that data (conditional update).

When a call to beginTransaction is encountered during the symbolic exe-
cution, program analysis (i.e. the proof) is split into two branches. In the first
branch the program is analysed with the assumption that the transaction will
commit, in the second branch it is assumed that the transaction will be aborted.
Later, when an abortTransaction statement is encountered on the commit
branch, the branch is simply discarded—the symbolic execution is focused on
the abort branch. The same exact thing happens in the opposite situation, i.e.
when a commitTransaction is encountered on the abort branch. On the calculus
level, a rule for beginTransaction splits the proof into two branches, and each
branch (more precisely, the modality containing the program) is marked with
an appropriate tag (TRC: or TRA:) saying what kind of transaction finish is ex-
pected. Depending on the tag different rules for assignments are applied. Making
the distinction between the commit and abort case is very helpful in handling
the assignments inside the transaction. On the first branch, since we assume
that the transaction is going to commit, we do not have to worry about keeping
the backup copies of the modified data, we can commit all the changes as we
encounter them. Conversely, on the abort branch, we know that the assignments
eventually (upon encountering abortTransaction) will have to be rolled back,
so we can choose not to perform them in the first place.6 Here, however, we
encounter a complication: in JAVA CARD only the assignments to the persistent
data are rolled back, the assignments to transient data are always performed
unconditionally. Moreover, conditionally updated persistent values may be used
to update transient variables. Thus, we cannot simply ignore the assignments in-
side the transactions. Instead, we operate on backup (also called shadow) copies

6 The two branches correspond to resp. optimistic or pessimistic approach usually
taken in implementing a transaction mechanism.
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of the persistent data, keeping the original persistent data unmodified, while the
updates to transient objects are always performed on the original data.

this.a = v1; this.a = v1;
this.ar[0] = v2; this.ar[0] = v2;
int i = 0; i = 0;
beginTransaction(); The symbolic execution splits into two branches, here we ignore

the ‘commit’ branch, which upon encountering abort will be
discarded. The fact that a transaction was started is recorded.

this.a++; First assignment to this.a inside transaction, create a new
backup copy of this.a:

this.a’ = this.a’ + 1; →
this.a’ = this.a + 1; → this.a’ = v1 + 1;

this.ar[0]++; if(this.ar.<transient>) // false
this.ar[0] = this.ar[0] + 1; else
this.ar[0]’ = this.ar[0]’ + 1; →

Here, this.ar[0]’ also not initialised, use this.ar[0] on the
RHS:

this.ar[0]’ = v2 + 1;
i = this.a +

this.ar[0];
i is local (transient), update unconditionally, on the RHS use
already initialised backup copies of this.a and this.ar[0]:

i = this.a’ + this.ar[0]’; → i = v1 + v2 + 2;
abortTransaction(); Transaction aborted, back to non-transaction mode.

Fig. 2. Symbolic execution of a JAVA CARD transaction

Let us illustrate this idea with an example in Fig. 2. On the left we give an
actual JAVA CARD program, on the right we explain how the symbolic execution
(i.e. how the program is interpreted in JAVA CARD DL) of the code on the left
proceeds. The prime symbol ’ in combination with the attribute (resp. array
element) access operator . denotes accessing backup copy of a given attribute
(resp. array element) instead of the original value. The arrow → represents sub-
sequent steps in the symbolic execution. If a backup value is required during
the evaluation but is not known (has not yet been assigned) the original value
is used. The <transient> field is assigned to every array object in the JAVA

CARD DL model and indicates whether a given array is transient or persistent.
Depending on this, the elements of such an array are updated conditionally or
unconditionally, following the specification of JAVA CARD transactions. Here we
assume that the fact that this.ar is persistent (this.ar.<transient> is false)
is already present in the program analysis. At the end of this symbolic execution
it can be established that i = v1 + v2 + 2, but the persistent data, this.a
and this.ar[0], is not affected, the values are equal to v1 and v2, respectively.
By performing the assignments on the backup copies, the effect of a transac-
tion roll-back is achieved in the JAVA CARD DL execution model. To sum up,
inside a transaction that is assumed to abort, assignments involving persistent
data are performed on copies of that data, so that the original values, used
again after the abort, remain unchanged. Such specific assignment handling is
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taken care of specialised JAVA CARD DL calculus rules, which are applied on
the (specially tagged for this purpose) abort branch of the proof. The actual
rules are described in detail in [3]. In the next section we give a representa-
tive sample of these rules updated to accommodate the behaviour of non-atomic
methods.

6 Non-atomic Methods in JAVA CARD DL

Assuming the transaction model just presented we now have to incorporate the
semantics of the non-atomic JAVA CARD methods. What arrayCopyNonAtomic or
arrayFillNonAtomic basically do is updating given array elements uncondition-
ally, despite the fact there might be a transaction in progress—the transaction is
suspended for the time of execution of a non-atomic method. Note, that we can-
not assume that the transaction is simply finalised when a non-atomic method is
executed, and then a new transaction is started—while the non-atomic method is
executed all the conditional assignments executed before the non-atomic method
was started are still in effect. When a non-atomic method is finished, the transac-
tion is continued with all the conditional assignments recorded previously. Thus,
we introduce the notion of transaction suspending and resuming to our JAVA

CARD DL model.
The symbolic execution model of transactions is affected in the following way.

In the commit branch non-atomic methods are not treated in any special way;
since we assume that the transaction will commit, it means that all the assign-
ments inside a transaction, including the ones performed by non-atomic methods,
will be committed. In the abort branch however, the assignments performed by
non-atomic methods should be committed (despite aborted transaction) and all
the other assignments should be committed or aborted following the regular JAVA

CARD transaction rules. Thus, for the time of execution of a non-atomic method
we have to inform the symbolic execution mechanism that the transaction is
suspended. The corresponding JAVA CARD DL rule is the following:

Γ � U〈TRSUSP:π ω〉φ
Γ � U〈TRA:π suspendTransaction;ω〉φ (R3)

The meaning of the rule is this: on the abort (TRA: tag) proof branch upon
encountering the suspend transaction statement (this statement is only present
in the logic, it is triggered by a call to non-atomic method) mark the branch
(modality) with a tag indicating that the transaction is suspended, so that cor-
responding “non-atomic” assignment rules can be applied. When a non-atomic
method is finished, transaction resume statement is triggered and normal trans-
action processing is again in effect:

Γ � U〈TRA:π ω〉φ
Γ � U〈TRSUSP:π resumeTransaction;ω〉φ (R4)

The idea of symbolic execution of a non-atomic method based on the notion
of transaction suspension is illustrated with an example in Fig. 3. As with the
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previous example, it can be established that after the execution of the program
i = v1 + v2 + 2 and this.a = v1 (here the update was rolled-back), but the
value of this.ar[0] is v2 + 1—it has been unconditionally updated inside a
transaction through transaction suspension that took effect for the time of sym-
bolic execution of arrayFillNonAtomic.

this.a = v1; this.a = v1;
this.ar[0] = v2; this.ar[0] = v2;
int i = 0; i = 0;
beginTransaction(); Transaction started, transaction mode for assignments.
this.a++; this.a’ = this.a’ + 1; → this.a’ = this.a + 1; →

this.a’ = v1 + 1;
arrayFillNonAtomic(

this.ar, 0, 1,
this.ar[0]+1);

Transaction is suspended, the code executed by arrayFill-
NonAtomic is interpreted as follows. On the LHS update the
original (unconditional assignment), on the RHS use backup
copies where possible:

this.ar[0] = this.ar[0]’ + 1;
this.ar[0] = this.ar[0] + 1; → this.ar[0] = v2 + 1;

i = this.a +
this.ar[0];

Non-atomic call is finished, resume transaction mode. Here
this.ar[0]’ still not initialised, use this.ar[0]:

i = this.a’ + this.ar[0]’;
i = this.a’ + this.ar[0]; → i = v1 + v2 + 2;

abortTransaction(); Transaction aborted, back to non-transaction mode.

Fig. 3. Symbolic execution of a non-atomic method

6.1 Transaction Roll-Back

Finally we have to adapt our model to properly handle transaction roll-back. In
Sect. 4 we have already discussed how the values of persistent data are rolled
back based on recording values just before the first conditional assignment is
executed. Hence, our symbolic execution needs to take care of two more things:
– When an assignment to an array element is done inside a transaction, but

not inside a non-atomic method, then we need to record the fact that an
array element has been conditionally assigned. In our model, this informa-
tion is kept in a boolean array <trinit> associated with each array (sim-
ilarly to the <transient> attribute that indicates the persistency type of
an array). Unless explicitly initialised, a.<trinit>[x] always defaults to
false (the update simplification rules of the JAVA CARD DL take care of
this).

– When transaction is suspended, before we make an assignment to an array
element, we first have to check whether it has been conditionally updated,
and depending on the result do a conditional or unconditional assignment.

The corresponding JAVA CARD DL rules are the following. First the rule for
the abort branch that records the fact that a given array element has been
conditionally assigned and does the actual assignment:
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Γ, U(arr.<transient>= TRUE) � U{arr[e] := expr′}〈TRA:π ω〉φ
Γ, U(arr.<transient>= FALSE) �

U{arr.<trinit>[e] := TRUE, arr[e]′ := expr′}〈TRA:π ω〉φ
Γ � U〈TRA:π arr[e] = expr;ω〉φ

(R5)

For transient arrays, the assignment of the array element is always unconditional
(first premise), for persistent arrays (arr.<transient> = FALSE), record the in-
formation that the given array element has been initialised (arr.<trinit>[e] :=
TRUE) and perform a conditional assignment to that array element (arr[e]′ :=
expr′). As with the regular assignment rule (R2), expr has to be free of side
effects. The prime operator applied to expr makes sure that the backup copies
are used for all relevant subexpressions occurring in expr.

When a transaction is suspended, the rule that takes care of assigning a value
to an array element conditionally or unconditionally depending on whether the
array element has been already initialised takes the following form:

Γ, U(arr.<trinit>[e] = FALSE) � U{arr[e] := expr′}〈TRSUSP:π ω〉φ
Γ, U(arr.<trinit>[e]= TRUE) � U{arr[e]′ := expr′}〈TRSUSP:π ω〉φ

Γ � U〈TRSUSP:π arr[e] = expr;ω〉φ
(R6)

The interpretation of the rule is this: inside a suspended transaction, if an array
element has not yet been conditionally assigned (arr.<trinit>[e] = FALSE),
update it unconditionally (arr[e] := expr′), if it has been already condition-
ally assigned (arr.<trinit>[e] = TRUE), keep the assignments conditional
(arr[e]′ := expr′).

These two rules follow the informal description of transactions and non-atomic
methods given in Sect. 4. To clarify this, Fig. 4 explains the symbolic execution
of the two programs in Fig. 1. Finally, we should note that only the rules for
transaction triggering statements and assignments inside a transaction are spe-
cific in the context of non-atomic methods, the rules for other programming

a[0] = 0; a[0] = 0;
Transaction started, conditional updates. Transaction started, conditional updates.
a[0]’ = 1;
a.<trinit>[0] = true;

Transaction suspended, the execution of
arrayFillNonAtomic unfolds to:

if(a.<trinit>[0]) // false
a[0]’=2; else a[0]=2; → a[0]=2;

Transaction resumed.
Transaction suspended, the execution of
arrayFillNonAtomic unfolds to:
if(a.<trinit>[0]) // true
a[0]’=2; else a[0]=2; → a[0]’=2;

Transaction resumed.

a[0]’ = 1;
a.<trinit>[0] = true;

Transaction aborted, a[0] is 0. Transaction aborted, a[0] is 2.

Fig. 4. Symbolic execution for the transaction roll-back
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constructs (e.g. the if statement) are the same as in the basic JAVA CARD DL
calculus.

7 Examples

All the rules for the extended JAVA CARD DL to handle non-atomic methods
have been implemented in the KeY prover. For the test, we verified the reference
implementation of the check method from the OwnerPIN API class. The prop-

JCSystem.transactionDepth = 0 ∧ ¬(pin = null) ∧ ¬(pin. triesLeft = null) ∧
. . . rest of the OwnerPIN basic class specification (class invariant)
triesLeft@pre = pin. triesLeft[0] ∧ result = −1 →
〈 try {

JCSystem.beginTransaction();
if(pin.check(pin,offset,length)) result = 1; else result = 0;

if(b) JCSystem.abortTransaction();
else JCSystem.commitTransaction();

}catch(Exception ex) {} 〉(
( triesLeft@pre = 0 → result = 0 ∧ pin. triesLeft[0] = 0) ∧
( triesLeft@pre > 0 → (result = 0 →

pin. triesLeft[0] = triesLeft@pre − 1)))

Fig. 5. JAVA CARD DL specification of the check method

¬(a = null) ∧ a.<transient> = FALSE →
〈 a[0] = 0;
beginTransaction();
a[0] = 1;
arrayFillNonAtomic(a,0,1,2);

abortTransaction();〉(a[0] = 0)

¬(a = null) ∧ a.<transient> = FALSE →
〈 a[0] = 0;
beginTransaction();
arrayFillNonAtomic(a,0,1,2);
a[0] = 1;

abortTransaction();〉(a[0] = 2)

Fig. 6. JAVA CARD DL specifications for the two transaction roll-back examples

erty under consideration is the one we mentioned in the introduction: the check
method should always decrement the try counter (given of course the PIN is not
correct and the try counter is not already 0) regardless of any transaction (one
about to commit or abort) that might be in progress or any exception that may
occur. The JAVA CARD DL formula specifying this is presented in Fig. 5. Since
the value of the variable b in the program inside the modality is not specified,
both possibilities (the transaction will commit or abort) have to be checked,
thus we establish the desired property. This formula is proved automatically by
the KeY prover in a matter of seconds on a regular Linux desktop computer.
Of course, the smaller examples that we have discussed in the paper are also
verifiable with the KeY prover. Recall the two programs from Fig. 1. The corre-
sponding JAVA CARD DL formulae (abbreviated) describing their behaviour are
presented in Fig. 6—both are quickly discharged by the KeY prover.
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8 Summary

We have presented an extension to JAVA CARD Dynamic Logic to handle JAVA

CARD non-atomic methods—methods that allow the programmer to exclude up-
dates to persistent data from the transaction mechanism. Although there are
only two such methods in the JAVA CARD API, they are of critical importance
when certain security issues for smart card applications are considered, as we
argued based on the PIN try counter example. Although many people have
focused on program verification for JAVA CARD as interesting, small but real,
language [12,9,13,14,4,17], JAVA CARD DL with the extension we have presented
here is the first complete program logic for all of JAVA CARD. Due to space re-
strictions we only discussed a small, but representative sample of the actual JAVA

CARD DL calculus rules, however the whole set of rules to deal with non-atomic
methods will soon be available in [16]. All the rules have been implemented
in the KeY prover and we showed examples of programs that can be verified
(automatically) using the extended logic.
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Abstract. This paper presents the formal verification of a compiler
front-end that translates a subset of the C language into the Cminor
intermediate language. The semantics of the source and target languages
as well as the translation between them have been written in the speci-
fication language of the Coq proof assistant. The proof of observational
semantic equivalence between the source and generated code has been
machine-checked using Coq. An executable compiler was obtained by au-
tomatic extraction of executable Caml code from the Coq specification
of the translator, combined with a certified compiler back-end generating
PowerPC assembly code from Cminor, described in previous work.

1 Introduction

Formal methods in general and program proof in particular are increasingly being
applied to safety-critical software. These applications create a strong need for
on-machine formalization and verification of programming language semantics
and tools such as compilers, type-checkers and static analyzers. In particular,
formal operational semantics are required to validate the logic of programs (e.g.
axiomatic semantics) used to reason about programs. As for tools, the formal
certification of compilers—that is, a proof that the generated executable code
behaves as prescribed by the semantics of the source program—is needed to
ensure that the guarantees obtained by formal verification of the source program
carry over to the executable code.

For high-level programming languages such as Java and functional languages,
there exists a considerable body of on-machine formalizations and verifications
of operational semantics and programming tools such as compilers and bytecode
verifiers. Despite being more popular for writing critical embedded software,
lower-level languages such as C have attracted less interest: several formal se-
mantics for various subsets of C have been published, but few have been carried
on machine. (See section 5 for a review.)

The work presented in this paper is part of an ongoing project that aims at
developing a realistic compiler for the C language and formally verifying that it
preserves the semantics of the programs being compiled. A previous paper [8]
describes the verification, using the Coq proof assistant, of the back-end of this
compiler, which generates moderately optimized PowerPC assembly code from
a low-level, imperative intermediate language called Cminor. The present paper
reports on the development and proof of semantic preservation in Coq of a C
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front-end for this compiler: a translator from Clight, a subset of the C language,
to Cminor. To conduct the verification, a precise operational semantics of Clight
was formalized in Coq. Clight features all C arithmetic types and operators, as
well as arrays, pointers, pointers to functions, and all C control structures except
goto and switch.

From a formal methods standpoint, this work is interesting in two respects.
First, compilers are complex programs that perform sophisticated symbolic com-
putations. Their formal verification is challenging, requiring difficult proofs by
induction that are beyond the reach of many program provers. Second, proving
the correctness of a compiler provides an indirect but original way to validate the
semantics of the source language. It is relatively easy to formalize an operational
semantics, but much harder to make sure that this semantics is correct and cap-
tures the intended meaning of programs. Typically, extensive testing and manual
reviews of the semantics are needed. In our experience, proving the correctness
of a translator to a simpler, lower-level language detects many small errors in the
semantics of the source and target languages, and therefore generates additional
confidence in both.

The remainder of this paper is organized as follows. Section 2 describes the
Clight language and gives an overview of its operational semantics. Section 3
presents the translation from Clight to Cminor. Section 4 outlines the proof of
correctness of this translation. Related work is discussed in section 5, followed
by conclusions in section 6.

2 The Clight Language and Its Semantics

2.1 Abstract Syntax

The abstract syntax of Clight is given in figure 1. In the Coq formalization, this
abstract syntax is presented as inductive data types, therefore achieving a deep
embedding of Clight into Coq.

At the level of types, Clight features all the integral types of C, along with ar-
ray, pointer and function types; struct, union and typedef types are currently
omitted. The integral types fully specify the bit size of integers and floats, unlike
the semi-specified C types int, long, etc.

Within expressions, all C operators are supported except those related to
structs and unions. Expressions may have side-effects. All expressions and their
sub-expressions are annotated by their static types. We write aτ for the expres-
sion a carrying type τ . These types are necessary to determine the semantics
of type-dependent operators such as the overloaded arithmetic operators. Simi-
larly, combined arithmetic-assignment operators such as += carry an additional
type σ (as in (a1 +=σ a2)τ ) representing the result type of the arithmetic oper-
ation, which can differ from the type τ of the whole expression.

At the level of statements, all structured control statements of C (condi-
tional, loops, break, continue and return) are supported, but not unstruc-
tured statements (goto, switch, longjmp). Two kinds of variables are allowed:
global variables and local auto variables declared at the beginning of a function.
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Types:
signedness ::= Signed | Unsigned
intsize ::= I8 | I16 | I32
floatsize ::= F32 | F64
τ ::= Tint(intsize, signedness) | Tfloat(floatsize)

| Tarray(τ, n) | Tpointer(τ ) | Tvoid | Tfunction(τ∗, τ )

Expressions annotated with types:
a ::= bτ

Unannotated expressions:
b ::= id variable identifier

| n | f integer or float constant
| sizeof(τ ) size of a type
| opu a unary arithmetic operation
| a1 opb a2 | a1 opr a2 binary arithmetic operation
| *a dereferencing
| a1[a2] array indexing
| &a address of
| ++a | --a | a++ | a-- pre/post increment/decrement
| (τ )a cast
| a1 = a2 assignment
| a1 opb =τ a2 arithmetic with assignment
| a1 && a2 | a1 || a2 sequential boolean operations
| a1, a2 sequence of expressions
| a(a∗) function call
| a1 ? a2 : a3 conditional expression

opb ::= + | - | * | / | % arithmetic operators
| << | >> | & | | | ^ bitwise operators

opr ::= < | <= | > | >= | == | != relational operators
opu ::= - | ~ | ! unary operators

Statements:
s ::= skip empty statement

| a; expression evaluation
| s1; s2 sequence
| if(a) s1 else s2 conditional
| while(a) s “while” loop
| do s while(a) “do” loop
| for(a?

1, a
?
2, a

?
3) s “for” loop

| break exit from the current loop
| continue next iteration of the current loop
| return a? return from current function

Functions:
fn ::= (. . . id i : τi . . .) : τ declaration of type and parameters

{ . . . τj id j ; . . . declaration of local variables
s } function body

Fig. 1. Abstract syntax of Clight. a∗ denotes 0, 1 or several occurrences of syntactic
category a. a? denotes an optional occurrence of category a.
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Block-scoped local variables and static variables are omitted, but can be emu-
lated by pulling their declarations to function scope or global scope, respectively.
Consequently, there is no block statement in Clight.

A Clight program consists of a list of function definitions, a list of global
variable declarations, and an identifier naming the entry point of the program
(the main function in C).

2.2 Dynamic Semantics

The dynamic semantics of Clight is specified using natural semantics, also known
as big-step operational semantics. While the semantics of C is not deterministic
(the evaluation order for expressions is not completely specified and compilers
are free to choose between several orders), the semantics of Clight is completely
deterministic and imposes a left-to-right evaluation order, consistent with the
order implemented by our compiler. This choice simplifies greatly the semantics
compared with, for instance, Norrish’s semantics for C [10], which captures the
non-determinism allowed by the ISO C specification. Our semantics can therefore
be viewed as a refinement of (a subset of) the ISO C semantics, or of that of
Norrish.

The semantics is defined by 7 judgements (relations):

G,E � a,M l⇒ loc,M ′ (expressions in l-value position)
G,E � a,M ⇒ v,M ′ (expressions in r-value position)
G,E � a?,M ⇒ v,M ′ (optional expressions)
G,E � a∗,M ⇒ v∗,M ′ (list of expressions)
G,E � s,M ⇒ out ,M ′ (statements)
G � f(v∗),M ⇒ v,M ′ (function invocations)
� p⇒ v (programs)

Each judgement relates a syntactic element (expression, statement, etc) and an
initial memory state to the result of executing this syntactic element, as well as
the final memory state at the end of execution. The various kinds of results, as
well as the evaluation environments, are defined in figure 2.

For instance, executing an expression a in l-value position results in a mem-
ory location loc (a memory block reference and an offset within that block),
while executing an expression a in r-value position results in the value v of
the expression. Values range over 32-bit integers, 64-bit floats, memory loca-
tions (pointers), and an undefined value that represents for instance the value of
uninitialized variables. The result associated with the execution of a statement s
is an “outcome” out indicating how the execution terminated: either normally by
running to completion or prematurely via a break, continue or return state-
ment. The invocation of a function f yields its return value v, and so does the
execution of a program p.

Two evaluation environments, defined in figure 2, appear as parameters to the
judgements. The local environment E maps local variables to references of mem-
ory blocks containing the values of these variables. These blocks are allocated
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Values:
loc ::= (b, n) location (byte offset n in block referenced by b)
v ::= Vint(n) integer value

| Vfloat(f) floating-point value
| Vptr(loc) pointer value
| Vundef undefined value

Statement outcomes:
out ::= Out normal go to the next statement

| Out continue go to the next iteration of the current loop
| Out break exit from the current loop
| Out return function exit
| Out return(v, τ ) function exit, returning the value v of type τ

Global environments:
G ::= (id 	→ b) map from global variables to block references

×(b 	→ fn) and map from references to function definitions

Local environments:
E ::= id 	→ b map from local variables to block references

Fig. 2. Values, outcomes, and evaluation environments

at function entry and freed at function return. The global environment G maps
global variables and function names to memory references. It also maps some
references (those corresponding to function pointers) to function definitions.

In the Coq specification, the 7 judgements of the dynamic semantics are en-
coded as mutually-inductive predicates. Each defining case of each predicate
corresponds exactly to an inference rule in the conventional, on-paper presenta-
tion of natural semantics. We have one inference rule for each kind of expression
and statement described in figure 1. We do not list all the inference rules by lack
of space, but show some representative examples in figure 3.

The first two rules of figure 3 illustrate the evaluation of an expression in l-
value position. A variable x evaluates to the location (E(x), 0). If an expression a
evaluates to a pointer value Vptr(loc), then the location of the dereferencing
expression (*a)τ is loc.

Rule 3 evaluates an application of a binary operator op to expressions
a1 and a2. Both sub-expressions are evaluated in sequence, and their values
are combined with the eval_binary_operation function, which takes as
additional arguments the types τ1 and τ2 of the arguments, in order to resolve
overloaded and type-dependent operators. This is a partial function: it can be
undefined if the types and the shapes of argument values are incompatible
(e.g. a floating-point addition of two pointer values). In the Coq specification,
eval_binary_operation is a total function returning optional values: either
None in case of failure, or Some(v), abbreviated as �v�, in case of success.

Rule 4 rule shows the evaluation of an l-value expression in a r-value context.
The expression is evaluated to its location loc, with final memory state M ′. The
value at location loc in M ′ is fetched using the loadval function (see section 2.3)
and returned.
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Expressions in l-value position:

E(x) = b
(1)

G, E  xτ , M
l⇒ (b, 0), M

G, E  a, M ⇒ Vptr(loc), M ′
(2)

G, E  (*a)τ , M
l⇒ loc, M ′

Expressions in r-value position:

G, E  aτ1
1 , M ⇒ v1, M1 G, E  aτ2

2 , M1 ⇒ v2, M2

eval binary operation(op, v1, τ1, v2, τ2) = �v�
(3)

G, E  (aτ1
1 op aτ2

2 )τ , M ⇒ v, M2

G, E  aτ , M
l⇒ loc, M ′ loadval(τ, M ′, loc) = �v�

(4)
G, E  aτ , M ⇒ v, M ′

G, E  aτ , M
l⇒ loc, M1 G, E  bσ, M1 ⇒ v1, M2

cast(v1, σ, τ ) = �v� storeval(τ, M2, loc, v) = �M3�
(5)

G, E  (aτ = bσ)τ , M ⇒ v, M3

Statements:

G, E  break, M ⇒ Out break, M (6)

G, E  s1, M ⇒ Out normal, M1 G, E  s2, M1 ⇒ out, M2
(7)

G, E  (s1; s2), M ⇒ out, M2

G, E  s1, M ⇒ out, M ′ out �= Out normal
(8)

G, E  (s1; s2), M ⇒ out, M ′

G, E  a, M ⇒ v, M ′ is false(v)
(9)

G, E  (while(a) s),M ⇒ Out normal, M ′

G, E  a, M ⇒ v, M1 is true(v) G, E  s, M1 ⇒ Out break, M2
(10)

G, E  (while(a) s), M ⇒ Out normal, M2

G, E  a, M ⇒ v, M1 is true(v)
G, E  s, M1 ⇒ out , M2 out ∈ {Out normal, Out continue}

G, E  (while(a) s), M2 ⇒ out ′, M3
(11)

G, E  (while(a) s), M ⇒ out ′, M3

Fig. 3. Selected rules of the dynamic semantics of Clight

Rule 5 evaluates an assignment expression. An assignment expression aτ = bσ

evaluates the l-value a to a location loc, then the r-value b to a value v1. This
value is cast from its natural type σ to the expected type τ using the partial
function cast. This function performs appropriate conversions, truncations and
sign-extensions over integers and floats, and may fail for undefined casts. The
result v of the cast is then stored in memory at location loc, resulting in the
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final memory state M3, and returned as the value of the assignment expres-
sion.

The bottom group of rules in figure 3 are examples of statement executions.
The execution of a break statement yields an Out break outcome (rule 6). The
execution of a sequence of two statements starts with the execution of the first
statement, yielding an outcome that determines if the second statement must
be executed or not (rules 7 and 8). Finally, rules 9–11 describe the execution of
a while loop. Once the condition of a while loop is evaluated to a value v, the
execution of the loop terminates normally if v is false. If v is true, the loop body
is executed, yielding an outcome out . If out is Out_break, the loop terminates
normally. If out is Out_normal or Out_continue, the whole loop is reexecuted
in the memory state modified by the execution of the body.

2.3 The Memory Model of the Semantics

The memory model used in the dynamic semantics is described in [1]. It is a
compromise between a low-level view of memory as an array of bytes and a
high-level view as a mapping from abstract references to contents. In our model,
the memory is arranged in independent blocks, identified by block references b.
A memory state M maps references b to block contents, which are themselves
mappings from byte offsets to values. Each block has a low bound L(M, b) and a
high bound H(M, b), determined at allocation time and representing the interval
of valid byte offsets within this block. This memory model guarantees separation
properties between two distinct blocks, yet enables pointer arithmetic within a
given block, as prescribed by the ISO C specification. The same memory model is
common to the semantics of all intermediate languages of our certified compiler.

The memory model provides 4 basic operations:

alloc(M, lo, hi) = (M ′, b)
Allocate a fresh block of bounds [lo, hi). Returns extended memory M ′ and refer-
ence b to fresh block.

free(M, b) = M ′

Free (invalidate) the block b.

load(κ, M, b, n) = �v�
Read one or several consecutive bytes (as determined by κ) at block b, offset n in
memory state M . If successful return the contents of these bytes as value v.

store(κ, M, b, n, v) = �M ′�
Store the value v into one or several consecutive bytes (as determined by κ) at
offset n in block b of memory state M . If successful, return an updated memory
state M ′.

The memory chunks κ appearing in load and store operations describe con-
cisely the size, type and signedness of the memory quantities involved:

κ ::= Mint8signed | Mint8unsigned
| Mint16signed | Mint16unsigned small integers
| Mint32 integers and pointers
| Mfloat32 | Mfloat64 floats
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In the semantics of C, those quantities are determined by the C types of the
datum being addressed. The following A (“access mode”) function mediates
between C types and the corresponding memory chunks:

A(Tint(I8, Signed)) = By value(Mint8signed)
A(Tint(I8, Unsigned)) = By value(Mint8unsigned)
A(Tint(I16, Signed)) = By value(Mint16signed)

A(Tint(I16, Unsigned)) = By value(Mint16unsigned)
A(Tint(I32, )) = A(Tpointer( )) = By value(Mint32)

A(Tarray( , )) = A(Tfunction( , )) = By reference

A(Tvoid) = By nothing

Integer, float and pointer types involve an actual memory load when accessed,
as captured by the By_value cases. However, accesses to arrays and functions
return the location of the array or function, without any load; this is indicated
by the By_reference access mode. Finally, expressions of type void cannot be
accessed at all. This is reflected in the definitions of the loadval and storeval
functions used in the dynamic semantics:

loadval(τ,M, (b, n)) = load(κ,M, b, n) if A(τ) = By value(κ)
loadval(τ,M, (b, n)) = �b, n� if A(τ) = By reference
loadval(τ,M, (b, n)) = None if A(τ) = By nothing

storeval(τ,M, (b, n), v) = store(κ,M, b, n, v) if A(τ) = By value(κ)
storeval(τ,M, (b, n), v) = None otherwise

2.4 Static Semantics (Typing Rules)

We have also formalized in Coq typing rules and a type checking algorithm
for Clight. The algorithm is presented as a function from abstract syntax trees
without type annotations to the abstract syntax trees with type annotations over
expressions given in figure 1. We omit the typing rules by lack of space. Note that
the dynamic semantics are defined for arbitrarily annotated expressions, not just
well-typed expressions; however, the semantics can get stuck or produce results
that disagree with ISO C when given an incorrectly-annotated expression. The
translation scheme presented in section 3 demands well-typed programs and may
fail to preserve semantics otherwise.

3 Translation from Clight to Cminor

3.1 Overview of Cminor

The Cminor language is the target language of our front-end compiler for C and
the input language for our certified back-end. We now give a short overview of
Cminor; see [8] for a more detailed description, and [7] for a complete formal
specification.
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Cminor is a low-level imperative language, structured like our subset of C
into expressions, statements, and functions. We summarize the main differences
with Clight. First, arithmetic operators are not overloaded and their behavior
is independent of the static types of their operands. Distinct operators are pro-
vided for integer arithmetic and floating-point arithmetic. Conversions between
integers and floats are explicit. Arithmetic is always performed over 32-bit in-
tegers and 64-bit floats; explicit truncation and sign-extension operators are
provided to implement smaller integral types. Finally, the combined arithmetic-
with-assignment operators of C (+=, ++, etc) are not provided. For instance, the
C expression i += f where i is of type int and f of type double is expressed
as i = intoffloat(floatofint(i) +f f).

Address computations are explicit, as well as individual load and store op-
erations. For instance, the C expression a[i] where a is a pointer to int is
expressed as load(int32, a +i i *i 4), making explicit the memory chunk
being addressed (int32) as well as the computation of the address.

At the level of statements, Cminor has only 4 control structures: if-then-else
conditionals, infinite loops, block-exit, and early return. The exit n statement
terminates the (n + 1) enclosing block statements. These structures are lower-
level than those of C, but suffice to implement all reducible flow graphs.

Within Cminor functions, local variables can only hold scalar values (integers,
pointers, floats) and they do not reside in memory, making it impossible to
take a pointer to a local variable like the C operator & does. Instead, each
Cminor function declares the size of a stack-allocated block, allocated in memory
at function entry and automatically freed at function return. The expression
addrstack(n) returns a pointer within that block at constant offset n. The
Cminor producer can use this block to store local arrays as well as local scalar
variables whose addresses need to be taken.1

The semantics of Cminor is defined in big-step operational style and resembles
that of Clight. The following evaluation judgements are defined in [7]:

G, sp, L � a,E,M → v, E′,M ′ (expressions)
G, sp, L � a∗, E,M → v∗, E′,M ′ (expression lists)
G, sp � s, E,M → out, E′,M ′ (statements)

G � fn(v∗),M → v,M ′ (function calls)
� prog → v (whole programs)

The main difference with the semantics of Clight is that the local evaluation
environment E maps local variables to their values, instead of their memory ad-
dresses; consequently, E is modified during evaluation of expressions and state-
ments. Additional parameters are sp, the reference to the stack block for the
current function, and L, the environment giving values to variables let-bound
within expressions.

1 While suboptimal in terms of performance of generated code, this systematic stack
allocation of local variables whose addresses are taken is common practice for mod-
erately optimizing C compilers such as gcc versions 2 and 3.
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3.2 Overview of the Translation

The translation from our subset of Clight to Cminor performs three basic tasks:

– Resolution of operator overloading and explication of all type-dependent be-
haviors. Based on the types that annotate Clight expressions, the appropri-
ate flavors (integer or float) of arithmetic operators are chosen; conversions
between ints and floats, truncations and sign-extensions are introduced to
reflect casts, both explicit in the source and implicit in the semantics of
Clight; address computations are generated based on the types of array ele-
ments and pointer targets; and appropriate memory chunks are selected for
every memory access.

– Translation of while, do...while and for loops into infinite loops with
blocks and early exits. The statements break and continue are translated
as appropriate exit constructs, as shown in figure 4.

– Placement of Clight variables, either as Cminor local variables (for local
scalar variables whose address is never taken), sub-areas of the Cminor stack
block for the current function (for local non-scalar variables or local scalar
variables whose address is taken), or globally allocated memory areas (for
global variables).2

The translation is specified as Coq functions from Clight abstract syntax to
Cminor abstract syntax, defined by structural recursion. From these Coq func-
tions, executable Caml code can be mechanically generated using the Coq ex-
traction facility, making the specification directly executable. Several translation
functions are defined: L and R for expressions in l-value and r-value position,
respectively; S for statements; and F for functions. Some representative cases of
the definitions of these functions are shown in figure 4, giving the general flavor
of the translation.

The translation can fail when given invalid Clight source code, e.g. contain-
ing an assignment between arrays. To enable error reporting, the translation
functions return option types: either None denoting an error, or �x� denoting
successful translation with result x. Systematic propagation of errors is achieved
using a monadic programming style (the bind combinator of the error monad),
as customary in purely functional programming. This monadic “plumbing” is
omitted in figure 4 for simplicity.

Most translation functions are parameterized by a translation environment γ
reflecting the placement of Clight variables. It maps every variable x to either
Local (denoting the Cminor local variable named x), Stack(δ) (denoting a sub-
area of the Cminor stack block at offset δ), or Global (denoting the address
of the Cminor global symbol named x). This environment is constructed at
the beginning of the translation of a Clight function. The function body is

2 It would be semantically correct to stack-allocate all local variables, like the C0
verified compiler does [6,12]. However, keeping scalar local variables in Cminor local
variables as much as possible enables the back-end to generate much more efficient
machine code.
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Casts (Cσ
τ (e) casts e from type τ to type σ):

Cσ
τ (e) = C2(C1(e, τ, σ), σ)

C1(e, τ, σ) =

⎧⎪⎨⎪⎩
floatofint(e), if τ = Tint( , Signed) and σ = Tfloat( );
floatofintu(e), if τ = Tint( , Unsigned) and σ = Tfloat( );
intoffloat(e), if τ = Tfloat( ) and σ = Tint( , );
e otherwise

C2(e, σ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cast8signed(e), if σ = Tint(I8, Signed);
cast8unsigned(e), if σ = Tint(I8, Unsigned);
cast16signed(e), if σ = Tint(I16, Signed);
cast16unsigned(e), if σ = Tint(I16, Unsigned);
singleoffloat(e), if σ = Tfloat(F32);
e otherwise

Expressions in l-value position:
Lγ(x) = addrstack(δ) if γ(x) = Stack(δ)

Lγ(x) = addrglobal(x) if γ(x) = Global

Lγ(*e) = Rγ(e)

Lγ(e1[e2]) = Rγ(e1 + e2)

Expressions in r-value position:
Rγ(x) = x if γ(x) = Local

Rγ(eτ ) = load(κ, Lγ(eτ )) if Lγ(e) is defined and A(τ ) = By value(κ)

Rγ(eτ ) = Lγ(eτ ) if Lγ(e) is defined and A(τ ) = By reference

Rγ(xτ = eσ) = x = Cτ
σ(R(eσ)) if γ(x) = Local

Rγ(eτ
1 = eσ

2 ) = store(κ, Lγ(eτ
1), Cτ

σ(R(eσ
2 ))) if A(τ ) = By value(κ)

Rγ(&e) = Lγ(e)

Rγ(eτ
1 + eσ

2 ) = Rγ(eτ
1) +i Rγ(eσ

2 ) if τ and σ are integer types

Rγ(eτ
1 + eσ

2 ) = Cdouble
τ (Rγ(eτ

1)) +f Cdouble
σ (Rγ(eσ

2 )) if τ or σ are float types

Rγ(eτ
1 + eσ

2 ) = Rγ(eτ
1) +i Rγ(eσ

2 ) *i sizeof(ρ) if τ is a pointer or array of ρ

Statements:
Sγ(while(e) s) = block{ loop{ if (!Rγ(e)) exit 0; block{ Sγ(s) }}}

Sγ(do s while(e)) = block{ loop{ block{ Sγ(s) }; if (!Rγ(e)) exit 0 }}
Sγ(for(e1; e2; e3) s) = Rγ(e1);

block{ loop{ if (!Rγ(e2)) exit 0; block{ Sγ(s) }; Rγ(e3) }}
Sγ(break) = exit 1

Sγ(continue) = exit 0

Fig. 4. Selected translation rules

scanned for occurrences of &x (taking the address of a variable). Local vari-
ables that are not scalar or whose address is taken are assigned Stack(δ) loca-
tions, with δ chosen so that distinct variables map to non-overlapping areas of
the stack block. Other local variables are set to Local, and global variables to
Global.



Formal Verification of a C Compiler Front-End 471

4 Proof of Correctness of the Translation

4.1 Relating Memory States

To prove the correctness of the translation, the major difficulty is to relate the
memory states occurring during the execution of the Clight source code and
that of the generated Cminor code. The semantics of Clight allocates a distinct
block for every local variable at function entry. Some of those blocks (those
for scalar variables whose address is not taken) have no correspondence in the
Cminor memory state; others become sub-block of the Cminor stack block for
the function.

To account for these differences in allocation patterns between the source and
target code, we introduce the notion of memory injections. A memory injection
α is a function from Clight block references b to either None, meaning that this
block has no counterpart in the Cminor memory state, or �b′, δ�, meaning that
the block b of the Clight memory state corresponds to a sub-block of block b′ at
offset δ in the Cminor memory state.

A memory injection α defines a relation between Clight values v and Cminor
values v′, written α � v ≈ v′ and defined as follows:

α � Vint(n) ≈ Vint(n) α � Vfloat(n) ≈ Vfloat(n) α � Vundef ≈ v

α(b) = �b′, δ� i′ = i+ δ (mod 232)

α � Vptr(b, i) ≈ Vptr(b′, i′)

This relation captures the relocation of pointer values implied by α. It also
enables Vundef Clight values to become more defined Cminor values during the
translation, in keeping with the general idea that compilation can particularize
some undefined behaviors.

The memory injection α also defines a relation between Clight and Cminor
memory states, written α � M ≈ M ′, consisting of the conjunction of the
following conditions:

– Matching of block contents: if α(b) = �b′, δ� and L(M, b) ≤ i < H(M, b),
then L(M ′, b′) ≤ i + δ < H(M ′, b′) and α � v ≈ v′ where v is the contents
of block b at offset i in M and v′ the contents of b′ at offset i′ in M ′.

– No overlap: if α(b1) = �b′1, δ1� and α(b2) = �b′2, δ2� and b1 	= b2, then either
b′1 	= b′2, or the intervals [L(M, b1) + δ1, H(M, b1) + δ1) and [L(M, b2) +
δ2, H(M, b2) + δ2) are disjoint.

– Fresh blocks: α(b) = None for all blocks b not yet allocated in M .

The memory injection relations have nice commutation properties with respect
to the basic operations of the memory model. For instance:

– Commutation of loads: if α �M ≈M ′ and α � Vptr(b, i) ≈ Vptr(b′, i′) and
load(κ,M, b, i) = �v�, there exists v′ such that load(κ,M ′, b′, i′) = �v′� and
α � v ≈ v′.
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– Commutation of stores to mapped blocks: if α � M ≈ M ′ and
α � Vptr(b, i) ≈ Vptr(b′, i′) and α � v ≈ v′ and store(κ,M, b, i, v) = �M1�,
there exists M ′

1 such that store(κ,M ′, b′, i′, v′) = �M ′
1� and α �M1 ≈M ′

1.
– Invariance by stores to unmapped blocks: if α � M ≈ M ′ and α(b) = None

and store(κ,M, b, i, v) = �M1�, then α �M1 ≈M ′.

To enable the memory injection α to grow incrementally as new blocks are
allocated during execution, we define the relation α′ ≥ α (read: α′ extends α)
by ∀b, α′(b) = α(b) ∨ α(b) = None. The injection relations are preserved by
extension of α. For instance, if α � M ≈ M ′, then α′ � M ≈ M ′ for all α′ such
that α′ ≥ α.

4.2 Relating Execution Environments

Execution environments differ in structure between Clight and Cminor: the
Clight environment E maps local variables to references of blocks containing
the values of the variables, while in Cminor the environment E′ for local
variables map them directly to values. We define a matching relation
EnvMatch(γ, α,E,M,E′, sp) between a Clight environment E and memory
state M and a Cminor environment E′ and reference to a stack block sp as
follows:

– For all variables x of type τ , if γ(x) = Local, then α(E(x)) = None and
there exists v such that load(κ(τ),M,E(x), 0) = �v� and α � v ≈ E′(x).

– For all variables x of type τ , if γ(x) = Stack(δ), then α � Vptr(E(x), 0) ≈
Vptr(sp, δ).

– For all x 	= y, we have E(x) 	= E(y).
– If α(b) = �sp, δ� for some block b and offset δ, then b is in the range of E.

The first two conditions express the preservation of the values of local variables
during compilation. The last two rule out unwanted sharing between environ-
ment blocks and their images through α.

At any point during execution, several function calls may be active and we
need to ensure matching between the environments of each call. For this, we
introduce abstract call stacks, which are lists of 4-tuples (γ,E,E′, sp) and
record the environments of all active functions. A call stack cs is globally
consistent with respect to C memory state M and memory injection α,
written CallInv (α,M, cs), if EnvMatch(γ, α,E,M,E′, sp) holds for all elements
(γ,E,E′, sp) of cs . Additional conditions, omitted for brevity, enforce
separation between Clight environments E and between Cminor stack blocks sp
belonging to different function activations in cs .

4.3 Proof by Simulation

The proof of semantic preservation for the translation proceeds by induction over
the Clight evaluation derivation and case analysis on the last evaluation rule
used. The proof shows that, assuming suitable consistency conditions over the
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abstract call stack, the generated Cminor expressions and statements evaluate
in ways that simulate the evaluation of the corresponding Clight expressions and
statements.

We give a slightly simplified version of the simulation properties shown by
induction over the Clight evaluation derivation. Let G′ be the global Cminor
environment obtained by translating all function definitions in the global Clight
environment G. Assume CallInv(α,M, (γ,E,E′, sp).cs) and α �M ≈M ′. Then
there exists a Cminor environmentE′

1, a Cminor memory stateM ′
1 and a memory

injection α1 ≥ α such that

– (R-values) If G,E � a,M ⇒ v,M1, there exists v′ such that
G′, sp, L � Rγ(a), E′,M ′ → v′, E′

1,M
′
1 and α1 � v ≈ v′.

– (L-values) If G,E � a,M
l⇒ loc,M1, there exists v′ such that

G′, sp, L � Lγ(a), E′,M ′ → v′, E′
1,M

′
1 and α1 � Vptr(loc) ≈ v′.

– (Statements) If G,E � s,M ⇒ out ,M1 and τr is the return type of the
function, there exists out ′ such that G′, sp � Sγ(s), E′,M ′ → out ′, E′

1,M
′
1

and α1, τr � out ≈ out ′.

Moreover, the final Clight and Cminor states satisfy α1 � M1 ≈ M ′
1 and

CallInv(α1,M1, (γ,E,E′
1, sp).cs).

In the case of statements, the relation between Clight and Cminor outcomes
is defined as follows:

α, τr � Out normal ≈ Out normal α, τr � Out continue ≈ Out exit(0)
α, τr � Out break ≈ Out exit(1) α, τr � Out return ≈ Out return

α � cast(v, τ, τr) ≈ v′

α, τr � Out return(v, τ) ≈ Out return(v′)

In addition to the outer induction over the Clight evaluation derivation, the
proofs proceed by copious case analysis, over the placement γ(x) for accesses to
variables x, and over the types of the operands for applications of overloaded
operators. As a corollary of the simulation properties, we obtain the correctness
theorem for the translation:

Theorem 1. Assume the Clight program p is well-typed and translates without
errors to a Cminor program p′. If � p⇒ v, and if v is an integer or float value,
then � p′ → v.

This semantic preservation theorem applies only to terminating programs. Our
choice of big-step operational semantics prevents us from reasoning over non-
terminating executions.

The whole proof represents approximately 6000 lines of Coq statements and
proof scripts, including 1000 lines (40 lemmas) for the properties of memory
injections, 1400 lines (54 lemmas) for environment matching and the call stack
invariant, 1400 lines (50 lemmas) for the translations of type-dependent opera-
tors and memory accesses, and 2000 lines (51 lemmas, one per Clight evaluation
rule) for the final inductive proof of simulation. By comparison, the source code
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of the Clight to Cminor translator is 800 lines of Coq function definitions. The
proof is therefore 7.5 times bigger than the code it proves. The whole develop-
ment (design and semantics of Clight; development of the translator; proof of its
correctness) took approximately 8 person.months.

5 Related Work

Several formal semantics of C-like languages have been defined. Norrish [10] gives
a small-step operational semantics, expressed using the HOL theorem prover, for
a subset of C comparable to our Clight. His semantics captures exactly the non-
determinism (partially unspecified evaluation order) allowed by the ISO C spec-
ification, making it significantly more complex than our deterministic semantics.
Papaspyrou [11] addresses non-determinism as well, but using denotational se-
mantics with monads. Abstract state machines have been used to give on-paper
semantics for C [4,9] and more recently for C# [3].

Many correctness proofs of program transformations have been published,
both on paper and machine-checked using proof assistants; see [2] for a sur-
vey. A representative example is [5], where a non-optimizing byte-code compiler
from a subset of Java to a subset of the Java Virtual Machine is verified using
Isabelle/HOL. Most of these correctness proofs apply to source languages that
are either smaller or semantically cleaner than C.

The work that is closest to ours is part of the Verisoft project [6,12]. Using
Isabelle/HOL, they formalize the semantics of C0 (a subset of the C language)
and a compiler from C0 down to DLX assembly code. C0 is a type-safe sub-
set of C, close to Pascal, and significantly smaller than our Clight: there is no
pointer arithmetic, nor side effects, nor premature execution of statements and
there exists only a single integer type, thus avoiding operator overloading. They
provide both a big step semantics and a small step semantics for C0, the latter
enabling reasoning about non-terminating and concurrent executions, unlike our
big-step semantics. Their C0 compiler is a single pass compiler that generates
unoptimized machine code. It is more complex than our translation from Clight
to Cminor, but considerably simpler than our whole certified compiler.

6 Concluding Remarks

The C language is not pretty; this shows up in the relative complexity of our
formal semantics and translation scheme. However, this complexity remains man-
ageable with the tools (the Coq proof assistant) and the methodology (big-step
semantics; simulation arguments; extraction of an executable compiler from its
functional Coq specification) that we used.

Future work includes 1- handling a larger subset of C, especially struct types;
and 2- evaluating the usability of the semantics for program proof and static
analysis purposes. In particular, it would be interesting to develop axiomatic
semantics (probably based on separation logic) for Clight and validate them
against our operational semantics.
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Abstract. Modern concurrent programming languages like Java and
C# have a programming language level memory model; it captures the
set of all allowed behaviors of programs on any implementation platform
— uni- or multi-processor. Such a memory model is typically weaker than
Sequential Consistency and allows reordering of operations within a pro-
gram thread. Therefore, programs verified correct by assuming Sequen-
tial Consistency (that is, each thread proceeds in program order) may
not behave correctly on certain platforms! The solution to this problem
is to develop program checkers which are memory model sensitive. In this
paper, we develop such an invariant checker for the programming lan-
guage C#. Our checker identifies program states which are reached only
because the C# memory model is more relaxed than Sequential Con-
sistency. Furthermore, our checker identifies (a) operation reorderings
which cause such undesirable states to be reached, and (b) simple pro-
gram modifications — by inserting memory barrier operations — which
prevent such undesirable reorderings.

1 Introduction

Modern mainstream programming languages like Java and C# support multi-
threading as an essential feature of the language. In these languages multiple
threads can access shared objects. Moreover, synchronization mechanisms exist
for controlling access to shared objects by threads. If every access to a shared
object by any thread requires prior acquisition of a common lock, then the
program is guaranteed to be “properly synchronized”. On the other hand, if
there are two accesses to a shared object/variable v by two different threads, at
least one of them is a write, and they are not ordered by synchronization — the
program is then said to contain a data race, that is, the program is improperly
synchronized. Improperly synchronized programs are common for more than one
reason — (a) programmers may want to avoid synchronization overheads for
low-level program fragments which are executed frequently, (b) programmers
may forget to add certain synchronization operations in the program, or (c)
programmers forget to maintain a common lock guarding accesses to some shared
variable v since there are often many lock variables in a real-life program.

Problem Statement. The work in this paper deals with formal verification
(and subsequent debugging) of multi-threaded C# programs which are improp-
erly synchronized. As a simple example consider the following schematic program
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fragment, and suppose initially x = y = 0. Moreover l1, l2 are thread-local
variables while x, y are shared variables.

x = 1;
y = 1;

l1 = y;
l2 = x;

If this program is executed on a uni-processor platform, we cannot have l1 =
1, l2 = 0 at the end of the program. However, on a multiprocessor platform
which allows reordering of writes to different memory locations this is possible.
On such a platform, the writes to x, y may be completed out-of-order. As a
result, the following completion order is possible 〈y = 1, l1 = y, l2 = x, x = 1〉.

Since an improperly synchronized program can exhibit different sets of be-
haviors on different platforms, how do we even specify the semantics of such
programs and reason about them? Clearly, we would like to reason about pro-
grams in a platform-independent fashion, rather than reasoning about a pro-
gram’s behaviors separately for each platform. Languages like Java, C# allow
such platform-independent reasoning by defining a memory model at the pro-
gramming language level. Now, what does a memory model for a program-
ming language like C# mean? The C# memory model (also called the .NET
memory model [15]) is a set of abstract rules which capture the behaviors of
multi-threaded programs on any implementation platform — uni-processor or
multi-processor. Given a multi-threaded C# program P , the set of execution
traces of P permitted under the .NET memory model is a superset of the traces
obtained by interleaving the operations of program P ’s individual threads. The
operations in any thread include read/write of shared variables and synchro-
nization operations like lock/unlock. The .NET memory model permits certain
operations within a thread to be completed out-of-order, that is, the program-
ming language level memory model essentially specifies which reorderings are
allowed. So, to consider all program behaviors we need to take into account
— (a) arbitrary interleavings of threads, and (b) certain (not all) reorderings
within a thread. This makes the formal verification of improperly synchronized
multi-threaded programs especially hard.

Basic Approach. In this paper, we develop a memory-model sensitive invariant
checker for the programming language C#. Our checker verifies a C# program
at the level of bytecodes. The checker proceeds by representing and managing
states at the level of C#’s stack-based virtual machine. Moreover, the checker’s
state space exploration takes the .NET memory model into account. In other
words, it allows the reorderings permitted by .NET memory model to explore
additional reachable states in a program. Thus, the programming language level
memory model is treated as a formal contract between the program and the lan-
guage implementation; we then take this contract into account during software
verification.

Furthermore, we note that programmers usually understand possible behav-
iors of a multi-threaded program by using a stronger model called Sequential
Consistency [10]. An execution model for multi-threaded programs is sequen-
tially consistent if for any program P (a) any execution of P is an interleaving of
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the operations in the constituent threads (b) the operations in each constituent
thread execute in program order. Thus, if we are model checking an invariant ϕ,
our checker may uncover counter-example traces which (a) violate ϕ , and (b)
are not allowed under Sequential Consistency. Disallowing such counter-example
traces requires disabling reorderings among operations. This is usually done by
inserting memory barriers or fence operations; a memory barrier is an operation
such that instructions before the barrier must complete before the starting of
instructions after the barriers. Since memory barriers are expensive operations
(in terms of performance) we use a maxflow-mincut algorithm to insert minimal
number of barriers/fences for ruling out program states which are unreachable
under Sequential Consistency.

Technical Contributions. Our work involves the following steps — which
taken together constitute the technical contributions of this paper.

– Memory Model Specification We first understand and formally specify the
.NET memory model. Previous works [23] have investigated this issue and
discussed certain corner cases in the .NET memory model description. Unlike
[23], our specification is not operational/executable, making it more acces-
sible to system designers (who may not have formal methods background).

– The Checker We use the .NET memory model specification to develop a
memory model sensitive invariant checker at the level of bytecodes. It allows
all execution traces permitted by .NET memory model. The checker issues
operations in program order but allows them to complete out-of-order as
long as the reordering is permitted by .NET memory model.

– Memory Barrier Insertion Our checker is useful for uncovering all execution
traces allowed by the .NET memory model. However, when the programmer
finds “unexpected” execution traces using our checker how does (s)he disal-
low this behavior? We use the well-known maxflow-mincut algorithm [7] to
rule out program states unreachable under Sequential Consistency. The min-
cut yields (a minimal number of) places in the program where the memory
barriers are to be inserted.

In Section 3 we show a simple working example to explain our identification and
removal of undesirable program behaviors.

2 Related Work

Programming language level memory models are relatively new. In the recent
years, substantial research efforts have been invested in developing the Java
Memory Model (e.g. see [1,11,13]). These works mostly focus on what should be
the programming language level memory model for Java.

For the .NET memory model, a formal executable specification based on Ab-
stract State Machines has been discussed in [23]. In this paper, we formally
present the .NET memory model in a tabular non-operational format — clearly
showing which pairs of operations can be reordered. This makes the formal spec-
ification more accessible to system designers as well. Furthermore, even though
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our memory model specification itself is not executable (unlike [23]) we show
how it can be exploited for exploring the state space of a program.

As far as program verification is concerned, typically most works on multi-
threaded program verification are oblivious of the programming language
memory model. For all such works, the execution model implicitly assumed is Se-
quential Consistency — operations in a thread proceed in program order and any
interleaving among the threads is possible. Integrating programming language
level memory models for reasoning about programs has hardly been studied.
In particular, our previous work [21] integrated an operational specification of
the Java Memory Model for software model checking. Also, the work of [24] in-
tegrates an executable memory model specification for detecting data races in
multi-threaded Java programs.

Our checker verifies programs at the level of bytecodes; its state space rep-
resentation has similarities with the Java Path Finder (JPF) model checker [9].
However, JPF is not sensitive to Java memory model, and it implicitly considers
sequential consistency as the program execution model. In fact, works on byte-
code level formal reasoning (e.g., see [18] and the articles therein) typically have
not considered the programming language level memory model.

The work of [12] develops a behavioral simulator to explore program behaviors
allowed by the Java memory model. Apart from the differences in programming
language (Java and C#) there are at least two conceptual differences between our
work and [12]. First of all, their explorer works at the level of abstract operations
such as read/write/lock/unlock whereas our checker operates at the lower (and
more realistic) bytecode level. Secondly, and more importantly, our tool does not
only explore all program executions allowed by the .NET memory model. It can
also suggest which barriers are to be inserted for disallowing program executions
which are not sequentially consistent but are allowed by the (more relaxed) .NET
memory model. This technique is generic and is not restricted to C#.

Finally, an alternative to our strategy of inserting memory barriers might be
to mark all shared variables in the program as volatile [14]. We however note this
does not work due to the weak definition and implementation of volatiles in C#.
In particular, C# language documents [14] and C# implementations (e.g., .NET
2.0) seem to allow reordering of volatile writes occurring before volatile reads in a
program thread. On the other hand, memory barriers have a clear well-understood
semantics but they incur performance overheads. For this reason, given an invari-
ant property ϕ we insert minimal memory barriers in the program text which dis-
allow all non-sequentially consistent execution traces violating invariant ϕ. Note
that we are inserting memory barriers to disallow execution traces (in a state tran-
sition graph) which violate a given invariant property. Thus, we do not seek to
avoid all data races, our aim is to avoid violations of a given program invariant.

3 A Working Example

We consider Peterson’s mutual exclusion algorithm [20] to illustrate our approach.
The algorithm uses two lock variables and one shared turn variable to ensure
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mutually exclusive access to a critical section; a shared variable counter is in-
cremented within the critical section. Initially, we have lock0 = lock1 = turn =
counter = 0.

Thread 1
1. lock0 = 1;

2. turn = 1;

3. while(1){
4. if (lock1!=1)||(turn==0)

5. break; }
6. counter++;
7. lock0 = 0;

Thread 2
A. lock1 = 1;

B. turn = 0;

C. while(1) {
D. if (lock0!=1)||(turn==1)

E. break; }
F. counter++;
G. lock1 = 0;

In this program we are interested in the value of the variable counterwhen the
program exits. Under sequential consistency, the algorithm is proven to allow only
a single thread running in the critical section at the same time and thus when the
program exits, we always have counter == 2. However when we run the program
in a relaxed memory model (such as the .NET memory model) we can observe
counter == 1 at the end. One execution trace that can lead to such an observable
value is as follows.

Thread 1 Thread 2
write lock0 = 1 (line 1)
write turn = 1 (line 2)
read 0 from lock1, break (line 4,5)
read 0 from counter (line 6)

write lock1 = 1 (line A)
write turn=0 (line B)

At this point, Thread 1 can write 1 to counter (line 6), then write 0 to lock0
(line 7). However if the writes to counter and lock0 are reordered, lock0 = 0 is
written while counter still holds the old value 0. Thread 2 reads lock0 = 0, it will
break out of its loop and load the value of counter which is now still 0. So both
threads will write the value 1 to counter, leading to counter == 1 at the end of
the program.

Finding out such behaviors is a complex and error-prone task if it is done man-
ually. Moreover even after we find them, how do we disable such behaviors? A
quick way to fix the problem is to disable all reorderings within each thread; this
clearly ensures Sequential Consistency. Recall that a memory barrier requires all
instructions before the barrier to complete before the starting of all operations af-
ter the barrier. We can disable all reorderings allowed by a given relaxed memory
model by inserting a memory barrier after each operation which can possibly be
reordered. This will lead to very high performance overheads.

Note that running the above code with all shared variables being volatile also
does not work. In Microsoft .NET Framework 2.0 on Intel Pentium 4, the variable
counter is still not always observed to be 2 at the end of the program. This seems
to be due to the possibility of (volatile-write→ volatile-read) reorderings, an issue
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about which the CLI specification is also ambiguous. We discuss this matter in
more details in the next section.

In this paper, we provide a solution to the problem of finding additional be-
haviors under a relaxed memory model and then disabling those behaviors with-
out compromising program efficiency. Using our checker we can first explore all
reachable states under Sequential Consistency and confirm that counter == 2 is
guaranteed at the end of the program. This amounts to verifying the invariant
property AG((pc == end) ⇒ (counter == 2)) expressed in Computation Tree
Logic (CTL). Here pc stands for the program counter (capturing the control lo-
cations of both the threads) and end stands for the last control location (where
both threads have terminated). We then check the same invariant property under
the .NET memory model; this check amounts to exploring more reachable states
from the initial state (as compared to the set of reachable states computed under
Sequential Consistency). We find that under the .NET memory model, our prop-
erty can be violated since counter == 1 is possible at the end of the program. The
checker does a full reachable state space exploration and returns all the counter-
example traces, that is, all possible ways of having counter 	= 2 at the end of the
program.

However, more importantly, our checker does not stop at detecting possible ad-
ditional (and undesirable) behaviors under the .NET memory model. After finding
that the property AG((pc == end) ⇒ (counter == 2)) is violated under .NET
memory model, our checker employs a memory barrier insertion heuristic to sug-
gest an error correction strategy; it finds three places in each thread for inserting
memory barriers. We only show the modified code for Thread1; Thread2’s modi-
fication is similar.

lock0 = 1; MemoryBarrier; turn = 1;

while(1){
MemoryBarrier; if((lock1 != 1) || (turn == 0)) break;

}
counter++; MemoryBarrier; lock0 = 0;

The inserted memory barriers are sufficient to ensure that the algorithm will
work correctly under the relaxed memory model of C# (while still allowing the
compiler/hardware to reorder other operations for maximum performance). This
claim can again be verified using our checker — that is, by running the checker on
the program with barriers under the relaxed .NET memory model we can verify
that AG((pc == end) ⇒ (counter == 2)) holds. Moreover, the number of in-
serted barriers is also “optimal” — that is, at least so many barriers are needed to
disallow all possible violations of AG((pc == end)⇒ (counter == 2)) under the
.NET memory model.

4 .NET Memory Model and Its Implementation

In this section, we first describe the programming language level memory model
for C#, also called the .NET memory model, based on the information in two Mi-
crosoft’s official ECMA standard document [15] and [14].
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We present which reorderings are allowed by .NET memory model as a reorder-
ing table. We first describe the bytecode types it considers and then present al-
lowed bytecode reorderings. The bytecode types are:

– Volatile reads/writes: Reads/writes to volatile variables (Variables in a C#
program can be marked by the programmer by the keyword “volatile” indi-
cating that any access to such a variable should access its master copy).

– Normal reads/writes: Reads/writes to variables which have not been marked
as volatile in the program.

– Lock/unlock: The synchronization operations.

Among these operations, the model allows the reorderings summarized by
Table 1. The model leaves a lot of possibility for optimization as long as program
dependencies within a thread are not violated (e.g., store x; load x is never exe-
cuted out-of-order due to data dependency on x). While data-dependency removal
may allow more optimizations, the CLI documents explicitly prohibit doing so —
see execution order rules in section 10.10 of [14]. Furthermore, here we are present-
ing the memory model in terms of allowed bytecode reorderings and not in terms
of reorderings of abstract program actions. Optimizations which remove depen-
dencies are usually performed by the compiler (the hardware platforms respect
program dependencies) and hence would already be reflected in the bytecode.

Table 1. Bytecode reordering allowed by the .NET memory model

Reorder 2nd bytecode

1st bytecode Read Write Volatile Read Volatile Write Lock Unlock

Read Yes Yes Yes No Yes No

Write Yes Yes Yes No Yes No

Volatile-Read No No No No No No

Volatile-Write Yes Yes Yes No Yes No

Lock No No No No No No

Unlock Yes Yes Yes No No No

Our reordering table is constructed based on the following considerations.

– Normal Reads and Writes are freely reordered.
– Locks and Unlocks are never reordered.
– Volatile Reads and writes have acquire-release semantics, that is, operations

after (before) volatile-read (volatile-write) cannot be moved to before (after)
the volatile-read (volatile-write).

An interesting case is when a volatile write is followed by a volatile read (to
a different variable). If we adhere to a strict ordering of all volatile operations,
this reordering is disallowed.1 But it seems that Microsoft’s .NET 2.0 allows this
1 Note that even if we allow (volatile-write → volatile-read) reorderings, we can still

ensure that all writes to volatile variables are seen in the same order from all threads
of execution.
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reordering on Peterson’s mutual exclusion example shown in Section 3 e.g., the
reads in Line 4 (or Line D) can get reordered w.r.t. writes in Lines 1,2 (Lines A,
B) thereby leading to violation of mutual exclusion. The ECMA documents [15]
and [14] are also silent on this issue; they only mention that operations cannot be
moved before (after) a volatile read (volatile write), thus leaving out the case when
a volatile write is followed by a volatile read.

Our checker implements the .NET Common Language Infrastructure (CLI) in-
struction set specified in [15]. We allow reordering of operations by (a) requiring
all bytecodes to issue in program order and (b) allow certain bytecodes (whose
reordering is allowed by the memory model) to complete out-of-order. Allowing
reorderings according to the .NET memory model involves additional data struc-
tures in the state representation of our checker. In particular, for each thread we
now need to maintain a list of “incomplete” bytecodes — bytecodes which have
been issued but have not completed. The execution model allows a programthread
to either execute its next bytecode or complete one of the incomplete bytecodes.
We now proceed to elaborate on the state space representation and the reachabil-
ity analysis.

5 Invariant Checker

The core of our checker is a virtual machine that executes .NET Common Lan-
guage Infrastructure (CLI) bytecode using explicit state representation. It
supportsmany threads of execution by interleaving issuing and completing of byte-
codes from all threads. We implemented only a subset of the CLI features. Features
such as networking, I/O, class polymorphism and exception handling are not in-
cluded in the implementation.

5.1 State Representation

We first consider the global state representation without considering the effects
of the reorderings allowed by .NET memory model. To describe a global state we
use the notion of data units of the CLI virtual machine. The virtual machine uses
data units to hold the value of variables and stack items in the program. Each data
unit has an identifier (for it to be referred to), and a modifiable value. The type of
the modifiable value can be (a) one of the primitive data types, (b) reference types
(pointers to objects), or (c) objects. New data units are created when a variable or
a new object instance is allocated, or when a load instruction is executed. A global
state of a program now consists of the following data units, corresponding to the
different memory areas of the CLI virtual machine [15].

Program counter for each thread. Each thread has a program counter to
keep track of the next bytecode to be issued.

Stack for each thread. Each thread has a stackwhich is used bymost bytecodes
to load/store data, pass parameters and return values from functions (or cer-
tain arithmetic / branch operations).



484 T.Q. Huynh and A. Roychoudhury

Heap. The virtual machine has a single heap shared among all threads. Object
instances and arrays are allocated from the heap. A data unit is created for
each object as well each of its fields.

Static variables. A data unit is allocated for each static variable on its first use
and this data unit is maintained for subsequent accesses.

Frame. Frames store local variables, arguments and return address of a method.
Each time a method is called, a new frame is created and pushed into frame
stack; this frame is popped when the method returns. Each local variable/
argument is assigned one data unit.

All of the above data areas of the virtual machine are included in the global state
space representation of a program. Now, in order to support the memory model, a
new data structure is added to each thread: a list of incomplete bytecodes (given in
program order). Each element of this list is one of the following type of operations
— read, write, volatile read, volatile write, lock, unlock (the operation types men-
tioned in the .NET memory model, see Table 1). This completes the state space
representation of our checker. We now describe the state space traversal.

5.2 Search Algorithm

Our checker performs reachability analysis by an explicit state depth-first search
(starting from the initial state) over the state space representation discussed in
the preceding. Given any state, how do we find the possible next states? This is
done by picking any of the program threads, and letting it execute a single step.
So, what counts as a single step for a program thread? In the usual model checkers
(which implicitly assume Sequential Consistency), once a thread is chosen to take
one step, the next operation from that thread forms the next step. In our checker
the choices of next-step for a thread includes (a) issuing the next operation and (b)
completing one of the pending operations (i.e., operations which have started but
not completed). The ability to complete pending operations out of order allows
the checker to find all possible behaviors reachable under a given memory model
(in this case the .NET memory model).

Thus, the search algorithm in our checker starts from the initial state, performs
depth-first search and continues until there are no new states to be traversed. In
order to ensure termination of this search, our checker of course needs to decide
whether a given state has been already encountered. In existing explicit state soft-
ware model checkers, this program state equivalence test is often done by compar-
ing the so-called memory image in the two states, which includes the heap, stacks,
frames and local variables. Our checker employs a similar test; however it also con-
siders the list of incomplete operations in the two states. Formally, two states s
and s′ with two sets of data units D = {d1, d2, ..., dn} and D′ = {d′1, d′2, ..., d′n}
are equivalent if and only if the program counters in all threads are equal and there
exists a bijective function f : D → D′ satisfying:

– For all 1 ≤ i ≤ n, the value stored in di and f(di) are equal.
– A static variable x in s is allocated data unit di if and only if it is allocated

data unit f(di) in s′.
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– Data unit di is the kth item on the stack (or frame, local variable, argument list,
list of incomplete bytecodes) of the jth thread in s iff f(di) is the kth item on
the stack (or frame, local variable, argument list, list of incomplete bytecodes)
of the jth thread in s′.

– The reference type data unit di points to data unit dj in s if and only if f(di)
points to f(dj) in s′.

In our implementation, the global state representation is saved into a single se-
quence so that if two state’s sequences are identical, the two states are equivalent.
Like the Java Path Finder model checker [9], we also use a hash function to make
the state comparison efficient.

Search Optimizations. By allowing program operations to complete out-of-
order, our checker explores more behaviors than the normal model checkers based
on Sequential Consistency. We employ the following search optimization to speed
up our checker. For each thread, we classify its bytecodes into two categories —
thread-local and non thread-local. In particular, the following are considered
thread-local bytecodes — load/store of local variables, method invocation, mem-
ory allocation, computation and control transfer operations; all others are con-
sidered non thread-local bytecodes. Now, our checker exploits this categorization
by trying to atomically execute sequences of thread-local bytecodes in a thread.
Furthermore, our checker does not allow two thread-local operations to execute out-
of-order even if such reordering is allowed by the .NET memory model. The justi-
fication of this optimization is simple — even if thread-local operations execute
out-of-order, the effects of such additional behavior are not observable by other
threads.

6 Disabling Undesirable Program Behaviors

Given a multi-threaded C# program, we are interested in computing the set of
reachable states from the initial state. The set of reachable states under the .NET
memory model is guaranteed to be a superset of the reachable state set under Se-
quential Consistency. In this section, we discuss tactics for disallowing the addi-
tional states reached under the .NET memory model. Since these additional states
are reached due to certain reordering of operations within program threads, we can
avoid those states if such reorderings are disabled by inserting barriers/fences in
the program text.

While doing reachability analysis we build (on-the-fly) the state transition
graph. Each vertex represents one state, each directed edge represents a transi-
tion from one state to another. Consider the state transition system constructed
for the .NET memory model. Because this memory model is more relaxed than Se-
quential Consistency, we can divide the graph edges into two types: solid edges cor-
respond to transitions which can be performed under the Sequential Consistency
(complete the bytecodes in order within a thread) and dashed edges correspond
to transitions which can only be performed under .NET memory model (requires
completing bytecodes out-of-order). From initial state, if we traverse only solid
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edges we can visit all states reachable under Sequential Consistency. We color the
corresponding vertices as white and the remaining vertices as black. The black
vertices denotes the additional states which are reached due to the reorderings al-
lowed by the relaxed memory model (see Figure 1 for illustration). Note that if
(a) we are seeking to verify an invariant property ϕ under Sequential Consistency
as well as the .NET model, (b) ϕ is true under Sequential Consistency and (c) ϕ
is false under the .NET memory model — the states violating ϕ must be black
states. However, not all the black states may denote violation of ϕ as shown in the
schematic state transition graph of Figure 1.

Initial state

Violating states

Fig. 1. State transition graph under a relaxed memory model; only white states can be
reached under Sequential Consistency. A cut is shown separating the initial state from
“violating” states.

Basic Mincut Formulation. To prevent the execution from reaching the vi-
olating black states, we need to remove some of the edges from the graph. The
solid edges cannot be removed because their corresponding transitions are allowed
under Sequential Consistency. The dashed edges can be removed selectively by
putting barriers. However note that the barriers will appear in the program text,
so inserting one barrier in the program can disable many dashed edges in the state
transition graph. We find out the minimal number of dashed edges to be removed
so that the violating black states become unreachable; we then find out the mem-
ory barriers to be inserted in the program text for removing these dashed edges.
Now we describe our strategy for computing the minimal number of dashed edges
to be removed. We compute the minimum cutC = {e1, e2, ..., en}where e1, . . . , en

are dashed edges in the state transition graph such that there is no directed path
from the initial state to any violating black state (denoting violation of the invari-
ant ϕ being verified) without passing through an edge in C. We find the minimal
set of dashed edges by employing the well-known Ford-Fulkerson maxflow-mincut
algorithm [7]. To find the minimal number of dashed edges in the state transition
graph as the mincut, we can set the capacity of each dashed edge to 1 and each
solid edge to infinity.

How can we locate the barrier insertion point in the program such that a given
dashed edge in the state transition graph is removed? Recall that a dashed edge
in the state transition graph denotes a state transition which is caused by out-of-
order completion of a bytecode. In Figure 2 state s has m incomplete bytecodes
〈b1, b2, . . . , bk, . . . , bm〉 (given in program order). The transition that completes
bytecode b1 does not require an out-of-order completion of bytecodes while the
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b1, b2,  …, bk, ..., bm

complete b1 complete b2 complete bk complete bm

b1, b2,  …, bk-1,bk+1 ..., bm

s

t

Fig. 2. Transitions from a state, a dashed edge indicates the transition requires an out-
of-order completion of bytecodes

transitions that complete bk with 2 ≤ k ≤ m do. The removal of edge from state
s to state t (corresponding to the completion of bytecode bk, see Figure 2) is iden-
tified with inserting a barrier before bytecode bk.

Modified Mincut Formulation. Note that the minimal set of dashed edges in
the state transition graph may not always produce the minimal number of barriers
in the program text. At the same time, inserting minimal number of barriers in the
program text may not be desirable in the first place since they do not indicate the
actual number of barriers encountered during program execution.2 However if we
want to minimize the number of barriers inserted into the program, we can do
so by simply modifying the capacities of the dashed edges in the state transition
graph. We partition the dashed edges in the state transition graph into disjoint
partitions s.t. edges e, e′ belong to the same partition iff disabling of both e and e′

can be achieved by inserting a single barrier in the program. We can then assign
capacities to the edges in such a way that the sum of capacities of the edges in each
partition is equal — thereby giving equal importance to each possible program
point where a barrier could be inserted. The maxflow-mincut algorithm is now
run with these modified capacities (of the dashed edges); the solid edges still carry
a weight of infinity to prevent them from appearing in the min cut.

Complexity. The Maxflow-mincut algorithm has time complexity of O(m ∗ f)
where m is the number of edges in the state transition graph and f is the value
of the maximum flow. The quantity f depends on how the capacities of the state
transition graph edges are assigned. In all our experiments, f was less than 150 for
all our test programs (using basic or modified mincut formulation).

7 Experiments

In this section, we report the experiments used to evaluate our checker. The multi-
threaded programs used in our experiments are listed in Table 2. Out of these,
2 A single barrier inside a loop which is iterated many times can introduce higher per-

formance overheads than several barriers outside the loop.
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Table 2. Test Programs used in our Experiments

Benchmark Description # bytecodes

peterson Peterson’s Mutual exclusion algorithm [20] 120

tbarrier Tournament barrier algorithm —
Barrier benchmark from [8] 153

dc Double-checked locking pattern [22] 77

rw-vol Read-after-Write Java volatile semantic test by [19] 92

rowo Multiprocessor diagnostic tests ARCHTEST (ROWO)[4] 87

po Multiprocessor diagnostic tests ARCHTEST (PO) [4] 132

peterson, and tbarrier are standard algorithms that work correctly under
Sequential Consistency, but require more synchronizations to do so in the C#
memory model. The tournament barrier algorithm (taken from Java Grande
benchmarks) provides an application program level implementation of the con-
currency primitive “barrier” (different from our memory barriers which prevent
reordering of operations) which allows two or more threads to handshake at a cer-
tain program point.

The programs rw-vol and dc have been discussed recently in the context of de-
veloping the new Java memory model [1]. In particular, dc has been used in recent
literature as a test program to discuss the possible semantics of volatile variables
in the new Java memory model [6]; this program involves the lazy initialization of
a shared object by several threads.

The other programs rowo and po are test programs taken from the ARCHT-
EST benchmark suite [4,17]. ARCHTEST is a suite of test programs where the
programs have been systematically constructed to check for violations of memory
models (by generating violation of memory ordering rules imposed by the memory
models). In particular, the program rowo checks for violation of ordering between
multiple reads as well as multiple writes within a program thread; the program po
checks for violation of program order among all operations in a program thread.
These programs are effective for evaluating whether our checker can insert mem-
ory barriers to avoid behaviors not observable under Sequential Consistency.

For all of the above benchmarks we employ our checker to find all reachable
states under (a) Sequential Consistency and (b) .NET memory model. For the lat-
ter, recall that we allow each program thread to maintain a list of incomplete byte-
codes so that bytecodes can be completed out of order. For our experiments we do
not impose a bound on the size of this list of incomplete bytecodes. So in practice
it is bounded only by the (finite) number of bytecodes in a program thread. This
exposes all possible behaviors of a given program under the .NET memory model.

Our checker for C# programs is itself implemented in C#. It takes the binaries
of the benchmarks, disassembles them and checks the bytecode against a given in-
variant property via state space exploration. For each of our benchmarks in Table 2
we provide a program invariant for the reachability analysis to proceed and report
violations. For the Peterson’s algorithm (peterson) this invariant is the mutually
exclusive access of shared resource. The invariant for tbarrier follows from the
definition of the concurrency primitive “barrier”. For the Double checked Locking
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Table 3. Summary of Experimental Results. Column 4 shows the time to perform full
reachability analysis under Sequential Consistency. Under the heading .NET, the CE
column shows time to find the first counter-example, while FR shows time for full reach-
ability analysis under .NET memory model. The column Mflow indicates the time to
run the Maxflow algorithm for inserting barriers. The Total column denotes time for full
reachability and barrier insertion, that is, Total = FR + Mflow.

# # S.C. .NET
Benchmark states transitions Time (secs) #

(secs) CE FR Mflow Total barriers

peterson 903 2794 0.09 0.05 1.06 0.04 1.10 3

tbarrier 1579 5812 0.21 1.57 3.99 0.05 4.04 3

dc 228 479 0.10 0.11 0.27 0.03 0.30 1

rw-vol 1646 5616 0.20 0.29 2.75 0.23 2.98 4

rowo 1831 4413 0.16 0.23 1.87 0.05 1.92 2

po 6143 22875 0.29 0.60 13.07 1.48 14.55 6

pattern (dc) this invariant states that whenever the shared object’s data is read,
it has been initialized. The invariant for rw-vol benchmark is obtained from [19].
For the ARCHTEST programs rowo and po, this invariant is obtained from the
rules of read/write order and program order respectively (see [4,17]).

Our checker performs reachability analysis to explore the reachable states un-
der Sequential Consistency and the .NET memory model. Clearly, the reachability
analysis under the .NET memory model takes more time since it involves explor-
ing a superset of the states reachable under Sequential Consistency. In Table 3
we report the running time of our checker for obtaining the first counter-example
(column CE) and for performing full reachability analysis (column FR). The time
taken to find the first counter-example is not high; so if the user is only interested
in detecting a violation our checker can produce one in a short time. The time to
perform full reachability analysis (thereby finding all counter-example traces) is
tolerable, but much larger than the time to find one counter-example. All experi-
ments were conducted on a 2.2 Ghz machine with 2.5 GB of main memory.

After exploring all reachable states under the .NET memory model, our checker
can insert barriers via a maxflow-mincut algorithm (we used the “Modified Min-
cut Formulation” presented in Section 6). The time to run the maxflow algorithm
is small as shown in column Mflow of Table 3. The results of the barrier insertion
step are shown in the # barriers column of Table 3. This column shows the total
number of barriers inserted by our tool into the program so that any program ex-
ecution trace which (a) violates the invariant being verified and (b) is disallowed
by Sequential Consistency, — is not observed even when the program is run under
the relaxed .NET memory model.

Interestingly, the reader may notice that our checker inserts only one barrier for
the Double Checked Locking pattern (same as the solution in [16], [3] and [2]) while
the solution using ”explicit memory barriers” given in [6] suggests putting two
barriers. Both solutions are correct, because they work for different memory mod-
els. Our checker only inserts those barriers that enforce the program’s correctness
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under a .NET memory model compliant implementation. It will not insert barriers
to disable behaviors which are not even allowed by the .NET memory model (the
additional barrier in [6] is needed if the memory model allows reorderings which
do not respect program dependencies).

More details about our checker (including its source code) and the test programs
are available from http://www.comp.nus.edu.sg/∼release/mmchecker.

8 Discussion

In this paper, we have presented an invariant checker which works on the byte-
code representation of multi-threaded C# programs. The main novelties of our
work are (a) we can expose non sequentially consistent execution traces of a pro-
gram which are allowed by the .NET memory model, and (b) after inspecting the
counter-example traces violating a given invariant, we can automatically insert
barriers to disallow such executions.

We are now in the process of integrating partial order reduction with dynamic
escape analysis [5] into our checker. This will allow us to safely reduce the set of
explored program states during invariant checking.
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Sector grant from A*STAR (Singapore) and partly by an internal grant from NUS
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Abstract. Refactorings change the internal structure of code without
changing its external behavior. For non-trivial refactorings, the preserva-
tion of external behavior depends on semantic properties of the program
that are difficult to check automatically before the refactoring is applied.
Therefore, existing refactoring tools either do not support non-trivial
refactorings at all or force programmers to rely on (typically incomplete)
test suites to check their refactorings.

The technique presented in the paper allows one to show the preserva-
tion of external behavior even for complex refactorings. For a given refac-
toring, we prove once and for all that the refactoring is an equivalence
transformation, provided that the refactored program satisfies certain se-
mantic correctness conditions. These conditions can be added automat-
ically as assertions to the refactored program and checked at runtime
or verified statically. Our technique allows tools to apply even complex
refactorings safely, and refactorings automatically improve program doc-
umentation by generating assertions.

1 Introduction

Refactorings are equivalence transformations on source code that change the
internal structure of code without changing its external behavior [10]. They are
applied to improve the understandability of code and to reduce its resistance to
change.

The application of a refactoring is correct if it preserves the external behav-
ior of the program. Whether an application of a refactoring is correct depends
on certain correctness conditions. For instance, replacing the (side effect free)
condition of a loop by a different condition generally preserves the external pro-
gram behavior only if the old and the new condition yield the same value in all
program executions.

Refactoring by hand is tedious and error-prone. Refactoring tools simplify the
application of refactorings, but they guarantee the preservation of the program’s
external behavior only for refactorings with very simple correctness conditions
such as “Rename Method” [10]. More complex refactorings such as “Move Field”
are either not supported at all or not guaranteed to be applied correctly. That
is, their application potentially alters the external behavior of the program.

Consequently, programmers rely on unit testing to determine whether a refac-
toring was applied correctly. This approach works well if the program has a
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complete set of unit tests that execute rapidly. However, in most practical ap-
plications, the set of unit tests is highly incomplete, for instance, because pro-
grammers have to make a trade-off between the completeness of the test suite
and the time it takes to run all tests.

In this paper, we present a technique that guarantees that refactorings are
applied correctly. For each refactoring, we perform the following three steps.

First, we determine the refactoring’s essential applicability conditions. These
syntactic conditions ensure that applying the refactoring results in a
syntactically-correct program. In the “Move Field” example, a field f can be
moved from a class S to a class T only if the field and both classes exist and if
the target class does not already contain a field called f . Essential applicability
conditions can easily be checked syntactically and are therefore not discussed in
this paper.

Second, we determine the refactoring’s correctness conditions. These semantic
conditions ensure that each application of the refactoring preserves the external
behavior of the program. For instance, an application of “Replace Expression”
is correct only if the old and the new expression evaluate to the same value in
all program executions. One of the novelties of our approach is that correctness
conditions can be expressed in terms of the refactored program and added to the
program as assertions such as JML [15] or Spec# [3] specifications. They can
then be checked at runtime to make sure that the execution of a test actually
covers the correctness condition. Alternatively, they can be checked statically
by a program verifier such as Boogie [3] or ESC/Java2 [13]. Some correctness
conditions can also be approximated and checked syntactically.

Third, we provide a formal proof that each application of the refactoring pre-
serves the external behavior of the program, provided that the program satisfies
the refactoring’s essential applicability conditions and correctness conditions.
We consider the original and the refactored program to have equivalent external
behavior if they perform the same sequence of I/O operations. This notion of
equivalence allows us to handle even complex changes of the program’s internal
structure. It is important to note that this correctness proof is done once and
for all for each refactoring, whereas correctness conditions must be checked for
each particular application of a refactoring.

Our technique improves the state of the art in three significant ways: (a) It
handles refactorings with complex correctness conditions. Expressing these con-
ditions as assertions improves test coverage and enables static verification. (b) It
works on the source code level as opposed to more abstract models such as UML
class diagrams. Working on the code level is important because refactorings
are mainly applied during implementation rather than during design. Moreover,
many correctness conditions depend on the intricacies of concrete code. For in-
stance, the correctness conditions for “Move Field” fall on the field accesses,
which are not present in an abstract model. (c) The specifications added to the
transformed program convey the programmer’s tacit knowledge why a partic-
ular refactoring is applicable. Therefore, they improve the documentation and
facilitate the application of program verifiers.
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In this paper, we present our technique and apply it to “Move Field”, a pro-
totypical example for a complex refactoring. Our technical report [2] describes
several other successful applications of our technique as well as an implementa-
tion of “Move Field” in Eclipse and Visual Studio.

Overview. The rest of this paper is structured as follows. In the next section,
we discuss correctness conditions. Section 3 formalizes the notion of external
equivalence for a language with objects, references, and I/O operations. We
apply our approach to “Move Field” in Sect. 4. Section 5 discusses related work.

2 Correctness Conditions

The correctness conditions for a refactoring can be split into a-priori conditions
that are checked statically in the original program before the refactoring is ap-
plied and a-posteriori conditions that are checked in the refactored program.
A-priori conditions are semantic conditions that can be easily checked or aptly
approximated syntactically. For instance, splitting a loop is possible if there is
no data dependency between the statements in the loop, which can be checked
a-priori by data dependency analyses.

However, for many interesting refactorings, correctness conditions cannot be
checked a-priori. Consider for instance the following code fragment, which cal-
culates and prints the hypotenuse of a right triangle with legs a and b.
print(a/cos(atan (b/a)));

A possible refactoring is to replace the expression a/cos(atan(b/a)) by the
simpler expression sqrt( a*a + b*b ).

The correctness conditions for this refactoring are that both expressions (a)
are side effect free and (b) evaluate to the same result (we ignore differences
due to rounding here). While property (a) can be checked a-priori by a static
analysis, property (b) must be checked at runtime or verified statically. Run-
time assertion checking is not useful for a-priori conditions because it would be
cumbersome to force programmers to run their test suite before applying a refac-
toring. Therefore, property (b) is better formulated as an a-posteriori condition
and turned into a specification of the refactored program:
assert sqrt( a*a + b*b ) == a/cos(atan(b/a));
print(sqrt( a*a + b*b ));

The assertion can be checked at runtime when testing the refactored program
or proved by a program verifier.

Assertions for a-posteriori conditions of refactorings document knowledge
about the design of the code. Therefore, it is important that they stay in the
program, even after a successful test or static verification. They are an important
guideline for future modifications of the code.

To avoid cluttering up programs with assert statements, it is vital that asser-
tions themselves can be refactored. In the above example, the assert statement
could, for instance, be replaced by the stronger assertion assert a > 0. If a is
a field, this assertion could then be further refactored into an object invariant.
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We believe that the process of automatically generating assertions during
refactoring and later refactoring the assertions into interface specifications
greatly contributes to the documentation of the code by making design deci-
sions explicit. This is an important side effect of our technique.

3 External Equivalence

Depending on the application domain, different aspects of external behavior are
of interest such as functional behavior, timing, or resource consumption. In this
paper, we focus on functional behavior. That is, we consider two programs to be
externally-equivalent if they perform the same sequence of I/O operations.

In this section, we present the programming language that is used in the rest
of the paper, formalize our notion of external equivalence, and explain how to
prove the correctness of refactorings.

3.1 Programming Language

We present our results in terms of a small sequential class-based programming
language. The language has the following statements: local variable update l:=e,
field read l:=o.f , field update o.f :=e, object allocation o:=new C, I/O operation
l:=io(p), sequential composition t1; t2, and loop while(e){t}, where l and o are
local variables, e is an expression, p is a vector of expressions, f is a field name,
and t is a statement. For simplicity, we ignore the declaration of local variables,
but we assume that they are correctly typed and that the language is type-safe.
We do not discuss methods, inheritance, and subtyping in this paper, but our
technical report does [2].

Assertions are not part of the program representation and do therefore not
have any operational meaning. For runtime assertion checking however, these
assertions have to be compiled into executable code.

The program representation is denoted by Γ . codeΓ is the executable program
code of Γ . fieldsΓ (C) is the set of field names for a given class C in program Γ .
After object creation, each field is initialized to the zero-equivalent value of its
type T , denoted by zero(T ). ctt(name) returns the compile-time type of variable
or field name.

States. A state s of a program execution consists of variables vars , object heap
heap and I/O interactions ext : s = (vars , heap, ext). We refer to the components
of a state s by using s.vars, s.heap, and s.ext , respectively. The variables map
names to values: vars(l) = v. The heap maps references to objects, which in turn
map field names to values: heap(o)(f) = v. The I/O interactions accumulate the
executed I/O operations: ext = [. . . , v:=io(v1, . . . , vn), . . .]. The result of an
I/O operation is given by the exogenous input decision function inp. Program
executions start in the initial state ini , where all local variables hold default
values, and the heap as well as the I/O sequence is empty.

Operational Semantics. Expression evaluation [[e]]s is defined composi-
tionally by mapping the operator symbols to the respective operations:
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[[f(e1, . . . , en)]]s = [[f ]]([[e1]]s, . . . , [[en]]s). Variable accesses are simply lookups
in the state: [[l]]s = s.vars(l). Field accesses are not allowed in expressions. The
big-step operational semantics is defined in Table 1. Updating the image of a
value x in a map m with a value v is denoted by m[x � v]. The state ob-
tained from a state s by updating a local variable l with a value v is denoted
by s[l � v]. We use an analogous notation for updates of s.heap and s.ext . The
function rtt(v) yields the (runtime) type of a value. The transition relation for
a statement t from a state s to a state r in a program Γ is written as Γ | − s t−→r.

Table 1. Operational semantics. Statement t of Γ (first column) performs a transition
from state s to the terminal state (second column), provided that the antecedents
(third column) hold.

Statement t Terminal state Condition

l:=e s[l � [[e]]s] –
o.f :=e s[heap(s.vars(o))(f) � [[e]]s] s.vars(o) �= null
l:=o.f s[l � s.heap(s.vars(o))(f)] s.vars(o) �= null
o:=new C s[o � p, heap(p) � m] p /∈ dom heap ∧ rtt(p) = C∧ m =

{f � zero(ctt(f))|f ∈ fieldsΓ (C)}
l:=io(p) s[ext � ext ′, l � i] i = inp([[p]]s, ext) ∧ ext ′ =

ext · [i:=io([[p]]s)]

t1; t2 r Γ | − s
t1−→q ∧ Γ | − q

t2−→r

while(e){t1} r [[e]]s ∧ Γ | − s
t1−→q ∧ Γ | − q

t−→r
while(e){t1} s ¬[[e]]s

3.2 Correspondence Between Original and Transformed Program

A refactoring R is defined by a transformation function μR, which maps a pro-
gram Γ to the refactored program Γ ′ ≡ μR(Γ ) and occurrences t of statements
in Γ to their respective counterparts: t′ ≡ μR(t). For simplicity, we assume that
μR is applied only to programs that satisfy the essential applicability conditions
of R. Consequently, μR can be assumed to yield syntactically-correct programs.
Γ and Γ ′ are equivalent if they perform the same I/O operations, that is, if

r.ext = r′.ext for their respective terminal states r and r′:

(Γ | − ini codeΓ−−−−→r) => ∃r′ : (Γ ′| − ini
codeΓ ′−−−−→r′) ∧ r.ext = r′.ext (1)

For simplicity, we consider only terminating executions here. Non-terminating
programs can be handled by considering prefixes of executions of Γ .

Simulation Method. Although Implication (1) expresses external equivalence
of Γ and Γ ′, it is not useful for an equivalence proof because it is inaccessible to
any inductive argument. This problem is avoided by using the simulation method

for proving correspondence of two transition systems Γ |− −→ and Γ ′| − μR( )−−−→ .



Changing Programs Correctly: Refactoring with Specifications 497

To apply the simulation method, one defines a correspondence relation βR on
the states of the transition systems and proves that if both systems are in cor-
responding states and make a transition, they again reach corresponding states:

(Γ | − s
t−→r) ∧ βR(s, s′) => ∃r′ : (Γ ′| − s′

μR(t)−−−→r′) ∧ βR(r, r′) (2)

For Implication (2) to imply the general condition (1), two sanity conditions
must hold. First, βR must imply identity of the ext parts of the states so that
external equivalence is guaranteed: ∀s, s′ : βR(s, s′) ⇒ s.ext = s′.ext . Second, the
initial states of the program executions must correspond (initial correspondence):
βR(ini , ini).

To prove that a refactoring R is correct, it suffices to devise a correspondence
relation βR and prove that it satisfies Implication (2) and the two sanity con-
ditions. This method works for many refactorings, but cannot handle several
interesting refactorings as we discuss next.

General Correspondence Requirement for Refactorings. Implication (2)
is too strong for several important refactorings for the following reasons.

(a) Some refactorings do not define a statement μ(t) for each statement t
of the original program1. Consider for instance the inlining of a local variable:
μ(l:=f(p1); l:=g(p2)) ≡ l:=g(p2[f(p1)/l]). In this case, l:=f(p1) and l:=f(p2)
alone do not have corresponding statements in the refactored program. There-
fore, μ(l:=f(p1)) and μ(l:=f(p2)) are undefined, and Implication (2) cannot be
applied to these statements individually.

(b) Conversely, some refactorings transform a statement t of the original pro-
gram into several non-consecutive statements in the transformed program. For
instance, when unrolling a loop, the loop body t is duplicated and placed at
different locations in the program, namely before and inside the loop. Again,
μ(t) is not well-defined.

(c) Different statements in the original program may require different corre-
spondence relations. Consider for instance the split of a variable l0 into two fresh
variables l1 and l2 in t0 ≡ t1; t2:

μ(t1) ≡ l1:=l0; t1[l1/l0]︸ ︷︷ ︸
tb

μ(t2) ≡ l2:=l1; t2[l2/l0]︸ ︷︷ ︸
td

; l0:=l2

This refactoring requires a different correspondence relation for each active scope
of the new variables. During the execution of statement tb, l0 and l1 correspond,
whereas l0 and l2 in general do not correspond since l2 is not yet initialized.
However, during the execution of statement td, l0 and l2 correspond, whereas
l1 is not used any more. Implication (2) does not permit such variations of the
correspondence relation.

To address these problems, we allow the correspondence relation to be differ-
ent at each program point: βbefore

[t,t′] (s, s′) is the correspondence between a state s
before the execution of a statement t in the original program Γ and a state s′

before the execution of a statement t′ in the transformed program Γ ′. βafter
[t,t′] (s, s

′)

1 We omit the subscript R when the refactoring is clear from the context.
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is the analogous correspondence after the execution of t and t′. External equiv-
alence can then be proved using the following implication:

(Γ | − s
t−→r) ∧ βbefore

[t,t′] (s, s′) => ∃r′ : (Γ ′| − s′
t′
−→r′) ∧ βafter

[t,t′] (r, r
′) (3)

Implication (3) implies the general condition (1) if the two sanity conditions hold,
namely initial correspondence, βbefore

[codeΓ ,codeΓ ′ ](ini , ini), and external equivalence,
∀r, r′ : βafter

[codeΓ ,codeΓ ′ ](r, r
′) => r.ext = r′.ext .

Besides these sanity conditions, the correspondence relation is not constrained.
Therefore, Implication (3) provides enough flexibility to handle even complex
program transformations. In particular, one is free to choose the statements t
and t′ to be related. For all statements t′ in the refactored program Γ ′ that are
not related to a statement t in the original program Γ , βbefore

[t,t′] is simply defined
to be empty.

For “Split Variable”, we say that (a sub-statement of) t1 in the original is com-
parable to (the corresponding sub-statement of) tb in the transformed program
and the same for t2 and td. Moreover, a statement t outside t0 that is not af-
fected by the refactoring is comparable to its transformation μ(t). For statements
t and t′ that are not comparable, βP

[t,t′] is empty. For comparable statements,
corresponding states have an identical heap and identical I/O sequences. The
requirement for local variables depends on whether t is (a sub-statement of) t1,
(a sub-statement of) t2, or outside t0.

In summary, we prove correctness of a refactoring R by devising a correspon-
dence relation βR that satisfies Implication (3) as well as initial correspondence
and external equivalence. If βR is simple enough, Implications (3) and (2) co-
incide. This will be the case for “Move Field”, which we discuss in the next
section. Examples that require the general correspondence, Implication (3), are
presented in our technical report [2].

4 Example: “Move Field”

In this section, we apply our technique to “Move Field” [10]. This refactoring is
interesting because it requires non-trivial correctness conditions and is therefore
not supported by existing approaches. We describe “Move Field”, present an ap-
propriate correspondence relation as well as the required correctness conditions,
and prove correctness of the refactoring.

4.1 The Refactoring

“Move Field” removes the declaration of a field f from a class Source, inserts it
into a different class Target , and adjusts all accesses to f . To be able to access
f after the refactoring, there must be a Target object for each Source object.
For simplicity, we assume that there is a field target in Source that points to
the corresponding Target of each Source object. A generalization to arbitrary
associations between Source and Target objects is possible by using ghost fields
to express the association.
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Transformation Function. We assume that the classes Source and Target
exist and that Source declares the distinct fields f and target . We assume further
that Target does not declare a field f .

An original program Γ and the transformed program μ(Γ ) are identical except
for the following aspects: (a) The field f is moved from Source to Target :

fieldsμ(Γ )(Source) = fieldsΓ (Source)− {f}
fieldsμ(Γ )(Target) = fieldsΓ (Target) ∪ {f}

(b) Accesses to f are redirected via the target field:

μ(l:=o.f) ≡ tmp:=o.target ; l:=tmp.f
μ(o.f :=e) ≡ tmp:=o.target ; tmp.f :=e

where ctt(o) = Source and tmp is a fresh variable.
Since “Move Field” either leaves statements of the original program unchanged

or replaces them by simple sequential compositions, this refactoring does not re-
quire the general correspondence requirement, Implication (3). We can prove
correctness using the simpler Implication (2). We present an appropriate corre-
spondence relation in the next subsection.

4.2 Correspondence Relation

Intuitively, the correspondence relation for “Move Field” requires that o.f in
the original program and o.target .f in the transformed program hold the same
values. However, this correspondence requires o.target to be different from null,
which is not the case for a newly allocated object o before o.target has been
initialized. To handle object initialization, we use a more relaxed correspondence.
If target = null, f in the original program must hold its zero-equivalent default
value, that is, be also uninitialized.

For two states s and s′, the correspondence relation β(s, s′) yields true if and
only if:

1. All local variables, except for temporary variables introduced by the refactor-
ing, hold the same value in s and s′: s.vars = s′.vars|(dom s.vars), where the
domain restriction operator F |D restricts the domain of function F to D.

2. All references x that are not of type Source or Target are mapped to the same
objects: dom s.heap = dom s′.heap and s.heap(x) = s′.heap(x). For a Source
reference x, s.heap(x)(f) corresponds to s′.heap(s′.heap(x)(target))(f) or
zero(ctt(f)), depending on whether s′.heap(x)(target) 	= null or not. All
other field values are identical. We also have to encode that Target objects
do not have an f field in the original program. That is, for all references x ∈
dom s.heap and object valuesm ≡ s.heap(x) andm′ ≡ s′.heap(x), we require:

m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′[f � s′.heap(m′(target))(f)] if rtt(x) = Source ∧ m′(target) �= null

m′[f � zero(ctt(f))] if rtt(x) = Source ∧ m′(target) = null

m′[f � undef ] if rtt(x) = Target
m′ otherwise

(4)

3. The I/O part of both states is identical: s.ext = s′.ext .
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This correspondence relation satisfies initial correspondence because there are
no references in the initial heap ini.heap. External equivalence is trivially satisfies
by the third requirement.

4.3 Correctness Conditions

The correctness conditions for “Move Field” have to guarantee that the refac-
toring preserves the external program behavior. In the following, we suggest suf-
ficient correctness conditions and explain how they can be checked a-posteriori.

A-posteriori Conditions for “Move Field”. Any conditions that allow one
to prove Implication (2) for any statement t in the original program are possible
correctness conditions. A pragmatic approach is to start with the proof of Im-
plication (2) and to determine the weakest conditions that are necessary for the
induction to go through. However, these weakest conditions are often difficult to
express as assertions or difficult to check. Therefore, one typically has to devise
stronger correctness conditions that are easier to express and to check.

In the “Move Field” example, Implication (2) holds trivially for most state-
ments of the original program since t ≡ μ(t). The interesting cases are if t is (a) a
read access to the moved field f , (b) an update of f , or (c) an update of target.
For these cases, we present sufficient (but not weakest) a-posteriori conditions
in the following (o is a variable of type Source):

(a) t ≡ l:=o.f : The statement t reads o.f in the original program. It terminates
normally if o is different from null. The correctness conditions must guaran-
tee that the transformed statement μ(t) ≡ tmp:=o.target ; l:=tmp.f behaves
correspondingly. This is the case if o.target is different from null. Therefore,
we introduce the following assertion before μ(t):

assert o.target 	= null; (5)

(b) t ≡ o.f :=e: An update of o.f in the original program changes the value of the
f field of exactly one Source object, namely o. To achieve the corresponding
behavior for the transformed statement μ(t) ≡ tmp:=o.target ; tmp.f :=e, we
require that the updated Target object is not shared by several Source ob-
jects. Moreover, we have to make sure the association exists, that is, o.target
is different from null. Therefore, we introduce the following assertion before
μ(t):

assert o.target 	= null ∧ ∀Source p : p.target = o.target => p = o; (6)

Quantifiers over objects range over non-null allocated objects. Both t and
μ(t) terminate normally if and only if o is different from null.

(c) t ≡ o.target :=e: An update of o.target in the original program associates the
Source object o with another Target object. For the transformed program,
this means that o will potentially access a different f field. Updates of target
are not transformed, that is, t ≡ μ(t). They lead to corresponding terminal
states in the following cases:
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– o.target is set to null (e = null), and the old o.target either is already
null (that is, the value remains unchanged), or o.target .f holds the
default value for f ’s type.

– o.target is set from null to a proper Target object (e 	= null) whose f
field holds the default value.

– o.target is set to a proper Target object whose f field holds the same
value as the old o.target .f .

These conditions are expressed by the following assertion, which is inserted
before μ(t):

assert (e = null∧ (o.target = null ∨ o.target .f = zero(ctt(f)))) ∨
(e 	= null ∧ ( (o.target = null∧ zero(ctt(f)) = e.f) ∨

(o.target 	= null∧ o.target .f = e.f) ) );
(7)

Both t and μ(t) terminate normally if and only if o is different from null.

Checking the Conditions. Assertion (5) is amenable to both runtime asser-
tion checking and static verification. Alternatively, non-null types [9] can be used
to check the condition syntactically.

The second conjunct of Assertion (6) is difficult to check at runtime. It re-
quires code instrumentation to keep track of the number of Source objects that
point to a Target object. Static verification is possible for this assertion, for
instance, using the ownership discipline of the Boogie methodology [16]. A syn-
tactic alternative is to use pointer confinement type systems such as ownership
types and their descendants [5,7], or linear types [8].

Assertion (7) is straightforward to check at runtime or by static verification.
Nevertheless, it seems reasonable to impose additional restrictions to enforce
this correctness condition. For instance in Java, the field target can be declared
final, which ensures that target cannot be changed after its first initializa-
tion. With this restriction, the condition of Assertion (7) can be simplified to
e = null ∨ zero(ctt(f)) = e.f .

4.4 Correctness Proof

In this subsection, we prove that “Move Field” is correct. That is, the trans-
formed program μ(Γ ) performs the same sequence of I/O operations as the
original program Γ if the correctness conditions hold.

For the proof, we use the following auxiliary lemma: If the states s and s′

correspond then the evaluation of an expression e yields the same value in both
states: β(s, s′) => [[e]]s = [[e]]s′. This lemma is a direct consequence of the
definition of β (β(s, s′) => s.vars = s′.vars) and the fact that expressions do
not contain field accesses.

With this auxiliary lemma, the cases for local variable update, object alloca-
tion, I/O operation, sequential composition, and loop are straightforward and
therefore omitted. In the following, we sketch the proof for the interesting cases:
field read and field update. The other cases and further details of the proof are
presented in our technical report [2].
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We prove correctness by showing Implication (2) for any statement t in the
original program Γ and any states s, s′, and r. The proof runs by induction
on the shape of the derivation tree for Γ | − s

t−→r. For each case, we present a

terminal state r′ and then show (a) that μ(Γ )| − s′
μ(t)−−→r′ is a valid transition

and (b) that r and r′ correspond.

Field Read. Consider t ≡ l:=o.fld . If fld 	= f , the statement is not transformed
and we have β(s, s′) => s.heap(x)(fld) = s′.heap(x)(fld) for all x. Therefore, the
field accesses yield the same value. Consequently r′ = r satisfies Implication (2).

For fld = f , the original and transformed statements are:

t ≡ l:=o.f and t′ ≡ tmp:=o.target ; l:=tmp.f

They lead to the following terminal states r and r′ from s and s′ respectively.

r = s[l � s.heap(s.vars(o))(f)]
r′ = s′[l � s′.heap(s′.heap(s′.vars(o))(target))(f),

tmp � s′.heap(s′.vars(o))(target)]

The antecedents that have to hold for the transition in the transformed program,
Γ ′| − s′

tmp:=o.target; l:=tmp.f−−−−−−−−−−−−−−−→r′, are:

s′.vars(o) 	= null and s′.heap(s′.vars(o))(target) 	= null

The first antecedent is implied by the antecedent s.vars(o) 	= null of the cor-
responding transition in the original program because β(s, s′) implies s.vars =
s′.vars . The second antecedent is directly guaranteed by the correctness condi-
tion preceding t′, Assertion (5).

Next, we prove β(r, r′). r and r′ have the same heap and ext components as
s and s′, respectively. Besides the temporary variable tmp, which is irrelevant
according to the definition of β, their vars components differ from the variables
of the initial states only for variable l. Therefore, it suffices to show r.vars(l) =
r′.vars(l), that is, we prove the following equation:

s.heap(s.vars(o))(f) = s′.heap(s′.heap(s′.vars(o))(target))(f)

This equation is directly implied by line 1 in Equation (4), which applies because
type safety guarantees that rtt(o) = Source holds and Assertion (5) ensures
s′.heap(s′.vars(o))(target) 	= null .

Field Update. Consider t ≡ o.fld :=e. We present the proof for updates of f
and of target in the following. For all other fields, the proof is trivial.

Updates of f . For fld = f , the original and transformed statements are:

t ≡ o.f :=e and t′ ≡ tmp:=o.target ; tmp.f :=e

They lead to the following terminal states r and r′ from s and s′, respectively.
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r = s[heap(vars(o))(f ) � [[e]]s]
r′ = s′[heap(s′.heap(s′.vars(o))(target))(f) � [[e]]s,

tmp � s′.heap(s′.vars(o))(target)]

where we used the auxiliary lemma to show that the evaluation of e is not affected
by the transformation.

The antecedents that have to hold for the transition in the transformed pro-
gram, Γ ′| − s′

tmp:=o.target; tmp.f :=e−−−−−−−−−−−−−−−−→r′, are:

s′.vars(o) 	= null and s′.heap(s′.vars(o))(target) 	= null

The first antecedent is implied by the antecedent s.vars(o) 	= null of the corre-
sponding transition in the original program and β(s, s′). The second antecedent
is directly guaranteed by the correctness condition preceding t′, Assertion (6).

Next, we prove β(r, r′). Besides the temporary variable tmp, which is irrel-
evant according to the definition of β, r and r′ have the same vars and ext
components as s and s′, respectively. We get dom r.heap = dom r′.heap and
r.heap(x) = r′.heap(x) for all references x from β(s, s′) and the definitions of r
and r′. Therefore, it suffices to show that Equation (4) holds for all references
x ∈ dom r.heap. We show this by a case distinction on the value of x.

Case (i): x = s′.vars(o). We have rtt(x) = Source (by type safety) and
s′.heap(x)(target) 	= null by Assertion (6). Therefore, line 1 in Equation (4)
applies. Since only the f field is updated, it suffices to prove:

r.heap(x)(f) = r′.heap(x)[f � r′.heap(s′.heap(x)(target))(f)](f)

(We used s′.heap(x)(target) = r′.heap(x)(target), which holds because target
is not updated.) The right-hand side of the above equation can be trivially
simplified to r′.heap(s′.heap(x)(target))(f). Using the definitions of r and r′

above reveals that both sides of the equation evaluate to [[e]]s, which concludes
Case (i).

Case (ii): x 	= s.vars(o). Since t updates a field of a Source object, this case
is trivial if rtt(x) 	= Source. For rtt(x) = Source, we continue as follows. If
s′.heap(x)(target) = null, line 2 of Equation (4) follows directly from β(s, s′).
Otherwise, line 1 in Equation (4) applies, that is, we have to prove:

r.heap(x) = r′.heap(x)[f � r′.heap(r′.heap(x)(target))(f)]

By the definition of r and the assumption of Case (ii), we get r.heap(x) =
s.heap(x). By the definition of r′ and type safety, we get r′.heap(x) = s′.heap(x)
because x is a Source object and t′ updates a field of a Target object. By using
these two equalities, we can reduce our proof goal to:

s.heap(x) = s′.heap(x)[f � r′.heap(s′.heap(x)(target))(f)]

Assertion (6) implies s′.heap(x)(target) 	= s′.heap(s′.vars(o))(target). Therefore,
we get r′.heap(s′.heap(x)(target)) = s′.heap(s′.heap(x)(target)) by the definition
of r′. This condition together with β(s, s′) implies the above equation. This
concludes Case (ii) and, thereby, the case for updates of f .
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Updates of target. For fld = target , the original and transformed statements
are identical. They lead to the following terminal states r and r′ from s and s′,
respectively.

r = s[heap(s.vars(o))(target) � [[e]]s]
r′ = s′[heap(s′.vars(o))(target) � [[e]]s]

The proof of the antecedent for the transition Γ ′| − s′
t−→r′ is analogous to the

case for fld = f .
Next, we prove β(r, r′). This part is mostly analogous to the case for fld = f .

The only new property we have to show is that r.heap(x) and r′.heap(x) satisfy
Equation (4), where x = s.vars(o) = s′.vars(o). From type safety, we know
rtt(x) = Source because target is a field of class Source. Therefore, line 1 or
line 2 of Equation (4) might apply. We continue by case distinction.

Case (i): r′.heap(x)(target) = null. From the definition of r′ and the assump-
tion of Case (i), we get [[e]]s = null. Therefore, line 2 in Equation (4) applies
and we have to prove:

r.heap(x) = r′.heap(x)[f � zero(ctt(f))]

Using the definitions of r and r′ as well as β(s, s′) reveals that this is exactly
the case if r.heap(x)(f) = zero(ctt(f)) or, equivalently:

s.heap(x)(f) = zero(ctt(f))

Due to the assumption of this case, Assertion (7) is known to guarantee:

s′.heap(x)(target) = null ∨ s′.heap(s′.heap(x)(target))(f) = zero(ctt(f))

If the first disjunct holds, β(s, s′) implies s.heap(x)(f) = zero(ctt(f)) by line 2
in Equation (4). Otherwise, we get this property by line 1 in Equation (4). This
concludes Case (i).

Case (ii): r′.heap(x)(target) 	= null. Analogously to Case (i), we derive [[e]]s 	=
null. Therefore, line 1 in Equation (4) applies and we have to prove:

r.heap(x) = r′.heap(x)[f � r′.heap(r′.heap(x)(target))(f)]

Again, using the definitions of r and r′ as well as β(s, s′) reveals that this is
exactly the case if the following equation holds.

s.heap(x)(f) = s′.heap([[e]]s)(f)

Due to the assumption of this case, Assertion (7) is known to guarantee:

(s′.heap(x)(target) = null∧ zero(ctt(f)) = s′.heap([[e]]s)(f))∨
(s′.heap(x)(target) 	= null∧ s′.heap(s′.heap(x)(target))(f) = s′.heap([[e]]s)(f))

If the first disjunct of this condition holds then line 2 in Equation (4) implies
s.heap(x)(f) = zero(ctt(f)), rendering it equal to s′.heap([[e]]s)(f).

If the second disjunct holds, line 1 in Equation (4) yields s.heap(x)(f) =
s′.heap(s′.heap(x)(target))(f). This concludes Case (ii) and, thereby, the case
for updates of target . �
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5 Related Work

There is a vast literature on refactoring, but little on its formalization. Most of
the related work discusses the design rationale [12] of individual refactorings or
treats refactorings on a syntactic level [14]. In this section, we discuss work that
is geared towards reasoning about refactorings.

Opdyke [20] mentions explicitly that refactorings have correctness conditions
and argued informally for the correctness of refactorings. He defined the notion
of equivalence for refactorings that is also used in this paper, namely identical
sequences of I/O operations.

The Smalltalk Refactoring Browser [21] samples the program at runtime to
estimate properties that are difficult or impossible to infer statically. Samples
are taken before the refactoring because their results are sometimes needed for
the transformation itself. For instance, because Smalltalk is untyped, the classes
that are receivers of a certain method call have to be determined by sampling
before “Rename Method” can be applied. Representative program executions
must be available for this approach, which is a serious restriction as explained in
Sect. 1. While typed languages remove the need to sample programs in order to
carry out the refactoring, sampling the program before refactoring could still be
used to check correctness conditions a-priori. However, our approach of adding
a-posteriori conditions as assertions to the refactored program has several ad-
vantages. It reduces the dependence on a complete unit test suite, enables static
verification, and improves program documentation.

Streckenbach and Snelting [22] use the results of static or dynamic analyses to
determine possible refactorings of class hierarchies automatically. The analyses
guarantee that the refactorings are correct. Two class hierarchies are consid-
ered equivalent if the behavior observable by clients is identical. This notion of
equivalence is too restrictive for many non-local refactorings such as renaming
a public field or method. In a similar approach, Logozzo and Cortesi [18] solve
this problem by defining explicitly what aspects of the program behavior are
observable. They use abstract interpretation to determine possible refactorings
of class hierarchies. We do not aim at finding possible refactorings automatically,
but require the user to apply the desired refactorings. Our approach supports
complex refactorings whose correctness conditions cannot be checked efficiently
by static analyses.

Cornélio [6] uses a refinement relation as the equivalence criterion for refactor-
ings. He shows correctness by decomposing a refactoring into various refinement
steps. The refinement relation of the calculus [19] per se does not guarantee
external equivalence however. In particular, visible intermediary states may be
different. We solve this problem by introducing an explicit I/O model. Cornélio’s
work does not support important language features such as references and there-
fore avoids some of the most challenging problems. Our formalism is based on
an operational semantics, which allows us to handle realistic languages.

Refactorings have also been applied to models of the program such as a UML
diagrams rather than to the source code. There are various efforts to formalize
such refactorings [4,11,17,23]. Our work focuses on source code because the main
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application of refactoring is changing code quickly and correctly with all its
intricacies For instance, method calls cannot be adjusted in class diagrams.

Like our work, investigations on representation independence [1] aim at prov-
ing that certain changes in the code preserve its external behavior. Represen-
tation independence relies on encapsulation to guarantee that modifications of
the internal representation of a module cannot be observed by client code. In
contrast, refactorings are typically not local to a module and, therefore, require
very different correctness conditions.

6 Conclusion

We have presented a technique that guarantees that the application of a refactor-
ing preserves the external behavior of the program if the transformed program
satisfies the refactoring’s correctness conditions. These conditions are added to
the transformed program and can be used for runtime assertion checking, to gen-
erate unit tests, and for static verification. We applied our approach successfully
to 15 representative refactorings [2].

An important virtue of our approach is that it automatically improves pro-
gram documentation by adding assertions. Thereby, it prepares the program for
the application of specification-based test tools and program verifiers.

We have implemented a prototype for “Move Field” for Spec# in Visual Stu-
dio and for JML in Eclipse. As future work, we plan to develop a more com-
prehensive refactoring tool based on the technique presented here. Moreover, we
plan to investigate how the generated assertions can be refactored into invariants
and method contracts.
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Turku 20520, Finland

Abstract. Using a predicate transformer semantics of programs, we introduce
statements for heap operations and separation logic operators for specifying pro-
grams that manipulate pointers. We prove consistent Hoare total correctness rules
for pointer manipulating statements according to the predicate transformer se-
mantics. We prove the frame rule in the context of a programming language with
recursive procedures with value and result parameters and local variables, where
program variables and addresses can store values of any type of the theorem
prover. The theory, including the proofs, is implemented in the theorem prover
PVS.

Keywords: Mechanical Verification of Programs. Pointer Programs. Separation
Logic. Recursive Procedures. Predicate Transformers Semantics.

1 Introduction

Separation logic [10,11,7,14] is a powerful tool for proving correctness of imperative
programs that manipulate pointers. However, without theorem prover support, such
tasks are unfeasible. By employing Isabelle/HOL [6] theorem prover and separation
logic, Weber [13] implements relatively complete Hoare [4] logics for a simple while
programming language extended with heap operations. Nevertheless, his implementa-
tion does not treat (recursive) procedures and local variables.

In this paper, we introduce a predicate transformer semantics for imperative pro-
grams with pointers and define separation logic constructs. Based on this semantics,
we prove Hoare total correctness rules for heap operations (new, dispose, lookup, and
update). Our work is implemented in the theorem prover PVS [8] and it is based on a
previous formalization [1] of Refinement Calculus [2] with recursive procedures.

The main contribution of this work is the formal proof of the frame rule [5,14] in
the context of a programming language with recursive procedures with value and result
parameters and local variables, where program variables and addresses can store values
of any type of at most a well chosen infinite cardinal γ. Although the cardinal of all
procedures is greater than γ, only an infinite countable number of them are of interest
in programming, and we can have higher order procedures.
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The overview of the paper is as follows. In Section 2 we present related work. Sec-
tion 3 introduces the predicate transformer semantics of our programming language. We
do not explicitely introduce a programming language syntax, but we rather define pro-
gramming constructs as semantic entities (predicate transformers). We introduce pro-
gram variables, addresses, and expressions in Section 4. Section 5 introduces the heap,
heap statements, and separation logic. In Section 6 we introduce recursive procedures
and a Hoare total correctness and frame rule for recursive procedures. Section 7 intro-
duces the frame rule for programs that can be constructed using program statements
defined in the paper. In Section 8 we prove the correctness of a recursive procedure for
disposing a binary tree from memory. Finally, Section 9 presents concluding remarks
and future work.

2 Related Work

Following [14], Weber [13] implements in theorem prover Isabelle/HOL relatively com-
plete Hoare logics for total and partial correctness of a simple while language with
pointers where variables and addresses store only natural numbers.

In [14,13] memory faults are modeled by transitions to a special state fault. When
giving semantics to partial correctness Hoare triples, the programs are required to avoid
the state fault. In our approach memory faults are modeled by non-termination and our
semantics is equivalent to the total correctness semantics from [14,13].

Reynolds, Yang, O’Hearn and Weber [11,14,13] require an infinite supply of ad-
dresses and the assumption that only a finite number of them are allocated during the
program execution. This assumption is needed for address allocation statement which
should always succeed. We do not need these restrictions. By using the demonic update
statement [2] to define address allocation we obtain a simpler semantics which yields
the same proof rules as in [11,14,13]. In our approach, if new addresses are not avail-
able, then the program terminates successfully. This treatment is equivalent to the one
where we require that addresses are always available for allocation. Both of these treat-
ments are unfeasible in practice, but most approaches to pointer semantics use one of
them.

The proof of the frame rule in [14] is a consequence of the frame and safety (ter-
mination) monotonicity properties and these are proved by induction on the program
structure. Although we could state the termination monotonicity property in our se-
mantics, it does not seem obvious how to represent the frame property. Our proof of the
frame rule is done directly by induction on programs.

Like in [14,13], non-deterministically choosing a new available address in the allo-
cation statement is essential in proving the frame rule.

In [11,14,13] addresses are natural numbers and variables and addresses can store
only natural numbers. The fields of pointer structures are recorded at successive ad-
dresses. Although it is possible to reason in this manner about high level program-
ming languages, the semantics is at the level of an assembly language and we cannot
take advantage of any type checking mechanism that would simplify the verification
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work. In our approach, a given address can store only values of a specified type and
this fact is ensured by the theorem prover. We can have record types, and addresses
can store these records. We could easily implement address arithmetic, but we would
use it for representing dynamically allocated arrays of arbitrary types rather than
record fields.

3 Preliminaries

In this section, we introduce a predicate transformer semantics of imperative programs.
We do not introduce programs as syntactic entities, but rather we work directly with
their semantic interpretations (monotonic predicate transformers). Valid Hoare triples
are abbreviations of semantic correctness statements, rather than syntactic constructs
whose validity is given by a semantic map. We can however easily implement the clas-
sical treatment of Hoare logic by introducing syntactic programs, syntactic Hoare proof
rules, and by mapping these constructs into our semantics.

We use higher-order logic [3] as the underlying logic. In this section we recall some
facts about refinement calculus [2] and about fixed points in complete lattices.

LetΣ be the state space. Predicates, denoted Pred, are the functions fromΣ → bool.
We denote by ⊆, ∪, and ∩ the predicate inclusion, union, and intersection respectively.
The type Pred together with inclusion forms a complete boolean algebra.

MTran is the type of all monotonic functions from Pred to Pred. Programs are mod-
eled as elements of MTran. If S ∈ MTran and p ∈ Pred, then S.p ∈ Pred are all
states from which the execution of S terminates in a state satisfying the postcondition
p. The program sequential composition denoted S ; T is modeled by the functional
composition of monotonic predicate transformers, i.e. (S ; T ).p = S.(T.p). We denote
by ", �, and � the pointwise extension of ⊆, ∪, and ∩, respectively. The type MTran,
together with the pointwise extension of the operations on predicates, forms a complete
lattice. The partial order" on MTran is the refinement relation [2]. The predicate trans-
former S � T models nondeterministic choice – the choice between executing S or T
is arbitrary.

We often work with predicate transformers based on functions or relations. A deter-
ministic program can be modeled by a function f : Σ → Σ where the interpretation
of f.σ is the state computed by the program represented by f that starts from the initial
state σ. We can model a nondeterministic program by a relation on Σ, i.e. a function
R : Σ → Σ → bool. The state σ′ belongs to R.σ if there exists an execution of the
program starting in σ and ending in σ′.

If p, q ∈ Pred, R : Σ → Σ → bool, f : Σ → Σ, then we define

[f ] : MTran =̂ (λq • λσ • q.(f.σ)) – the monotonic predicate transformer correspond-
ing to the function f .

[R] : MTran =̂ (λq • λσ • ∀σ′ •R.σ.σ′ ⇒ q.σ′) – the monotonic predicate transfor-
mer corresponding to the nondeterministic choice given by R.

{p} : MTran =̂ (λq • p ∩ q) – the assert statement.
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if p then S else T endif : MTran =̂ ({p} ; S) � ({¬p} ; T ) – the conditional
statement.

If L is a complete lattice and f : L → L is monotonic, then the least fix-point of f ,
denoted μ f , exists [12]. If b ∈ Pred and S ∈ MTran, then the iterative programming
construct is define by:

while b do S od =̂ (μX • if b then S ; X else skip fi)

Lemma 1. (Fusion lemma [2]) If f and g are monotonic functions on complete lattices
L and L′ and h : L→ L′ is continuous then

1. if h ◦ f ≤ g ◦ h then h.(μf) ≤ μg
2. if h ◦ f = g ◦ h then h.(μf) = μg

Lemma 2. while b do S od.q = (μX • (b ∩ S.X) ∪ (¬b ∩ q)).

Proof. Using Lemma 1.

4 Program Variables, Addresses, Constants, and Expressions

We assume that we have a type value that contains all program variables, program
addresses, and constants. The type value is the global type of all values that could
be assigned to program variables. We can have program variables of type address, or
type integer, and, although not used here, we could have program variables that store
other program variables (references). We assume that we have the disjoint subtypes
location and constant of value, and the element nil ∈ constant. Moreover, we assume
that variable, and address are disjoint subtypes of location. The elements of variable,
address, and constant represents the program variables, program addresses, and pro-
gram constants, respectively. The element nil represents the null address. For example,
the type of integer numbers, int, is a subtype of constant.

For all x ∈ location, we introduce the type of x, denoted T.x, as an arbitrary subtype
of value. T.x represents all values that can be assigned to x. For a type X ⊆ value we
define the subtypes Vars.X ⊆ variable, Addrs.X ⊆ address, and AddrsWithNil.X ⊆
address ∪ {nil} by

Vars.X =̂ {x ∈ variable | T.x = X}
Addrs.X =̂ {x ∈ address | T.x = X}
AddrsWithNil.X =̂ Addrs.X ∪ {nil}

The type Vars.X represents the program variables of type X . The elements of Addrs.X
are the addresses that can store elements of type X . An element of AddrsWithNil.X is
either nil or is an address that can store an element of typeX . For example, the program
variables of type addresses to natural numbers are Vars.(AddrsWithNil.nat). Based on
these addresses we define the heap and the heap operations in Section 5.

In the C++ programming language, and in most imperative programming languages,
a binary tree structure will be defined by something like:
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struct btree{int label; btree ∗left; btree ∗right; } (1)

In our formalism, binary trees, labeled with elements from an arbitrary typeA, are mod-
eled by a type ptree.A. Elements of ptree.A are records with three components: a : A,
and p, q : AddrsWithNil.ptree.A. Formally, the record structure on ptree.A is given by
a bijective function ptree : A×AddrsWithNil.(ptree.A)×AddrsWithNil.(ptree.A) →
ptree.A. If a ∈ A, and p, q ∈ AddrsWithNil.ptree, then ptree.(a, p, q) is the record
containing the elements a, p, q. The inverse of ptree has three components (label, left,
right), label : ptree.A → A and left, right : ptree.A → AddrsWithNil.(ptree.A). The
type ptree.int corresponds to btree from definition (1) and the type
AddrsWithNil.(ptree.int) corresponds to (btree ∗) from (1).

We access and update program locations using two functions.

val.x : Σ → T.x

set.x : T.x→ Σ → Σ

For x ∈ location, σ ∈ Σ, and a ∈ T.x, val.x.σ is the value of x in state σ, and set.x.a.σ
is the state obtained from σ by setting the value of location x to a.

Local variables are modeled using two statements (add and del), which intuitively
correspond to stack operations – adding a location to the stack and deleting it from the
stack. Of the two statements, only del is a primitive in our calculus, whereas add is
defined as the relation inverse of del

del.x : Σ → Σ

The behavior of the primitives val, set and del is described using a set of axioms [1].
Program expressions of type A are functions from Σ to A. We denote by Exp.A

the type of all program expressions of type A. We lift all operations on basic types to
operations on program expressions. For example, if ⊕ : A × B → C is an arbitrary
binary operation, then⊕ : Exp.A×Exp.B → Exp.C is defined by e⊕e′ =̂ (λσ •e.σ⊕
e′.σ). To avoid confusion, we denote by (e .= e′) the expression (λσ • e.σ = e′.σ).

For a parametric boolean expression (predicate) α : A → Σ → bool, we define the
boolean expressions

∃∃ .α =̂ λσ • ∃a : A • α.a.σ
∀∀.α =̂ λσ • ∀a : A • e.a.σ

and we denote by ∃∃ a • α.a and ∀∀a • α.a the expressions ∃∃ .α and ∀∀.α, respectively.
If e ∈ Exp.A, x ∈ variable, and e′ ∈ Exp.(T.x), then we define e[x := e′], the

substitution of e′ for x in e by e[x := e′].σ = e.(set.x.(e′.σ).σ).
We also introduce the notion of x–independence for an expression e ∈ Exp.A, as the

semantic correspondent to the syntactic condition that x does not occur free in e. Given
f ∈ Σ → Σ and e ∈ Exp.A, then we say that e is f–independent if f ; e = e. We say
that e is set.x–independent if e is set.x.a–independent for all a ∈ T.x.

The program expressions defined so far may depend not only on the current values of
the program variables, but also on the values from the stack. For example, del.x ; val.x
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does not depend on any program variable value (changing any variable, including x,
does not change the value of this expression), but it depends on the top value stored
in the stack. We define the subclass of program expression which depends only on the
current values of the program variables. Two states σ and σ′ are val–equivalent if for
all program variables x, val.x.σ = val.x.σ′. A program expression e ∈ Exp.A is called
val–determined if for all σ and σ′ val–equivalent we have e.σ = e.σ′.

4.1 Program Statements and Hoare Total Correctness Triples

In this subsection we introduce the program statements for assignment and handling
local variables and we will also give the Hoare total correctness rules to work with
these statements.

Let x, y ∈ variable such that T.x = T.y and e ∈ Exp.(T.x). We recall the definition
of the assignment statement from [2] and the definition of local variables manipulation
statements from [1].

– x := e =̂ [λσ • set.x.(e.σ).σ] – assignment
– add.x =̂ (λσ, σ′ • σ = del.x.σ′) – add local variable
– Add.x =̂ [add.x] – add local variable statement
– add.x.e =̂ (λσ, σ′ • ∃σ0 •σ = del.x.σ0 ∧ set.x.(e.σ).σ0 = σ′) – add and initialize

local variable
– Add.x.e =̂ [add.x.e] – add and initialize local variable statement
– Del.x =̂ [del.x] – delete local variable statement
– del.x.y =̂ (λσ • set.y.(val.x.σ).(del.x.σ)) – save and delete local variable
– Del.x.y =̂ [del.x.y] – save and delete local variable statement

As mentioned earlier, the program statements Add.x, Del.x and their variants corre-
spond intuitively to stack operations (adding the value of x to the stack and deleting the
top value from the stack and assigning it to x). The behavior of these statements are not
defined by an explicite stack, but rather by a set of axioms [1].

If α and β are predicates and S is a program, then a Hoare total correctness triple,
denoted α {|S |} β is true if and only if α ⊆ S.β.

Theorem 1. If x, y are lists of program variables, α and β are predicates, and e is a
program expression then

(i) (∃∃ a • α.a) {|S |} β ⇔ (∀a • (α.a {|S |} β))

(ii) (del.x ; α) {|Del.x |} α
(iii) α {|Add.x |} (del.x ; α)

(iv) α {|Add.x.e |} (del.x ; α)

(v) α is val–determined ⇒ α[x := e] {|Add.x.e |} α
(vi) α is set.y–independent⇒ (del.x ; α) {|Del.x.y |} α

(vii) α is val–determined and set.(x− y)–independent ⇒
α[y := x] {|Del.x.y |} α
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5 Heap Operations and Separation Logic

So far, we have introduced the mechanism of accessing and updating addresses, but
we need also a mechanism for allocating and deallocating them. We introduce the type
allocaddr =̂ address → bool, the powerset of address; and a special program variable
alloc ∈ variable of type allocaddr (T.alloc = allocaddr). The set val.alloc.σ contains
only those addresses allocated in state σ. The heap in a state σ is made of the allocated
addresses in σ and their values.

For A,B ∈ allocaddr we denote by A − B the set difference of A and B. We
introduce two more functions: to add addresses to a state and to delete addresses from
a state.

addaddr.A.σ =̂ set.alloc.(val.alloc.σ ∪A).σ

dispose.A.σ =̂ set.alloc.(val.alloc.σ −A).σ

Based on these elements we build all heap operations and separation logic operators.

5.1 Separation Logic Operators

Next, we introduce the separation logic predicates. The predicate emp holds for a state
where the set of allocated addresses is empty. If e, f are predicates, then the separation
conjuction e ∗ f holds in a state where the heap can be divided in two disjoint parts,
such that e and f holds for the two parts, respectively. The predicate singleton heap,
r �→ g, holds in a state where the only allocated address is r and the value stored in r is
g. Formally, we have:

Definition 1. If e, f : Pred, r : Σ → AddrsWithNil.X , and g : Σ → X , then we
define

emp.σ : bool =̂ (val.alloc.σ = ∅)
(e ∗ f).σ : bool =̂ ∃A ⊆ val.alloc.σ • e.(set.alloc.A.σ) ∧ f.(dispose.A.σ)

(r �→ g).σ : bool =̂ val.(r.σ).σ = g.σ ∧ val.alloc.σ = {r.σ}
(r �→ ) : Pred =̂ ∃∃ g : X • r �→ g

Lemma 3. The following relations hold

1. α ∗ emp = α
2. α ∗ β = β ∗ α
3. α ∗ (β ∗ γ) = (α ∗ β) ∗ γ
4. (∃∃ a • α ∗ β.a) = α ∗ (∃∃β)
5. If γ is set.alloc–independent then α ∗ (β ∧ γ) = (α ∗ β) ∧ γ
6. (
⋃

i∈I pi) ∗ q =
⋃

i∈I(pi ∗ q)
7. (
⋂

i∈I pi) ∗ q ⊆
⋂

i∈I(pi ∗ q)
8. del.x ; emp = emp
9. del.x ; (α ∗ β) = (del.x ; α) ∗ (del.x ; β)
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10. If e is set.alloc–independent then (α ∗ β)[x := e] = α[x := e] ∗ β[x := e]
11. If e is set.alloc–independent then (r �→ g)[x := e] = r[x := e] �→ g[x := e]

In [11] a subset of program expressions called pure are defined. These are expressions
that do not depend on the heap and are the usual program expressions built from pro-
gram variables, constants and normal (non separation logic) operators. In our frame-
work we use two different concepts corresponding to pure expressions. If an expression
is set.alloc–independent, then its value does not depend on what are the allocated ad-
dresses. An expression e is called set address independent if e does not depend on the
value of any (allocated or not) address, formally

(∀u : address, a : T.u • e is set.u.a–independent).

The pure expressions from [11] correspond to set.alloc–independent and set address
independent expressions in our framework.

We also need another subclass of program expressions. An expression e is
called non-alloc independent if e does not depend on the values of non allocated ad-
dresses:

(∀σ • ∀u 	∈ val.alloc.σ • ∀a ∈ T.u • e.(set.u.a.σ) = e.σ).

These expressions include all expressions obtained from program variables and con-
stants using all operators (including separation logic operators).

5.2 Specifying Binary Trees Properties with Separation Logic

Let atreecons be the type of nonempty abstract binary trees with labels from a type A.
We assume that nil denotes the empty tree and we take atree = atreecons ∪ {nil}. The
abstract tree structure on atree is given by an injective function

atree : A→ atree → atree → atreecons

which satisfies the following induction axiom:

∀P : atree → bool • P.nil ∧ (∀a, s, t • P.s ∧ P.t⇒ P.(atree.a.s.t)) ⇒ ∀t • P.t

Using this axiom we can prove that the function atree is also surjective and we denote
by label : atreecons → A and left, right : atreecons → atree the components of atree
inverse.

Abstract binary trees are very convenient to specify and prove properties involving
binary trees. However, imperative programming languages represent binary trees using
pointers. We introduce a predicate tree : atree → AddrsWithNil.ptree → Pred. The
predicate tree.t.p will be true in those states σ in which address p stores the tree t. The
predicate tree.t.p is defined by structural induction on t.

tree.nil.p.σ =̂ p = nil ∧ emp

tree.(atree(a, t1, t2)).p =̂ (∃∃ p1, p2 • p �→ ptree(a, p1, p2) ∗ tree.t1.p1 ∗ tree.t2.p2)

We extend the predicate tree to programs expressions, tree : (Σ → atree) → (Σ →
AddrsWithNil.ptree)→ Pred, by tree.e.f.σ =̂ tree.(e.σ).(f.σ).σ.
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Lemma 4. If a : Σ → atree and p : Σ → AddrsWithNil.ptree then

tree.a.p∧p 	 .= nil ⊆ (∃∃ a1, a2, c, t1, t2 • (p �→ ptree.(c, t1, t2))∗ tree.a1.t1 ∗ tree.a2.t2)

Lemma 5. If e and f are two expressions of appropriate types then

1. del.x ; tree.a.p = tree.(del.x ; a).(del.x ; p)
2. If e is set.alloc–independent then

(tree.a.p)[x := e] = tree.(a[x := e]).(p[x := e])

5.3 Pointer Manipulation Statements

In this subsection, we introduce the statements for pointer manipulation and their Hoare
total correctness rules. There is a significant difference between our semantics for heap
statements and the semantics form [14]. In [14] memory faults are modeled by a spe-
cial state. We model memory faults by nontermination, and we use total correctness to
reason about programs. However, our notion of total correctness is equivalent with the
total correctness notion from [14].

Definition 2. If X ⊆ value, x ∈ Vars.(AddrsWithNil.X), e : Σ → X , r : Σ →
AddrsWithNil.X , y ∈ Vars.X , and f : X → T.y then we define

New.X.(x, e) : MTran =̂ [λσ, σ′ • ∃a ∈ Addrs.X • ¬alloc.σ.a ∧
σ′ = set.a.(e.σ).(set.x.a.(addaddr.a.σ))]

Dispose.r : MTran =̂ {λσ • alloc.σ.(r.σ)} ; [λσ • dispose.(r.σ).σ]

y := r → f : MTran =̂ {λσ • alloc.σ.(r.σ)} ; [λσ • set.y.(f.(val.(r.σ).σ)).σ]

[r] := e : MTran =̂ {λσ • alloc.σ.(r.σ)} ; [λσ • set.(r.σ).(e.σ).σ]

The statement New.X.(x, e) allocates a new address a of type X , sets the value of x
to a, and sets the value of a to e. The new address to be allocated is chosen arbitrary
form all available addresses and this fact, similarly to [14,13], is essential in proving
the frame rule for the New statement. Unlike [11], we do not need the assumption that
we have an infinite supply of free addresses. In the case, when there are no addresses
available, our programs satisfies any postcondition and we obtain the same proof rules
for New statement as the ones from [11]. The statement Dispose.r deletes the address
r from allocated addresses. The lookup statement, y := r → f , assigns to y the value
of the field f of the record stored at address r. The update statement, [r] := e, sets the
value of address r to e. If in dispose, lookup, or update statements r is not an allocated
address, then these statements abort (do not terminate).

Next, we introduce Hoare correctness rules for these statements

Lemma 6. If X ⊆ value, x ∈ Vars.(AddrsWithNil.X), a ∈ AddrsWithNil.X , e :
Σ → X is set.alloc–independent and non-alloc independent then
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1. val.x .= a ∧ emp {|New.X.(x, e) |} val.x �→ e[x := a]
2. e is set.x–independent⇒ (emp {|New.X.(x, e) |} val.x �→ e)
3. emp {|New.X.(x, e) |} (∃∃ a • val.x �→ e[x := a])

Lemma 7. Let r : Σ → address ∪ {nil} and α : Σ → Pred, if r is set.alloc–
independent then

r �→ {|Dispose.r |} emp

Lemma 8. If a : T.x, r : Σ → AddrsWithNil.X is set.alloc–independent, f : X →
T.x, and e : Σ → X is set.alloc–independent then

1. val.x .= a ∧ (r �→ e) {|x := r → f |} val.x .= f ◦ e[x := a] ∧ (r �→ e)[x := a]
2. r and e are set.x–independent⇒ r �→ e {|x := r → f |} val.x .= f ◦ e ∧ r �→ e

Lemma 9. If r : Σ → AddrsWithNil.X and e : Σ → X are set address independent
then

r �→ {| [r] := e |} r �→ e

6 Recursive Procedures

In this subsection we recall some facts about recursive procedures from [1] and we
introduce a modified version of the recursive procedure correctness theorem.

A procedure with parameters from A or simply a procedure over A, is an element
from A → MTran. We define the type Proc.A = A → MTran, the type of all proce-
dures over A. The type A is the range of the procedure’s actual parameters. A call to a
procedure P ∈ Proc.A with the actual parameter a : A is the program P.a.

Every monotonic function F from Proc.A to Proc.A defines a recursive procedure
P ∈ Proc.A, P = μF , where μF is the least fixpoint of F . For example, the recursive
procedures that disposes a tree from memory is defined by

procedure DisposeTree(value-result t : AddrsWithNil.ptree)
local x : AddrsWithNil.ptree
if val.t 	 .= nil then
x := val.t→ left ;
DisposeTree.x ;
x := val.t→ right ;
DisposeTree.x ;
Dispose(val.t) ;
t := nil

endif

(2)

The procedure DisposeTree can be called by passing a program variable u of type
AddrsWithNil.ptree. The procedure call DisposeTree.u disposes the tree stored in u
and sets u to nil. The type of the parameters of the procedure DisposeTree is A =
Vars.(AddrsWithNil.ptree). We use the notation (2) as an abbreviation for the follow-
ing formal definition of the procedure DisposeTree.

DisposeTree = μ body−dt
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where body−dt : Proc.A→ Proc.A is given by

body−dt.P = (λu : A •
Add.t.(val.u) ; Add.x ;
if val.t 	 .= nil then

x := val.t→ left ;
P.x ;
x := val.t→ right ;
P.x ;
Dispose.(val.t) ;
t := nil

endif
Del.x ; Del.t.u)

6.1 Frame Rule and Recursive Procedures

In order to to be able to state the correctness and frame rule for recursive procedures we
need to extend all operations on predicates, and programs to parametric predicates and
procedures. For example, if B is a type of specification parameters, p, q : B → A →
Pred, and P,Q ∈ Proc.A, then we define the procedure Hoare total correctness triple
by:

p {|P |} q ⇔ (∀b, a • p.b.a {|P.a |} q.b.a)
We assume that all operations on predicates and programs are lifted similarly. Some-
times we use in examples the notation (p.b.a {|P.a |} q.b.a) for (p {|P |} q).

The specification of the procedure DisposeTree is:

tree.u.a {|DisposeTree.u |} emp ∧ u = nil (3)

This Hoare total correctness triple asserts that if the heap contains only a tree with the
root in u, after calling DisposeTree.u the heap is empty and the value of u is nil. How-
ever, we cannot use this property in contexts where the heap contains other addresses
in addition to the ones specified by tree.u.a. For example, in the recursive definition of
DisposeTree, the right subtree is still in the heap while we dispose the left subtree. We
would like to derive a property like:

α ∗ tree.u.a {|DisposeTree.u |} α ∧ u = nil (4)

for all predicates α that do not contain u free. This can be achieved using the frame
rule.

We introduce a new theorem that can be used when proving the correctness of recur-
sive procedures manipulating pointers. We assume that we have a non-empty type A of
procedure parameters and a nonempty type X ⊆ A→ Pred. The type X denotes those
formulas we could add to a Hoare triple when using the frame rule, and they are in gen-
eral formulas which does not contain free variables modified by the procedure. For pro-
cedure DisposeTree the set X is {α : Vars.(AddrsWithNil.ptree) → Pred | (∀u • α.u
is set.u–independent)}. We denote by

ProcX .A = {P ∈ Proc.A | ∀α ∈ X, ∀q : A→ Pred • α ∗ P.q ⊆ P.(α ∗ q)}
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If we are able to prove that procedure DisposeTree belongs to ProcX .A and satisfies
(3), then we can use (4), when proving correctness of programs calling DisposeTree. In
[14] the concept “local predicate transformers that modify a set V ” of program variables
is introduced to define the class of predicate transformers that modify only variables
from V and satisfy the frame property. ProcX .A is a generalization of local predicate
transformers to procedures with parameters. The elements of ProcX .A are the local
predicate transformers whenA = {•} andX = the set of predicates that do not contain
free variables from V .

Next, we introduce the correctness and frame rule for recursive procedures. Let W
be a non-empty type and pw : B → A→ Pred. If < is a binary relation on W then we
define

– p<w =
⋃
{pv | v < w}

– p =
∨
{pw | w ∈W}

Theorem 2. If for all w ∈ W , pw : B → A → Pred, q : B → A → Pred and
body : Proc.A→ Proc.A is monotonic, then the following Hoare rule is true

(∀w : W, P : ProcX .A • p<w {|P |} q ⇒ pw {| body.P |} q)
∧ (∀P : ProcX .A • ProcX .A.(body.P ))

(p {|μ body |} q) ∧ ProcX .A.(μ body)

Proof. See [9].

When proving a recursive procedure, this theorem lets us assume a stronger property
(like (4)), and prove a weaker property (like (3)). When using the procedure correctness
statement in proving other programs, we can also use a stronger property (like (4)).

7 Frame Rule

In this section, we prove the frame rule for the program statements we have introduced
so far. Our proof of the frame rule is different from the proof done in [14] mainly be-
cause we use a predicate transformer semantics instead of an operational semantics.
In [14] a frame property of the reflexive and transitive closure of the operational se-
mantics relation is proved by induction on programs. The frame rule is a consequence
of this frame property. Expressing the frame property does not seem possible in our
framework, and we prove the frame rule directly by induction on programs.

Definition 3. If f : Σ → Σ then we call a relation R ∈ Σ → Σ → bool f–
independent if for all σ, σ′ ∈ Σ, R.σ.σ′ ⇒ R.(f.σ).(f.σ′). The relation R is set.alloc–
independent if it is set.alloc.A–independent for all A ⊆ address.

The relation R is called address preserving if for all
σ, σ′ ∈ Σ, R.σ.σ′ ⇒ val.alloc.σ = val.alloc.σ′.

A function f : Σ → Σ is called set.alloc–independent (address preserving) if the
relation (λσ, σ′ • f.σ = σ′) is.

Lemma 10. The relations add.x and add.x.e and the functions del.x and del.x.y are
set.alloc–independent and address preserving.
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Definition 4. A predicate transformer S is called ∗–super-junctive if for all predicates
α, β ∈ Pred, S.α ∗ S.β ⊆ S.(α ∗ β).

Lemma 11. IfR : Σ → Σ → bool (f : Σ → Σ) is set.alloc–independent and address
preserving then [R] ([f ]) is ∗–super-junctive.

Corollary 1. Add.x, Add.x.e, Del.x, and Del.x.y are ∗–super-junctive.

Theorem 3. (Frame rule for parameters and local variables)

1. if α is set.y–indep and (∀q • (del.x ; α) ∗ S.q ⊆ S.((del.x ; α) ∗ q)) then

(∀q • α ∗ (Add.x.e ; S ; Del.x.y).q ⊆ (Add.x.e ; S ; Del.x.y).(α ∗ q))

2. if (∀q • (del.x ; α) ∗ S.q ⊆ S.((del.x ; α) ∗ q)) then

(∀q • α ∗ (Add.x ; S ; Del.x).q ⊆ (Add.x ; S ; Del.x).(α ∗ q))

Proof. Using Lemma 11 and Lemma 1.

Lemma 12. If x ∈ V (B(X)), e ∈ Σ → X , such that α is set.x–independent and is
non alloc independent, and e is set.alloc–independent, then

α ∗ New(X)(x, e).q ⊆ New(X)(x, e).(α ∗ q)

Lemma 13. If r is set.alloc–independent then

α ∗ Dispose(r).q ⊆ Dispose(r).(α ∗ q)

Lemma 14. If r ∈ Σ → AddrsWithNil.B and f : X → T.y, such that r is set.alloc–
independent and α is set.y–independent, then

α ∗ (y := r → f).q ⊆ (y := [r]→ f).(α ∗ q)

Lemma 15. If r ∈ Σ → AddrsWithNil.X and e : Σ → X , such that r is set.alloc–
independent, e is set.alloc–independent, and α is non alloc independent, then

α ∗ ([r] := e).q ⊆ ([r] := e).(α ∗ q)

Lemma 16. If b is set.alloc–independent and (∀q • α ∗ S.q ⊆ S.(α ∗ q)), then

∀q • α ∗ (while b do S od.q) ⊆ while b do S od.(α ∗ q)

Proof. α ∗ (while b do S od.q) ⊆ while b do S od.(α ∗ q)
⇔ {Lemma 2}

α ∗ (μX • b ∧ S.X ∨ ¬b ∧ q) ⊆ (μX • b ∧ S.X ∨ ¬b ∧ (α ∗ q))
⇐ {Lemma 1 using h.X = α ∗X}

α ∗ (b ∧ S.X ∨ ¬b ∧ q) ⊆ b ∧ S.(α ∗X) ∨ ¬b ∧ (α ∗ q)
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• Subderivation
α ∗ (b ∧ S.X ∨ ¬b ∧ q)

= {Lemma 3}
α ∗ (b ∧ S.X) ∨ α ∗ (¬b ∧ q)

= {b is set.alloc–independent and Lemma 3}
b ∧ (α ∗ S.X) ∨ ¬b ∧ (α ∗ q)

= {Assumption}
b ∧ S.(α ∗X) ∨ ¬b ∧ (α ∗ q)

= {Subderivation}
true

Although we work at the semantic level, we can define the subclass of programs, de-
noted Prog, built using the program constructs presented in this paper, where Add and
Del statements are used in pairs, like in the definition of the procedure DisposeTree.
For a program S ∈ Prog, we define by induction on the program structure the set of
variables modified by S, in a usual manner.

Theorem 4. (Frame rule) If S ∈ Prog, V is the set of variables modified by P , α, q ∈
Pred, and (∀x ∈ V • α is set.x–independent), then

α ∗ S.q ⊆ S.(α ∗ q)

Proof. By using Lemmas 3, 12, 13, 14, 15, 16, and similar results that are true for
assignment statement and sequential composition of programs.

8 Disposing a Binary Tree from Memory

In this section, we outline the correctness proof of the procedure DisposeTree (2). Let
X = {α : A→ Pred | α.u is set.u–indep}
Lemma 17. The procedure DisposeTree is an element of ProcX .A and

(∀a, u • tree.(val.u, a) {|DisposeTree(u) |} emp ∧ val.u .= nil) (5)

Proof. We apply Theorem 2 for body−dt with

– W = atree
– < on W given by a < b iff a is a subtree of b.
– pw = (λa • λu • tree.(val.u, a) ∧ a < w).
– q = (λa • λu • emp ∧ val.u .= nil)

If ProcX .A.P then ProcX .A.(body−dt.P ) follows from Theorem 4.
For w ∈ nat, and P : ProcX .A.P we assume

(∀u, a, α : set.u–indep • α ∗ tree.(val.u, a) ∧ a < w {|P.u |} α ∧ val.u .= nil) (6)

and we prove

(∀u, a • tree.(val.u, a) ∧ a .= w {| body-dt.P.u |} emp ∧ val.u .= nil) (7)
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By expanding the definition of body-dt, (7) becomes:

tree.(val.u, a) ∧ a .= w

{|
Add.t.(val.u) ; Add.x ;
if val.t 	 .= nil then
x := val.t→ left ;
P.x ;
x := val.t→ right ;
P.x ;
Dispose.(val.t) ;
t := nil

endif ;
Del.x ; Del.t.u

|}
emp ∧ val.u .= nil

(8)

We have proved (8) in PVS using (6) and the Hoare rules presented in this paper, with-
out unfolding the definition of Hoare triples or the definitions of the separation logic
operators.

9 Conclusions and Future Work

Based on earlier work on local variables and recursive procedures [1], we have mechan-
ically verified separation logic properties and Hoare total correctness rules for heap op-
erations. We have proved a frame rule that can be applied to recursive procedures with
value and value–result parameters and local variables. All results were carried out in
the theorem prover PVS.

We have also mechanically verified a more complex example [9] of a collection
of mutually recursive procedures which build the abstract syntax trees of expressions
generated by a context free grammar. In this example, we have used the procedure
presented in this paper for disposing a binary tree. This shows the flexibility of our
approach: we can use general procedures like DisposeTree in specific situations when
the type of the tree labels are strings. We can also use in programs different datatypes:
strings, integers, abstract trees, pointer represented trees.

The program constructs introduced in this paper cover an important subclass of pro-
grams that can be written in an imperative programming language. We can easily add
more features that are present in real programming languages. Pointer arithmetic can be
added easily by taking the set of all addresses to be nat and by extending the allocation
statement with the possibility of allocating an arbitrary number of addresses. We deal
already in [1] with lists of values in multiple assignments, and we can use these lists
here as well. As we have mentioned in the introduction, for a given infinite cardinal γ,
we can have program variables types of cardinals up to γ. The cardinal of all programs
(and of procedures of a given type) is strictly greater than γ which would prevent us
from having higher order procedures. However, in practice we are interested only in
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procedures that can be defined using the program constructs introduced in the paper,
and these are only an infinite countable number, therefore we can introduce program
variables of type procedures, and then pass them as parameters to other procedures.
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Abstract. The symbolic model checker NuSMV has been used to check
safety properties for railway interlockings. When the size of the mod-
els increased, the model checking efficiency decreased dramatically to a
point at which the verification failed due to lack of memory. At that
point the models we could check were still small in the real world of
railway interlockings. Various standard options to the NuSMV model
checker were tried, mostly without significant improvement. However,
the analysis of our model provided information on how to optimise the
variable orderings and also the ordering and clustering of the partitioned
transition relation. The NuSMV code was adapted to enable user control
for ordering and clustering of transitions. This replacement of the tool’s
generic algorithm improved efficiency enormously, enabling the checking
of safety properties for very large models. This paper discusses how the
characteristics of our model are used to find the optimised parameters.

Keywords: Symbolic model checking, Binary Decision Diagrams, image
computation, partitioned transition relations, clustering, railway inter-
lockings.

1 Introduction

The SigTools toolset [1] automatically generates models from railway interlock-
ing data in the design phase and checks the models for safety properties using
the NuSMV model checker [2]. The aim is to detect errors early in the design
process by applying an automated tool for verification [3].

NuSMV is a symbolic model checker which uses Reduced Ordered Binary De-
cision Diagrams (ROBDDs) as internal representation of states and state tran-
sitions [4]. When exploring the state space of the model, the checker iteratively
applies the transition relation to the current state resulting in the next state.
This is called image computation.

The size of an ROBDD is determined by the variable ordering that is used
when building the diagram. In order to minimise runtime and memory usage of
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the checking process it is essential to provide the tool with a good variable or-
dering [5]. For the image computation it is found that it is beneficial to partition
the transition relation into clusters [6]. Each cluster is in turn applied to the
state, building ROBDDs as intermediate products. The size of the intermediate
product is often responsible for the successful termination of the checking pro-
cess. Large ROBDDs quickly exhaust the available memory. How to partition the
transition relation and build the clusters critically determines the shape of the
intermediate product graphs. It has to be decided which transitions are grouped
into a cluster and in which order the resulting clusters should be applied to
the state and intermediate product, respectively. The model checker forms clus-
ters by processing a list of transitions. The specified maximal cluster size, the
threshold, determines the cut-off point, i.e., the number of transition ROBDDs
in each cluster. Thus, the order of transitions within the list determines which
transitions form a cluster.

Related research has mainly focused on defining heuristics for finding good
partitions that can be generated independently of domain knowledge. While the
initial suggestion for partitioning the transition relation in [6] “requires intimate
knowledge” [7] of the model (usually a complex digital hardware circuit), [7],
[8], and [9] follow an approach that deduces information automatically from the
model and does not require user intervention.

In our project the chosen variable ordering that leads to the best result is
based on expert knowledge of the application domain. The order of transitions
and also the definition of cluster cut-off points cannot be customised by the
given NuSMV tool. We found, however, that a good model-based variable or-
dering could also be used to define a good order for transition partitions and is
helpful when forming the clusters. We modified the NuSMV code to allow for user
control over both parameters. The results show a major increase in efficiency of
the checking process and extend the scope of model checking in our domain sig-
nificantly. Therefore, we argue for user-controlled orderings where possible. This
paper analyses our model and provides characteristics that lead to an improved
heuristic. Similar characteristics, we believe, can be found in other domains too.

The paper is organised as follows. Section 2 provides some technical back-
ground to symbolic model checking. Section 3 describes the application domain
and the important characteristics. Section 4 details the customising of the or-
derings. Results on runtime and memory usage for various models is discussed
in Section 5 and Section 6 documents related work. We conclude and give an
outlook on future work in Section 7.

2 Background

We use the symbolic model checker NuSMV [4,2]. The tool checks if a state tran-
sition system, the model, satisfies a temporal logic formula or an invariant. The
model is described by means of state variables V ar, whose evaluation determines
a state, and a transition relation between state and next state.

In symbolic model checking, states or sets of states and transition relations
are represented as Binary Decision Diagrams (BDDs) which are reduced and
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ordered (ROBDDs). ROBDDs are a succinct representation of boolean formu-
las. NuSMV is implemented using the CUDD package [10] which provides very
efficient algorithms for the operations on ROBDDs.

State variables V ar are encoded by a set of boolean variables V . A state of
the model is represented by S (V ) and the transition relation by N (V ,V ′). Both
are stored as ROBDDs.

Variable Ordering. ROBDDs are very sensitive to the variable ordering (see
[11,5,12]). The efficient reduction of BDDs into ROBDDs is based on the combi-
nation of isomorphic subtrees and the elimination of redundant decision nodes in
the tree. Thus, the size of the final ROBDD will be closely related to the variable
ordering used. Identifying good variable orderings for ROBDDs is the focus of
many research papers [13][14][15][16]. The following heuristics are suggested in
the literature.

1. Declare closely related variables together. In the variable ordering, each vari-
able should be close to the variables that support its transition [5,12].

2. For each transition, having the support variables closer to the top of the
order than the variable being transformed, gives the smallest ROBDD [5].

3. Declare global variables firstly [12].
4. Initially order variables manually and run the model checker iteratively to

produce an ideal ordering. This is called dynamic reordering [2].

Partitioning the Transition Relation. The state space is explored by iter-
atively applying the transition relation to the states. This is done in a forward
fashion starting with the initial state and is called image computation. The oper-
ation on ROBDDs used for image computation is called relational product and is
for synchronous system (as in our case) defined as follows (we follow the notation
from [6]).

S ′(V ′) = ∃v∈V [S (V ) ∧ N (V ,V ′)] (1)

V ′ is the set of primed state variables and S ′(V ′) describes the set of next states
reachable from S (V ) via one transition step.

The transition N (V ,V ′) can be conjoined and applied to the state as one
big transition or it can be envisaged as a conjunct of several smaller transition
relations Ni(V ,V ′). The aim is to compute the image without building the whole
of N (V ,V ′):

S ′(V ′) = ∃v∈V [S (V ) ∧ N0(V ,V ′) ∧ . . . ∧ Nn−1(V ,V ′)] (2)

Each Ni(V ,V ′) usually depends on a smaller set of variables Di ⊂ V . A good
ordering for the Ni(V ,V ′) allows variables to be moved out of the scope of
existential quantification if later transitions do not depend on those. Let Ei =
Dρ(i)−

⋃n−1
k=i+1 Dρ(k) be the set of variables that are not used in transitions later

in a given order ρ. Then S ′(V ′) can be computed in a number of steps each
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eliminating the corresponding variables Ei and building an intermediate product
Si+1(V ,V ′):

S1(V ,V ′) = ∃v∈E0
[S (V ) ∧ Nρ(0)(V ,V ′)]

S2(V ,V ′) = ∃v∈E1
[S1(V ,V ′) ∧ Nρ(1)(V ,V ′)]

...
S ′(V ′) = ∃v∈En−1

[Sn−1(V ,V ′) ∧Nρ(n−1)(V ,V ′)]

(3)

The aim is to choose the order ρ such that variables can be eliminated as early
as possible, thus reducing the size of the intermediate product [6].

For many applications the transition relation is given as a set of small transi-
tions, each describing the behaviour of one state variable that is dependent on
some other state variables, called support variables. The aim is to group those
transitions together into one cluster that have the same support variables. Se-
lective grouping of transitions into clusters, and the order ρ of application of the
clusters leads to smaller and fewer intermediate products that are manipulated
faster [7]. If transitions do not naturally fall into clear-cut divisions, the grouping
of transitions within clusters and the order of application of the clusters should
be such that early elimination of support variables is maximised.

NuSMV implements algorithms that approximate the affinity of transitions.
The affinity between two transitions is defined as the quotient of the number
of variables supporting both transitions at the same time and the total number
of variables used in either of the transitions (i.e., the intersection of the sup-
port variables over their union)1. The transitions are then grouped according to
maximal affinities and a cluster is formed when the group size reaches a certain
threshold [9,8]. The user may decide the threshold or use the default threshold
size. The clusters are progressively prepended into a cluster list. The clusters are
applied to the state in turn from the beginning of the list.

If applications have very large and very small transitions and the threshold
used is not considerably larger than the large transitions, this method will pre-
dictably select the large transitions first, thus putting the large transition clusters
at the end of the cluster list. This is not necessarily desirable as the transition
may be large because it is using many support variables that therefore cannot
be eliminated before the end of the cluster application.

3 The Application

A railway interlocking prescribes the behaviour of signal equipment for a specific
area, called verification area. Different railway interlockings have different input
data, some much more complex than others, but the profile of the data is the
same for each verification area. We have conducted research into the use of model
checking in this context for a number of years. The complexity of the data is
a problem for a medium-sized model causing the model checker to run out of
1 In the code this is approximated by the ratio of the size of the conjoined ROBDDs

to the sum of the sizes of the individual ROBDDs.
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Fig. 1. Track Layout of a small verification area

memory quickly. Thus, in order to be applicable in practice, it is necessary to
improve the efficiency of the model-checking process. Particularly, memory usage
has to be minimised.

The data in the signalling plan for a railway interlocking includes information
about track circuits, signals, points, distances, time, speed, etc. Signals use colour
indications as aspects (e.g., green for go), to give authorities for trains to travel
a particular route through the layout. Points are movable components in the
track that permit a train to move from one track to another. The lie of the
points is referred to as normal or reverse. Points move and signal aspects change
depending on calls from the control centre, the lie of other points, aspects of other
signals, and the route used and tracks occupied by trains. Our model prescribes
the points and signals and the rules for altering the lie of points and the aspects
of signals. The abstracted data set required for verification is a small subset of
the original data.

Figure 1 depicts the track layout of a small verification area. Generally, a track
layout shows where signals (e.g., NG1, NG2, NG3, etc.), points (e.g., 500, 501,
510, and 511), and tracks are located in relation to each other. Tracks are not
named in Figure 1 but they are indicated on the horizontal line representing the
railway by small vertical bars. A route is defined as a path traversing the tracks
between two consecutive signals.

Our model includes information on train movement that is possible in a given
verification area. This allows us to model the safety requirements simply by
means of train collision and train derailment. It is sufficient to maximally con-
sider two trains moving along the tracks (see also [17]). Trains move according
to the condition of the points and signals. Although in real railways, trains have
many different attributes (such as speed or braking capacity), in order to check
the safety of train movement with respect to collision and derailment on the
main routes, the train data is limited to the identity of the train, which route it
is on, and which track it is occupying. Trains stop at stations. In our model we
stop trains non-deterministically. Model checking will include the case in which
trains stop at stations and other places too, but we do not need any extra data to
determine where stations are. Commands from the control centre are modelled
as input variables that change non-deterministically. That is, in any situation,
there can be a command to change the status of a particular point or signal [17].
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3.1 Characteristics of the Data

The data in our models can be divided into three groups. One group of data
applies to the whole system and is called global data. The second group applies
to local areas within the system and is called local data. The third group is non-
deterministic input data and at each iteration of the model checking all values
for those variables are considered.

Our global data represents train attributes like the current position (given
in terms of a track) and the currently used route. This is modelled by four
variables of enumerated type. Typically 30 -130 different values, depending on
the number of tracks and routes in the interlocking, are required. The larger and
more complex the verification area, the larger becomes the global data. Typically
this data requires five to seven booleans for each attribute in the implementation
(see [5] for details on implementing enumerated types efficiently).

The local data, representing the lie of the individual points and current aspect
of the signals, is represented by simple booleans (points are set normal or reverse,
and signals are set proceed or stop).

Input data, representing signalling and train control commands, includes a
number of simple booleans and one variable of enumerated type. The number
of enumerated values again depends on the size of the verification area, i.e., the
number of points, signals and routes. The implementation of the enumerated
input variable typically requires five to seven booleans.

An increase in the complexity of models (more signals, points and tracks),
introduces more local variables, and maintains the same number of global and
input variables but adds more values to the enumerated types. Adding more
values to the enumerated types does not impact significantly on the number of
booleans used to implement them but does impact on the size of the ROBDD
used to distinguish particular values of the variables.

3.2 Characteristics of the Transition Relations

In our model the transition relation is described using the next operator of the
SMV input language [4,18]. For each variable the evaluation in the next state is
modelled depending on the previous values of a number of support variables. The
size of the ROBDD representing the transition for each variable is dependent on
the variable ordering.

Transitions for global variables, called global transitions, for which the tran-
sition is specified by a case for each possible previous state of the variables,
are supported by all the variables. For example, each variable in the system is
used in some case when specifying the next train position. Transitions for local
variables, local transitions, depend on a limited number of variables. Specifically
they are supported by the global variables, the input variables and some of the
other local variables. For example, only the occupation of particular nearby or
local tracks and the input command variable are relevant to the movement of a
particular point.

An analysis of the dependencies between all the variables using a dependency
matrix (see [9]) resulted in a very dense matrix.



530 W. Johnston et al.

4 Customising the Orderings

Applying the model checker to larger models quickly leads to either a memory
overflow or an unacceptable runtime – the checking process might not terminate
at all. We have to improve on the efficiency of the process in order to be useful
for industrial application, in our case the checking of railway interlockings.

We target this aim by customising the variable ordering and the order of
transition partitions and their clustering. The following sections describe how
this is successfully done in our project.

Let V ar = {v1, . . . , vm+n+p} be the set of state variables in our model with
{g1, . . . , gm} ⊂ V ar the set of global variables, {l1, . . . , ln} ⊂ V ar the set of local
variables and {req1, . . . , reqp} ⊂ V ar the set of input variables. V denotes the set
of boolean variables representing the variables in V ar, such that the intersection
of V and V ar is not necessarily empty. Let Nvi (V , v ′

i ), 1 ≤ i ≤ (m + n), be the
transitions, local or global, that changes (local or global) variable vi dependent
on the support variables in V .

4.1 The Variable Ordering

In our project the transitions are such that if {vi , vk , vl} is the set of support
variables for transition Nvi (V , v ′

i ) then the set of support variables for transition
Nvk (V , v ′

k ) is likely to include vi . That is, there is a cross-dependence between
transitions and it is not obvious which variable should come first.

As shown in Figure 1 our data including signals, tracks and points can be
drawn as symbols on a graph, i.e. the track layout. The global transitions repre-
sent a progression of a train/trains from some starting point along the tracks (or
routes) shown in the layout. Each train moves according to the lie of the points
and stops at red signals along its way. The local data in our model are attributes
of some symbols on that graph. For example, local data for each point is the
status of the point, whether it is lying normal or reverse. The local transitions
represent the rules for altering these attributes depending on attributes of other
symbols in the vicinity on the track-layout graph.

The dependencies between the state variables are therefore related to the ge-
ographical arrangement that can be read from the track layout. Taking the local
data {l1, . ., ln} ⊂ V ar in an order of the associated symbols, left to right across
the track layout or vice-versa, i.e., in geographic order γ, gives a permutation of
local variables lγ(1), . ., lγ(n). For each local variable lγ(j), 1 ≤ j ≤ n, the corre-
sponding transition Nlγ(j)(V , l ′γ(j)) then depends on local variables in reasonably
close proximity to lγ(j) in the order, e.g. lγ(j)−1, lγ(j)+1, etc.

The local data also depend on the global variables. Experimentation shows
that putting the global variables higher in the variable order than all the lo-
cal variables gives the smallest local transitions (supporting heuristics 3 in
Section 2). The transitions for the four global variables of enumerated type
depend on all the variables and are large.

Placement of the input variables in the variable order is problematic. Input
variables are in the support variables for all transitions. When they are placed
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Varible Order

r1

r2

r3

v1

v3

v′3

T F T F

Fig. 2. Left: Transition ROBDD Nv3(V , v3
′) with variable ordering r1 < r2 < r3 <

v1 < v3 < v ′
3, Right: transition applied to state v1 = 0, v3 = 1

at the beginning of the order, small transitions Nvi (V , v ′
i ), 1 ≤ i ≤ (m + n), are

produced for the state variables vi . However, this does not necessarily lead to
small intermediate products as the following reasoning shows.

When a transition ROBDD Nvi (V , v ′
i ) is applied to a state ROBDD S (V ) we

build the relation product

S ′(V ′) = ∃v∈V [S (V ) ∧ Nvi (V , v ′
i )]

Only those variable evaluations in Nvi (V , vi) that satisfy the values of the vari-
ables in S (V ) are included in the product. In the following, we refer to a partic-
ular variable evaluation in an ROBDD as a path through the diagram.

Figure 2 gives an example for two ROBDDs2. It shows on the left the ROBDD
for the transition

Nv3(V , v3
′) = ((r1 ∧ r2 ∧ r3) ∧ v1 ∧ ¬ v3 ∧ v ′

3)
∨ ((¬ r1 ∧ r2 ∧ r3) ∧ ¬ v ′

3)
∨ (v3 ⇔ v ′

3).

Nv3 depends on variables v1 and v3 and an input variable represented by binaries
r1, r2, and r3. The variable ordering is r1 < r2 < r3 < v1 < v3 < v ′

3, i.e., the
input variable comes before the other support variables. The formula for Nv3

shows that the transition has three cases to consider. In two of the cases a value
for the input variable is specified, namely (r1, r2, r3) equals (1, 1, 1) and (0, 1, 1)
respectively.

The right-hand side of Figure 2 shows the result of applying Nv3 to state
S = ¬v1 ∧ v3 by building the relational product S ′. There are eleven nodes in
the ROBDD of Nv3 , and there are eleven nodes in the ROBDD of S ′. The input
2 Each nodes in the graph is labelled by the variable that is at the same level in the

variable order. The solid line from a node represents its evaluation to true and the
dashed line its evaluation to false. The leaf nodes represent the values true or false
for the overall function.
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Varible Order

v1

r1

r2

r3

v3

v′3

T F T F

Fig. 3. Left: Transition ROBDD Nv3(V , v3
′) with variable ordering v1 < r1 < r2 <

r3 < v3 < v ′
3, Right: transition applied to state v1 = 0, v3 = 1

variables are not restricted to pre-state values but the variables v1 and v3 are
restricted, so changing the shape of the product S ′ from the level of v1 down. In
this simple case there is no change in the number of nodes in the product.

Figure 3 shows the same transition as in Figure 2 but with a different ordering.
Variable v1 now precedes the input variable in the variable ordering. Nv3 now has
twelve nodes, the input variable being required twice. However, when applied to
state S = ¬v1∧v3, the fixed value for v1 eliminates a part of the ROBDD for S ′.
Only one path through the input variable remains which reduces the number of
nodes in the product to nine.

The number of nodes in the relational product may be smaller than the num-
ber of nodes in the transition ROBDD since the pre-state values of the state
variables can restrict the paths (like in Figures 2 and 3). Input variables, how-
ever, are not restricted to pre-state values and there is no reduction in the number
of nodes in the relational product when applying the transition ROBDD.

A path through the diagram depends on a number of state variables and these
are evaluated according to the variable ordering. If the value of a state variable
does not satisfy the requirement of the transition, the path is not explored fur-
ther and subsequent nodes on the path are ignored. Since the value of the input
variable selection depends on many nodes (in our project 1-259 nodes) and does
not restrict the path, this reasoning suggests that the number of nodes in the re-
lational product is minimised by evaluating the input variable last. That is, state
variables higher in the variable ordering than the input variables can eliminate
the need to check the input variable on certain paths in the ROBDD.

Each of our local transitions depend on the values of a large input variable rep-
resenting the control centre commands. Experimentation has shown that plac-
ing the large input variable lower in the order increases the size of the local
transitions and the size of the clusters. However, as expected from the previ-
ous reasoning, this gives smaller intermediate products and uses less memory
overall. There are time and memory efficiency penalties for manipulating large
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transitions, large clusters, and large intermediate products and for our data, ex-
perimentation has shown that the best results are obtained by placing the large
input variable about 2/3 down the order.

Our model has other state variables of similar size and complexity to the input
variable for control centre commands but their values start at a specific value
and are changed only by transition rules, ensuring the complexity of their BDD
is kept to a minimum.

NuSMV can be used without the user supplying a variable order or any other
options. For a medium-sized model using NuSMV this way took 9620 seconds
and used 1098 Megabytes (Mb) of memory (see also Table 1 in Section 5). We
were unable to produce a good ordering by running the dynamic reordering
algorithm implemented in NuSMV as suggested in the heuristic 4 in Section 2.
Ordering the variables as they appeared in the assignments, heuristic 3, was not
possible as the cross-dependence was too strong.

Using the option to provide a customised variable ordering in the order global
and simple boolean input variables followed by local variables in geographic
order with the large input variable about 2/3 down the order, NuSMV checked
the above medium model in 734 seconds, using 114 Mb of memory. Running the
same model but moving the large input variable towards the top of the variable
order, took 3739 seconds and used 334 Mb.

4.2 Partitioning the Transition Relation

NuSMV does not have provision for the user to supply a transition order. It
has its own generic algorithm for estimating the affinity of transitions [9] and
progressively builds clusters based on this affinity. A cluster is closed off when
its size reaches a threshold that the user supplies or the default threshold. This
results in evenly sized clusters.

For our application the dependency matrix on which the affinity is based
is very dense. The behaviour of all variables is heavily interrelated. Therefore,
computing the affinity between variables by itself did not provide the necessary
improvements in efficiency.

Examining the railway interlocking model and its semantics has enabled us
to define an order in which transitions can be conjoined and the points in the
order at which to cut the conjunctions to form clusters. When these clusters are
applied in turn in the image computation, the variables are quantified efficiently
from the intermediate product.

Transition Ordering. It is reasoned that transitions that are supported by
the maximal number of variables should be grouped together in a cluster and
applied first. Subsequent transitions that are supported by fewer variables should
be grouped into clusters so that as many of their support variables as possible
do not support transitions in clusters yet to be applied. This enables some of
the support variables to be quantified out progressively from the intermediate
products giving smaller intermediate products (see equation 3 in Section 2).
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In our application, the global transitions, Ng1 , . . . ,Ngm , are supported by all
the other variables including the input variables. The above argument suggests
that global transitions should be applied first. The local transitions, Nl1 , . . . ,Nln ,
depend on global variables and other local variables associated with nearby sym-
bols in the track layout, an argument that was used to define the geographic
variable ordering (see Section 4.1). A transition order that reflects the geo-
graphic order of variables γ for the local transitions results in a permutation
Nlγ(1) , . . . ,Nlγ(n) of local transition which then can be progressively grouped into
clusters with some overlap of support variables. That is, the same argument of
vicinity of symbols on the track layout that is used for finding a good variable
ordering can be reused for ordering the partitioned transition.

Removing variables at the leaf end of an ROBDD (lowest in the variable order)
favours BDD reduction and results in smaller diagrams than removing variables
from the middle or root end of the diagram (higher in the variable order). If
the local variables indexed progressively by γ(1), . . . , γ(n) within the geographic
order, the transition for the γ(n)th variable is applied before the transition for
the (γ(n) − 1)th variable to facilitate early elimination of the γ(n)th variable.
While the γ(n)th variable may not be eliminated immediately after application
of its transition, it should be soon after since all transitions using it will be within
close range. This ordering is similar to the variable ordering but the transitions
are applied in reverse order for the local variables.

The order of application of transitions is the global transitions followed by
the local transitions in the order γ(n) to γ(1). That is, assuming the NuSMV
principle of prepending the cluster list, the transition order for this application
is the local transitions in the order γ(1) to γ(n), followed by the global variable
transitions:

Nlγ(1) , . . . ,Nlγ(n) ,Ng1 , . . . ,Ngm

The NuSMV code was augmented so that the user could manipulate the
transition order by entering an ordered list of the corresponding variables,
lγ(1), . . . , lγ(n), g1, . . . , gm . The default threshold method was then applied to
form the clusters. The medium model used in Section 4.1 was checked in 321
seconds and used 78 Mb of memory which is a significant improvement over
former results (c.f. Table 1).

Forming the Clusters. Transitions are conjoined in order according to the
transition order. Having defined a good transition order that supports the elim-
ination of variables as early as possible, the question becomes where to cut the
transition conjunction and form a cluster. If all transitions are in one cluster,
no elimination of variables can occur and the ROBDD representing the cluster
becomes very large.

Clusters should not be so large that significant time is lost building the clus-
ters. On the other hand, many small clusters give many intermediate products
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that are computationally inefficient to process. There should be enough clusters
so that significant elimination of variables can occur.

The global transitions are applied first and it is logical to put all of these
into the first cluster. The size of this cluster varied from 98401 nodes for a small
model, 196301 nodes for a medium model, and 554235 nodes for a large model.
After application of the global cluster only the next values for the global variables
can be quantified out. However, there should be local variables to be eliminated
after the second cluster application of local transitions and each subsequent
application as this is the criteria on which the transition order was based. Using
a transition order and the default threshold to form the clusters resulted in
between ten and fourteen clusters for our models.

Assuming the transition order reflects the geographic order, it is possible
by referencing the track layout to nominate where in the transition order the
dependencies change. For example, Figure 1 shows us that variables related
to symbols to the right of signal HE1 will be supported mostly by variables
lower in the transition order than the variable for signal HE1 since we ordered
the variables inspecting the track layout from left to right. Similarly, variables
related to symbols to the left of signal HE1 will be mostly supported by variables
higher in the variable ordering than the variable for signal HE1. Thus, the local
transitions fall naturally into two clusters at this point. Including the global
cluster gives three clusters for this track layout.

The code for NuSMV was augmented to allow the user to define clusters.
Choosing three clusters by reference to the track layout for the same model as
used previously, the altered NuSMV took 152 seconds and used 49 Mb to check
the model. That is, runtime is halved and memory usage reduced by a third
compared to previous results. The cluster sizes generated are: global cluster
196301 nodes, first local cluster 39018 nodes, second local cluster 18636 nodes.
In general we found the models fell naturally into three or four clusters and using
this improved the efficiency of our model checking.

However, while one large model fell naturally into three clusters, one of these
clusters was very large and the model checker spent significant time building it.
While specifying this very large cluster as two clusters fixed the problem, it was
not a satisfactory solution.

From our experimentation it is clear that with a good transition order, few
clusters are required. Another way to achieve few clusters is to specify a large
threshold. The clusters will not be cut as precisely as before but because the
order is good, progressive elimination of variables will occur. Running NuSMV
on the same model as used previously, with a transition order, and a threshold of
100000 took 222 seconds and used 63 Mb. The cluster sizes for this model check
are more even: 1st cluster 196301 nodes, 2nd cluster 303042 nodes, 3rd cluster
153550 nodes. This result is not as good as the customised formation of clusters
described above, but is a worthwhile improvement on the default threshold used
by standard NuSMV. The result is suggested that this approach is a reasonable
alternative as it requires no specialist knowledge of the model or the application
domain.
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5 Experimental Results

Table 1 compares our results for each of 3 different sized models - small, medium,
and large, using the options indicated. The numbers show that a large improve-
ment over runtime and memory usage was achieved by choosing a good variable
ordering that was based on geographical information from the track layout, i.e.,
domain knowledge over the dependencies. This result is not surprising as this
correlation is often stated in the literature.

Table 1. Comparison of various sized models using the discussed options

User Options Time(secs) Memory Used
Small model 1 4081 655Mb

2 651 98Mb
3 124 42Mb
4 61 29Mb
5 88 36Mb

Medium model 1 9620 1098Mb
2 734 114Mb
3 321 78Mb
4 152 49Mb
5 222 63Mb

Large model 1 N/A ran out of memory
2 N/A ran out of memory
3 68872 3.6Gb
4 33641 980Mb
5 29357 1160Mb

where
option 1: using NuSMV defaults for variable and transition orders and clustering
option 2: using user-defined variable order with default transition order and clustering
option 3: using user-defined variable ordering and user-defined transition orders

with default clustering
option 4: using user-defined variable ordering, user-defined transition order and clus-

ters selected by user
option 5: using user-defined variable order, user-defined transition order and clusters

selected by threshold

Improvements of similar scale could also be achieved by customising the order
of transition partitions and by forming the clusters. Both parameters were chosen
using the same reasoning as was used for choosing the variable ordering – in our
case geographic order of dependencies. NuSMV does not allow the user to set
these parameters. The tool could be improved by given the user an input option.

6 Related Work

Model checking has been applied before to the analysis of interlocking systems.
Closest to our approach are the contributions by Eisner [19] and Huber et. al [20].
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Both use a symbolic model checker to analyse the interlocking logic of a given
track layout and discuss strategies for optimisation. In both works, however, the
model is significantly different from our model and different strategies apply.
In [20], for instance, the interlocking model is given on the program level of
geographical data. The variable ordering is optimised using the dynamic re-
ordering of the NuSMV tool. In our case, however, we were able to significantly
improve on this option by using an application specific ordering. Huber also
suggests splitting the transition relation but does not elaborate on the ordering.

Early work on generally gaining improvements by partitioning the transition
relations is published in [6]. While this paper suggests that the order for the
transitions partitions should be provided by the user, later publications, e.g.
[8,7,9], argue that for large models this task is too complex. Thus, Geist and
Beer [7] suggest an algorithmic approach that chooses the transition order based
on computable heuristics independently of user knowledge. Ranjan et al. [8] later
improved on these heuristics using a cost function. Moon et al. [9] introduce a
dependency matrix showing the dependencies between variables. Based on this
matrix the affinity of transitions is computed, a value that measures the overlap
in support variables. Transitions with high affinity should thus form a cluster.

The algorithm in [8] is implemented in NuSMV, referred to as IWLS ordering.
However, the function is overwritten by the implementation of the algorithm in
[9], referred to as MHS affinity. Changing the NuSMV code enabled us to exper-
iment with both algorithms but neither of them provided good enough results
for our application. In our experiments, we worked with matrices similar to the
dependency matrix suggested in [9]. When our matrix contained all variables it
was very dense. Any permutation of the rows in the matrix would not lead to
improved results. Since in our model global variables are supported by all other
variables, we found it to be beneficial to determine the geographical closeness
(which is similar to the notion of affinity) only for local variables and prepend
the global variables.

Wang et al. [21] extended the work of [9] by firstly reducing the transition
size by over-approximating the image that is computed, and computing later
the exact image by applying a clipping function. This approach constrains the
next-state values of the variables, i.e., the v ′

i , instead of the previous state values
as in the earlier approaches. This work, similar to the other approaches, does
not consider the use of model or domain knowledge. Since an implementation of
this approach is not available we cannot compare our results with those gained
from using this new algorithm.

7 Conclusion

For checking railway interlockings, this work has shown great improvement of
efficiency by allowing the user to define not only the variable order (as is currently
available as an option in NuSMV) but also a transition order and cut-off points
for forming clusters of transitions. Both the variable order and the transition
order come from an analysis of the domain data.
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Moon et al. [9] use affinity amongst all variables to derive the transition order,
which indicates the overlap of support variables amongst two transitions. In
contrast, we recognise global transitions that are supported by all variables and
ensure these are applied first to the state. Only local transitions are ordered
by geographical closeness, which is similar to affinity but based on graphical
information. We also place the large input variable low in the variable order
since small transition sizes are not necessarily a good indicator of overall model
checking efficiency. For our application, our ordering heuristics shows significant
improvements over the heuristics suggested in [9]. Since the designer of the model
knows both, the global and the input variables, setting the parameters does not
require specific domain knowledge. We suggest the following heuristics when
defining the variable ordering:

1. Declare closely related variables together.
2. Declare global variables first.
3. Consider the size of input variables and experiment by placing any large

input variables low in the order.
4. Consider the order of application of transitions so that the variables last

in the variable order are the first to be eliminated from the intermediate
clusters.

Furthermore, we suggest the following heuristics when defining a transition
order and the formation of clusters:

1. Declare the global variables so that their transitions are applied first.
2. Declare closely related variables together in a sequence depending on support

variables.
3. Declare the sequence of local variables so that their transitions are applied

in reverse order to the variable order.
4. Put the global variables into 1 cluster.
5. Apply at least 3 clusters.

This project relies on a geographical track layout to get efficient orderings.
For even very large verification areas our heuristics rendered the model checking
process applicable. In future work, we will apply our approach to those few
railway interlockings, such as those found in very large interchanges, in which
complex point systems and crossovers make the selection of related groups of
signals and points based on graphical information difficult or impossible.
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Abstract. Symmetry reduction techniques can help to combat the state
space explosion problem for model checking, but are restricted by the
hard problem of determining equivalence of states during search. Con-
sequently, existing symmetry reduction packages can only exploit full
symmetry between system components, as checking the equivalence of
states is straightforward in this special case. We present a framework for
symmetry reduction with an arbitrary group of structural symmetries.
By generalising existing techniques for efficiently exploiting symmetry,
and introducing an approximate strategy for use with groups for which
fast, exact strategies are not available, our approach allows for significant
state-space reduction with minimal time overhead. We show how compu-
tational group theoretic techniques can be used to analyse the structure
of a symmetry group so that an appropriate symmetry reduction strat-
egy can be chosen, and we describe a symmetry reduction package for
the SPIN model checker which interfaces with the computational algebra
system GAP. Experimental results on a variety of Promela models illus-
trate the effectiveness of our methods.

Keywords: Promela/SPIN, model checking, symmetry, computational
group theory, GAP.

1 Introduction

Symmetry reduction techniques can help to combat the state space explosion
problem when model checking systems with replicated structure. Replication of
components in a concurrent system frequently induces replication, or symmetry,
in a Kripke structure modelling the system, which allows the set of states of
the model to be partitioned into equivalence classes. To model check temporal
logic properties it is often sufficient to search one state per equivalence class,
potentially resulting in more efficient verification. Given a symmetry group G, a
common approach to ensure that equivalent states are recognised during search
is to convert each newly encountered state s into min[s]G the smallest state in its
equivalence class (under a suitable total ordering) before it is stored. However,
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the problem of computing min[s]G for an arbitrary group, called the constructive
orbit problem (COP), is NP-hard [5].

Existing symmetry reduction packages, such as SymmSpin [1] and SMC [18],
are limited as they can only exploit full symmetry between identical components
of a system. Such symmetry arises in systems where all components of the same
type are interchangeable, and has been of primary interest since the COP can
be efficiently solved in this special case. However, many other kinds of symme-
try commonly occur in models of concurrent systems with a regular structure.
For example, cyclic/dihedral groups are typically associated with systems which
have uni-/bi-directional ring structures, and wreath product groups occur when
dealing with tree topologies.

In this paper we generalise existing techniques for efficiently exploiting sym-
metry under a simple model of computation, and give an approximate strategy
for use with symmetry groups for which fast, exact strategies cannot be found.
We use computational group theory to automatically determine the structure of
a group before search so that an appropriate symmetry reduction strategy can
be chosen, and give encouraging experimental results to support our techniques
using TopSPIN, a new symmetry reduction package for the SPIN model checker
[14] which interfaces with the GAP computational algebra system [12]. We then
illustrate the problems associated with extending our model of computation to
apply to Promela specifications, where full symmetry reduction may no longer
be guaranteed.

2 Symmetry in Model Checking

2.1 Model of Computation

We use a simple model to represent the computation of a system comprised
of n communicating components, interleaving concurrently [10,11]. Let I =
{1, 2, . . . , n} be the set of component identifiers, and for some k > 0, let L =
{1, 2, . . . , k} denote the possible local states of the components. A Kripke struc-
ture is a pair M = (S,R), where S ⊆ Ln, is a non-empty set of states, and
R ⊆ S × S is a total transition relation. The lexicographical ordering of vectors
in Ln provides a total ordering on S. If s = (l1, l2, . . . , ln) ∈ S then we use s(i)
to denote li, the local state of component i.

This model of computation allows us to reason about concurrent systems
consisting of processes and channels, since a positive integer can be assigned to
each valuation of the local variables of a process or the contents of a channel.
We assume that the local variables of components do not refer to component
identifiers. We discuss the implications of lifting this assumption in Section 5.1.

2.2 Group Theoretic Notation

We assume some knowledge of basic group theory, but recap some notation
here. Let G be a group, and let α1, α2, . . . , αn ∈ G. The smallest subgroup of G
containing the elements α1, . . . , αn is denoted 〈α1, α2, . . . , αn〉, and is called the
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subgroup generated by α1, α2, . . . , αn. The elements αi (1 ≤ i ≤ n) are called
generators for this subgroup. Let X = {α1, . . . , αn} be a finite subset of G. Then
we use 〈X〉 to denote 〈α1, . . . , αn〉, the subgroup generated by X . Let H be a
subgroup of G, denoted H ≤ G, and let α ∈ G. The set Hα = {βα : β ∈ H}
is called a (right) coset of H in G. The set of all cosets of H in G provides a
partition of G into disjoint equivalence classes.

The set of all permutations of I forms a group under composition of mappings,
denoted Sn (the symmetric group on n points). If J ⊆ I and α ∈ Sn, then α(J) =
{α(i) : i ∈ J}. For α ∈ Sn and H ≤ Sn, define moved(α) = {i ∈ I : α(i) 	= i},
and moved(H) = {i ∈ I : i ∈ moved(α) for some α ∈ H}. For i ∈ I, the
stabiliser of i under H is the subgroup stabH(i) = {α ∈ H : α(i) = i}, and the
orbit of i under H is the set orbH(i) = {α(i) : α ∈ H}. The orbit orbH(i) is
non-trivial if |orbH(i)| > 1, and H is said to act transitively on I if it induces a
single orbit.

2.3 Symmetry Reduction

Let M = (S,R) be a Kripke structure, and let α ∈ Sn. Then α acts on a state
s = (l1, l2, . . . , ln) ∈ S in the following way: α(s) = (lα−1(1), lα−1(2), . . . , lα−1(n)).
If (α(s), α(t)) ∈ R ∀ (s, t) ∈ R, α is an automorphism of M. The set of all auto-
morphisms of M forms a group Aut(M) ≤ Sn under composition of mappings.

A subgroup G ≤ Aut(M) induces an equivalence relation ≡G on the states
of M thus: s ≡G t ⇔ s = α(t) for some α ∈ G. The equivalence class under
≡G of a state s ∈ S, denoted [s]G, is called the orbit of s under the action of
G (so G induces orbits on both the set I of component identifiers and the set
S of states), and min[s]G denotes the smallest element of [s]G under the total
ordering discussed in Section 2.1. The quotient Kripke structure for M with
respect to G is a pair MG = (SG, RG) where SG = {min[s]G : s ∈ S}, and
RG = {(min[s]G,min[t]G) : (s, t) ∈ R}. In general MG is a smaller structure
than M, but MG and M are equivalent in the sense that they satisfy the same
set of logic properties which are invariant under the group G (that is, properties
which are “symmetric” with respect to G). For a proof of the following theorem,
together with details of the temporal logic CTL∗, see [6].

Theorem 1. Let M be a Kripke structure, G a subgroup of Aut(M) and φ a
CTL∗ formula. If φ is invariant under G then

M, s |= φ⇔MG,min[s]G |= φ

Thus by choosing a suitable symmetry group G, model checking can be per-
formed overMG instead ofM, often resulting in considerable savings in memory
and verification time [2,11]. Algorithm 1, adapted from [15], explores a quotient
Kripke structure given an initial state s0. An extension of this algorithm for
on-the-fly model checking of LTL properties using a nested depth first search is
presented in [1].

In practice, for an arbitrary group G, it may be infeasible to implement the
function min exactly. In such cases the requirements of min can be relaxed so
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Algorithm 1. Algorithm to explore a quotient Kripke structure
reached := {min[s0]G};
unexplored := {min[s0]G};
while unexplored �= ∅ do

remove a state s from unexplored;
for all successor states t of s do

if min[t]G is not in reached then
add min[t]G to reached;
add min[t]G to unexplored;

end if
end for

end while

that min[s]G yields some state t ∈ [s]G with t ≤ s. This does not compromise
the safety of symmetry reduced model checking since at least one state per orbit
is searched, but does not result in memory-optimal verification. However, an effi-
cient implementation of min which maps any element s to one of a small number
of orbit representatives can result in fast verification, maintaining a significant
reduction in model states (this use of multiple representatives is employed in e.g.
[2,5]). We refer to such an implementation of min as an approximate symmetry
reduction strategy, whereas a true implementation of min is an exact strategy.
Note that exact verification results are still obtained using an approximate sym-
metry reduction strategy, if enough memory is available.

Throughout the rest of the paper, let G be a subgroup of Aut(M), where M
models a concurrent system comprised of n components.

2.4 Symmetry Detection

In this paper, we are concerned with techniques for exploiting component sym-
metries during model checking, rather than detecting symmetry before search.
Structural symmetries of a model M are typically inferred by extracting a com-
munication graph from the initial specification. The vertex set of this graph is
the set I, representing the components of the system. Provided that the specifi-
cation obeys certain restrictions ensuring that components of the same type are
not explicitly distinguished, automorphisms of the communication graph induce
automorphisms of M. Since the communication graph is typically small, these
automorphisms can be computed automatically using a package such as saucy
[7]. Practical examples of communication graphs include the static channel dia-
gram of a Promela specification [8], and the coloured hypergraph [5] of a shared
variable concurrent program.

For illustration, throughout the paper we consider a system with a three-
tiered architecture consisting of a database, a layer of server components, and a
layer of client components, each of which communicates with exactly one server.
Figure 1 shows a possible communication graph for this system, which we as-
sume has been extracted from a specification of the system by some symmetry
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detection tool. Let M3T be a model of the system. Using the saucy program,
we compute generators for G3T , the automorphism group of the communication
graph:

G3T = 〈(1 2), (2 3), (4 5), (5 6), (7 8), (8 9), (10 11),
(12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)〉.

Note that the last two elements of the generating set of G3T are products of
transpositions. We assume that G3T ≤ Aut(M3T ), and will use this group and
its subgroups as examples to illustrate some of our techniques.

1 2 3

12

4 5 6

13

7 8 9

14

10 11

15

16

clients

servers

database

Fig. 1. Communication structure for a three-tiered architecture

3 Exploiting Basic Symmetry Groups

3.1 Enumerating Small Groups

The most obvious strategy for computing min[s]G is to consider each state in
[s]G, and return the smallest. This can be achieved by enumerating the elements
α(s), α ∈ G. If G is small then this strategy is feasible in practice, and provides
an exact symmetry reduction strategy. The SymmSpin package provides an enu-
meration strategy for fully symmetric groups, which is optimised by generating
permutations incrementally by composing successive transpositions. This is more
efficient than applying permutations to s directly.

We generalise this optimisation for arbitrary groups using stabiliser chains.
A stabiliser chain for G is a series of subgroups of the form G = G(1) ≥
G(2) ≥ · · · ≥ G(k) = {id}, for some k > 1, where G(i) = stabG(i−1)(x) for some
x ∈ moved(G(i−1)) (2 ≤ i ≤ k). If U (i) is a set of representatives for the cosets
of G(i) in G(i−1) (2 ≤ i ≤ k), then each element of G can be uniquely expressed
as a product uk−1uk−2 . . . u1, where ui ∈ U (i) (1 ≤ i < k) [3]. Permutations
can be generated incrementally using elements from the coset representatives,
and the set of images of a state s under G computed using a sequence of partial
images (see Algorithm 2). To ensure efficient application of permutations, the
coset representatives are stored as a list of transpositions, applied in succession.
GAP provides functionality to efficiently compute a stabiliser chain and asso-
ciated coset representatives for an arbitrary permutation group. Although this
approach still involves enumerating the elements α(s) for every α ∈ G (and is
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Algorithm 2. Computing min[s]G using a stabiliser chain
min[s]G := s
for all u1 ∈ U1 do

s1 := u1(s)
for all u2 ∈ U2 do

s2 := u2(s1)
...
for all uk ∈ Uk do

sk := uk(sk−1)
if sk < min[s]G then

min[s]G := sk

end if
end for
...

end for
end for

thus infeasible for large groups), calculating each α(s) is faster. The experimental
results of Section 5.3 show an improvement over basic enumeration. Addition-
ally, it is only necessary to store coset representatives, rather than all elements
of G.

3.2 Minimising Sets for G if G ∼= Sm (m ≤ n)

For systems where there is full symmetry between components, the smallest
state in the orbit of s = (l1, l2, . . . , ln) can be computed by sorting the tuple s
lexicographically. [2,5]. For example, for a system with four components, sorting
equivalent states (3, 2, 1, 3) and (3, 3, 2, 1) yields the state (1, 2, 3, 3), which is
clearly the smallest state in the orbit. Since sorting can be performed in poly-
nomial time, this provides an efficient solution for the COP for this group.

Recall the group G3T of automorphisms of the communication graph of
Figure 1. Consider the subgroup

H = 〈(12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)〉.

This group permutes server components 12, 13 and 14, with their associated
blocks of client components. It is clear that H is isomorphic to S3, the symmetric
group on 3 objects. However, we cannot compute min[s]H by sorting s in the
obvious way, since this is equivalent to applying an element α ∈ S16 to s, which
may not belong to H .

In some cases we can deal with groups of this form using a minimising set
for G. Using terminology from [11], G is said to be nice if there is a small set
X ⊆ G such that, for any s ∈ S, s = min[s] ⇔ s ≤ α(s) ∀ α ∈ X . In this case
we call X a minimising set for G. If a small minimising set X can be found for
a large group G, then computing the representative of a state involves iterating
over the small set X , minimising the state until a fix-point is reached. At this
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point, no element of the minimising set maps the state to a smaller image, thus
the minimal element has been found.

We show that, for a large class of groups which are isomorphic to Sm for some
m ≤ n, a minimising set with size polynomial in m can be efficiently found. This
minimising set is derived from the swap permutations used in a selection sort
algorithm.

Theorem 2. Suppose that, for each i ∈ I such that orbG(i) is non-trivial,
stabG(i) fixes exactly one element from each non-trivial orbit of G acting on
I, and that G ∼= Sm, where m = |orbG(i)| > 1 for some i ∈ I. Then there is an
isomorphism θ : Sm → G such that {(i j)θ : 1 ≤ i < j ≤ m} is a minimising set
for G.

Proof. Since for each i ∈ I such that |orbG(i)| > 1 the set of elements fixed by
stabG(i) contains exactly one element from each orbit, there is a set of columns
C1, C2, . . . , Cm such that each column contains one element from each orbit of
G, and G permutes the columns. There is an isomorphism θ from G′ (the action
of G on the columns) to G acting on I. Since G ∼= Sm, G′ contains all column
transpositions (i j) where i < j, so (i j)θ ∈ G. The element (i j)θ maps all
elements of column i to elements of column j.

Now consider states s and s′, where s′ = α(s) for some α ∈ G. Let i be the
smallest index for which s(i) 	= s′(i). Let j be the index such that j = α−1(i).
All of the elements in the column containing j (column j′ say) are mapped via
α to the column containing i (column i′ say). Then s′ < s iff (i′ j′)θs < s. Hence
s is minimal in its orbit iff (i j)θ(s) ≥ s for all i < j. So the set {(i j)θ : 1 ≤ i <
j ≤ m} is a minimising set for G.

Note that the minimising set is much smaller than G, and the conditions of
Theorem 2 can be easily checked using GAP. It may seem that these conditions
are unnecessary, and that, given any isomorphism θ : Sm → G, the set {(i j)θ :
1 ≤ i < j ≤ m} is a minimising set for G. However, consider the group G below,
which is a subgroup of the symmetry group of a hypercube (see Section 5.3).

G = 〈(1 2)(5 6)(9 10)(13 14), (1 2 4 8)(3 6 12 9)(5 10)(7 14 13 11)〉 ≤ S14

G is isomorphic to S4, with an isomorphism θ : S4 → G is defined on gen-
erators by (1 2 3 4)θ = (1 2 4 8)(3 6 12 9)(5 10)(7 14 13 11), (1 2)θ =
(4 8)(5 9)(6 10)(7 11). The state s = (6, 10, 3, 6, 3, 5, 7, 10, 4, 8, 2, 1, 9, 3) ∈
{1, 2, . . . , 10}14 cannot be minimised using the set {(i j)θ : 1 ≤ i < j ≤ 4}.

3.3 Local Search for Unclassifiable Groups

If G is large group then computing min[s]G by enumeration of the elements of
G may be infeasible, even with the group-theoretic optimisations discussed in
Section 3.1. If no minimising set is available for G, and G cannot be classified
as a composite symmetry group (see Section 4) then we must exploit G via an
approximate symmetry reduction strategy.
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We propose an approximate strategy based on hillclimbing local search, which
has proved successful for a variety of search problems in artificial intelligence [17,
Chapter 4]. In this case the function min works by performing a local search of
[s]G starting at s, using the generators of G as operations from which to compute
a successor state. The search starts by setting t = s, and proceeds iteratively. On
each iteration, α(t) is computed for each generator α of G. If t ≤ α(t) for all α
then a local minimum has been reached, and t is returned as a representative for
[s]G. Otherwise, t is set to the smallest image α(t), and the search continues. In
Section 5.3 we show that this local search algorithm is effective when exploring
the state spaces of various configurations of message routing in a hypercube
network.

There are various local search techniques which could be employed to attempt
to improve the accuracy of this strategy. Random-restart hill-climbing [17] in-
volves the selection of several random elements of [s]G in addition to s, and
performing local search from each of them, returning the smallest result. In our
case we could apply such a technique by finding the image of a state s under
distinct, random elements of G (GAP provides functionality for generating ran-
dom group elements). Another potential improvement would be to use simulated
annealing [16] to escape local minima.

4 Exploiting Composite Symmetry Groups

Certain kinds of symmetry groups can be decomposed as a product of subgroups.
In this case solving the COP separately for each subgroup provides a solution
to the COP for the whole group. In particular, if a symmetry group permutes
disjoint sets of components independently then the group can be described as the
disjoint product of the groups acting on these disjoint sets. On the other hand,
if the symmetry group partitions the components into subsets such that there
is analogous symmetry within each subset, and symmetry between the subsets,
then the group can be described as the wreath product of the group which acts
on one of the subsets, and the group which permutes the subsets. It has been
shown that, if G is known to be a disjoint or wreath product of subgroups, then
the COP can be solved for G by restricting attention to these subgroups [5]. We
now present solutions to the problem of detecting, before search, whether or not
G can be decomposed.

4.1 Disjoint Products

Definition 1. Let H ≤ Sn. Suppose that H1, H2, . . . , Hk are subgroups of H
(1 ≤ i ≤ k, k > 1). If H = H1H2 . . . Hk = {α1α2 . . . αk : α ∈ Hi (1 ≤ i ≤ k)}
then H is called the product of the Hi. If moved(Hi) ∩moved(Hj) = ∅ for all
1 ≤ i 	= j ≤ k then H is written H1•H2•· · ·•Hk, and called the disjoint product
of the Hi. The disjoint product is said to be non-trivial if H 	= Hi 	= {id} for all
1 ≤ i ≤ k.
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Disjoint products occur frequently in model checking problems. For example, the
symmetry group associated with a model of the readers writers problem [10] may
be a disjoint product of two groups, which independently permute reader and
writer components respectively. In our three-tiered architecture example (see
Section 2.4), the group G3T can be shown to decompose as a disjoint product
G3T = H1 •H2 where:

H1 = 〈(1 2), (2 3), (4 5), (5 6), (7 8), (8 9),
(12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)〉

H2 = 〈(10, 11)〉.

If G is a disjoint product of subgroups H1, H2, . . . , Hk then min[s]G = min[. . .
min[min[s]H1 ]H2 . . . ]Hk

[5], so the COP for G can be solved by considering
each subgroup Hi in turn. This result is only useful when designing a fully au-
tomatic symmetry reduction package if it is possible to efficiently determine,
before search, whether or not G decomposes as a disjoint product of subgroups.
We present two solutions to this problem.

Efficient, Sound, Incomplete Approach
Let G = 〈X〉 for some X ⊆ G with id /∈ X . Define a binary relation B ⊆ X2 as
follows: for all α, β ∈ X , (α, β) ∈ B ⇔ moved(α) ∩moved(β) 	= ∅. Clearly B is
symmetric, and since for any α ∈ G with α 	= id, moved(α) 	= ∅, B is reflexive.
It follows that the transitive closure of B, denoted B∗, is an equivalence relation
on X . We now show that if B∗ has multiple equivalence classes then each class
generates a subgroup of G which is a non-trivial factor for a disjoint product
decomposition of G.

Lemma 1. Suppose that α, β ∈ X, and that (α, β) /∈ B∗. Then moved(α) ∩
moved(β) = ∅ and α and β commute.

Theorem 3. Suppose C1, C2, . . . , Ck are the equivalence classes of X under B∗

where k ≥ 2. For 1 ≤ i ≤ k let Hi = 〈Ci〉. Then G = H1 •H2 • · · · • Hk, and
Hi 	= {id} (1 ≤ i ≤ k).

Proof. Clearly H1H2 . . . Hk ⊆ G. If α ∈ G then α = α1α2 . . . αd for some
α1, α2, . . . , αd ∈ X , d > 0. By Lemma 1 we can arrange the αl so that ele-
ments of Ci appear before those of Cj whenever i < j. It follows that G =
H1H2 . . . Hk. By Lemma 1, moved(Hi) ∩moved(Hj) = ∅ for 1 ≤ i 	= j ≤ k and
so G = H1 •H2 • · · · •Hk, where (since id /∈ X) the Hi are non-trivial.

The approach is incomplete as it does not guarantee the finest decomposition of
G as a disjoint product. However, in practice we have not found a case in which
the finest decomposition is not detected when generators have been computed
by a graph automorphism program. The approach is very efficient as it works
purely with the generators of G, of which there are typically few.
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Sound and Complete Approach
It is straightforward to show that if G = H • K, then H and K are normal
subgroups of G. Thus a complete method for determining whether or not G is
a non-trivial disjoint product of subgroups H and K involves the computation
of all normal subgroups of G and searching for a pair such that G = H • K.
This method could be applied recursively to the factors of the disjoint product
to compute the finest disjoint product decomposition of G. Although for certain
groups (e.g. abelian groups), all subgroups are normal, in many cases the num-
ber of normal subgroups of a group is significantly smaller than the number of
arbitrary subgroups.

4.2 Wreath Products

Definition 2. For r > 1 let B1, B2, . . . , Br be disjoint subsets of I, where Bi =
{bi,1, bi,2, . . . , bi,m} for some m > 1. Let H ≤ Sn with moved(H) ⊆ B1. For any
α ∈ H and 1 ≤ i ≤ r, define α(i) by: α(i)(x) = x if x /∈ Bi; α(i)(bi,j) = bi,l
where α(b1,j) = b1,l. For β′ ∈ Sr, define β ∈ Sn by: β(x) = x if x /∈

⋃
1≤i≤r Bi

and β(bi,j) = bβ′(i),j. Let K = 〈β1, β2, . . . , βd〉 where d > 0 and each βi is
derived from some β′

i ∈ Sr). If every element of G can be expressed in the form
βα

(r)
r . . . α

(2)
2 α

(1)
1 , where β ∈ K and α1, α2, . . . , αr ∈ H, then G is the wreath

product of H and K, denoted H (K.

Intuitively, an element of G applies a permutation to each set Bi, then applies
a permutation which permutes the sets. This definition of wreath products is
specific to those that occur in model checking problems, typically when a system
has a tree structure. For a more general definition, see [4]. In Section 4.1, we
showed that the groupG3T decomposes as a disjoint product. Consider the factor
H1 of this product. This group itself decomposes as a wreath product H1 = H (K
where:

H = 〈(1 2), (2 3)〉
K = 〈(12 13)(1 4)(2 5)(3 6), (13 14)(4 7)(5 8)(6 9)(10, 11)〉.

Here, the sets are B1 = {1, 2, 3, 12}, B2 = {4, 5, 6, 13} and B3 = {7, 8, 9, 14}. If
G = H ( K then, for 1 ≤ i ≤ k define Hi by {α(i) : α ∈ K. Then min[s]G =
min[min[. . .min[min[s]H1 ]H2 . . . ]Hr ]K [5].

We sketch an approach for detecting whether an arbitrary group is a wreath
product of subgroups. If G acts transitively on I, a subset B of I is a block if,
for any α ∈ G, α(B) = B or B ∩ α(B) = ∅. The set B = {α(B) : α ∈ G} is a
block system for G. Given block systems B, C for G, C is strictly coarser than B
if ∀ B ∈ B ∃ C ∈ C such that B ⊂ C, and B is maximal for G if each B ∈ B
is a proper subset of I, and the only block system strictly coarser than B is the
trivial system {I}.

If {B1, B2, . . . , Br} is a block system for a transitive group G, where Bi =
{bi,1, bi,2, . . . , bi,m} then G ≤ H ( K, where H =

⋂
i/∈B1

stabG(i), and K =⋂
1≤i≤m stabG({b1,i, b2,i, . . . , br,i}) [4]. To check whether or not G = H (K it is
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sufficient to compare orders, and it can be shown that |H (K| = |H |r|K|. How-
ever, in general G does not act transitively on I. We solve the general problem of
determining whether or not G is a wreath product of subgroups by considering
the action of G separately on each non-trivial orbit of I.

Lemma 2. If G = H (K then each non-trivial orbit O of I under G has a single
maximal block system: {O ∩moved(Hi) : 1 ≤ i ≤ r)}.
If G can be shown to have exactly one maximal block system per orbit, then
candidate groups H and K can be constructed. Suppose the non-trivial orbits
are O1, O2, . . . , Od. For 1 ≤ i ≤ d, the group Ki is computed as follows: let
{B1, B2, . . . , Bu} be the maximal block system for Oi, where each Bj has the
form {bj,1, bj,2, . . . , bj,v} (for some u, v > 0). Then Ki =

⋂
1≤l≤v stabG({b1,l, b2,l,

. . . , bu,l}). The candidate group K is the intersection of the Ki. Candidate group
H is initially set to G. For each orbit Oi a maximal block B is chosen such that
B ⊆ moved(H). Then H is recomputed as

⋂
j∈Oi\B stabH(j). We now have

groups H and K with G ≤ H ( K, and we can check whether G = H ( K by
comparing orders, as before.

4.3 Choosing a Strategy for G

The strategies which we have presented for minimising a state with respect to
basic and composite groups can be combined to yield a symmetry reduction
strategy for the arbitrary group G by classifying the group using a top-down
recursive algorithm.

The algorithm starts by searching for a minimising set for G of the form
prescribed in Theorem 2, so that min[s]G can be computed as described in Sec-
tion 3.2. If no such minimising set can be found, a decomposition of G as a dis-
joint/wreath product is sought. In this case the algorithm is applied recursively
to obtain a minimisation strategy for each factor of the product so that min[s]G
can be computed using these strategies as described in Sections 4.1 and 4.2 re-
spectively. If G remains unclassified and |G| is sufficiently small, enumeration is
used, otherwise local search is selected.

5 Symmetry Reductions in Practice

5.1 Extending the Model of Computation

When components do not hold references to other components, the simple model
of computation and the action of a permutation on a state (described in Sec-
tions 2.1 and 2.3 respectively) are sufficient to reason about concurrent systems,
since it is always possible to represent the local state of a component using an
integer. However, if components can hold references to one another then any
permutation that moves component i will also affect the local state of any com-
ponents which refer to component i.

Sophisticated specification languages, such as Promela, include special data-
types to represent process and channel identifiers. An extended model of com-
putation for Promela is presented in [8]. Both the results presented in [5] on
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solving the COP for groups which decompose as disjoint/wreath products, and
our results on minimising sets for fully symmetric groups (see Section 3.2) do
not hold in general for this extended model of computation.

Thus for Promela specifications where local variables refer to process and
channel identifiers, the efficient symmetry reduction strategies presented above
are not always exact—in some cases they may yield an approximate implementa-
tion of the function min, as discussed in Section 2.3. This does not compromise
the safety of symmetry reduced model checking, and in any case, for a large
model, there will be many states for which the strategies will give exact repre-
sentatives in an extended model of computation as the experimental results in
Section 5.3 show.

For the simple case of full symmetry between identical components, the Symm-
Spin package deals with local variables which are references to component iden-
tifiers by dividing the local state of each component into two portions, one which
does not refer to other components (the insensitive portion say), and another
which consists entirely of such references (the sensitive portion). A state is min-
imised by first sorting it with respect to the insensitive portion. Then, for each
subset of components with identical insensitive portions, every permutation of
the subset is considered, and the permutation which leads to the smallest im-
age is applied. This is known as the segmented strategy. Our approach using
minimising sets is similar to the sorted strategy which SymmSpin also provides.
Here a state is minimised only with respect to the insensitive portions of the
local states. This strategy is much faster than the segmented strategy, but is ap-
proximate. It may be possible to extend our approach to be exact by generalising
the segmented strategy.

5.2 A Symmetry Reduction Package for SPIN

We have implemented the strategies discussed in Sections 3 and 4 as TopSPIN,
a fully automatic symmetry reduction package for SPIN [9]. In order to check
properties of a Promela specification, SPIN first converts the specification into a
C source file, pan.c, which is then compiled into an executable verifier. The state
space thus generated is then searched. If the property being checked is proved
to be false, a counterexample is given. TopSPIN follows the approach used by
the SymmSpin symmetry reduction package, where pan.c is generated as usual
by SPIN, and then converted to a new file, sympan.c, which includes algorithms
for symmetry reduction. With TopSPIN, because we allow for arbitrary system
topologies, symmetry must be detected before sympan.c can be generated. This
is illustrated in Figure 2.

First, the static channel diagram (SCD) of the Promela specification is ex-
tracted by the SymmExtractor tool, which is described in detail in [8]. The SCD
is a graphical representation of potential communication between components of
the specification. The group of symmetries of the SCD, Aut(SCD), is computed
using the saucy tool [7], which we have extended to handle directed graphs. The
generators of Aut(SCD) are checked against the Promela specification for va-
lidity (an assurance that they induce symmetries of the underlying state space).
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TopSPIN uses GAP to compute, from the set of valid generators, the largest group
G ≤ Aut(SCD) which can be safely used for symmetry-reduced model checking.
GAP is then used to classify the structure of G in order to choose an efficient
symmetry reduction strategy. The chosen strategy is merged with pan.c to form
sympan.c, which can be compiled and executed as usual. In order to compare
strategies it is possible to manually select the strategy used (rather than let
TopSPIN choose the most efficient). For experimental purposes, TopSPIN also
allows generators of an arbitrary group of component symmetries to be speci-
fied manually, as long as the group elements do not permute components with
different types.

Fig. 2. The symmetry reduction process

5.3 Experimental Results

In Table 1 we present experimental results applying TopSPIN to four families
of Promela specifications. For each specification, we give the number of model
states without symmetry reduction (orig), with full symmetry reduction (red),
and using the strategy chosen by TopSPIN (best). If the latter two are equal,
‘=’ appears for the TopSPIN strategy. The use of state compression, provided by
SPIN, is indicated by the number of states in italics. For each strategy (basic
for enumeration without the optimisations described in Section 3.1, enum for
optimised enumeration, and best for the strategy chosen by TopSPIN), and when
symmetry reduction is not applied (orig), we give the time taken for verification
(in seconds). Verification attempts which exceed available resources, or do not
terminate within 5 hours, are indicated by ‘-’. All experiments are performed
on a PC with a 2.4GHz Intel Xeon processor, 3Gb of available main memory,
running SPIN version 4.2.3.

The first family of specifications model flow of control for a system similar to
the three-tiered architecture example of Section 2.4, but with a layer of p servers
with q clients connected to each server (a D-S-C system). Here models exhibit
wreath product symmetry: there is full symmetry between the q clients in each
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block, and the blocks of clients, with their associated servers, are interchangeable.
A configuration with p servers and q clients per server is denoted p/q. The second
family of specifications model a resource allocator process which controls access
to a resource by a competing set of prioritised clients (an R-C system). Models
of these specifications exhibit disjoint product symmetry: there is full symmetry
between each set of clients with the same priority level. A configuration with pi

clients of priority level i is denoted p1, . . . , pk, where k is the number of priority
levels. The next family consists of specifications which model an email system
where client processes exchange messages via a mailer process. The symmetries
of models of these specifications permute the client processes, simultaneously
permuting their input channels, and can be handled using a minimising set. A
configuration with p clients is simply denoted p. Finally, we consider specifica-
tions modelling message routing in an n dimensional hypercube network (an HC
system). The symmetry group here is isomorphic to the group of geometrical
symmetries of a n dimensional hypercube, which cannot be decomposed as a
product of subgroups, and thus must be handled using either the enumeration
or local search strategies. An n-dimensional hypercube specification is denoted
nd. For all specifications, we verify deadlock freedom, and check the satisfaction
of basic safety properties expressed using assertions.

In all cases, basic enumeration is significantly slower optimised enumeration,
which is in turn slower than the strategies chosen by TopSPIN. For the three-tiered
and resource allocator configurations the strategies chosen by TopSPIN, which

Table 1. Experimental results for various configurations of the three-tiered (D-S-C),
resource allocator (R-C), email (email) and hypercube (HC) specifications

system config. states time |G| states time time states time
orig orig red basic enum best best

D-S-C 2/3 103105 5 72 2656 7 4 = 2

D-S-C 2/4 1.1 × 106 37 1152 5012 276 108 = 2

D-S-C 3/3 2.54×107 4156 1296 50396 4228 1689 = 19

D-S-C 3/4 - - 82944 - - - 130348 104

R-C 3,3 16768 0.2 36 1501 0.9 0.3 = 0.1

R-C 4,4 199018 2 576 3826 57 19 = 0.4

R-C 5,5 2.2 × 106 42 14400 8212 4358 1234 = 2

R-C 4,4,4 2.39 × 107 1587 13824 84377 - 12029 = 17

R-C 5,5,5 - - 1728000 - - - 254091 115

email 3 23256 0.1 6 3902 0.9 0.8 3908 0.2

email 4 852641 9 24 36255 13 6 38560 2

email 5 3.04×107 3576 120 265315 679 253 315323 40

email 6 - - 720 1.7 × 106 - 13523 2.3 × 106 576

email 7 - - 5040 - - - 1.53 × 107 6573

HC 3d 13181 0.3 48 308 0.6 0.3 468 0.2

HC 4d 380537 18 384 1240 58 34 6986 13

HC 5d 9.6×106 2965 3840 3907 7442 5241 90442 946
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decompose the symmetry group as a wreath/disjoint product of groups which are
then handled by minimising sets, provide exact symmetry reduction, despite the
potential problems discussed in Section 5.1. This is not the case for email config-
urations, for which TopSPIN uses minimising sets. Nevertheless, a large factor of
reduction is still obtained, and verification is fast. For hypercube configurations,
TopSPIN chooses local search, requiring more states than enumeration, but still
resulting in a greatly reduced state space.

6 Related Work

The simple model of computation which we have used throughout the paper
is common to numerous works on symmetry reductions for model checking
[5,10,11], and is adequate for reasoning about input languages where compo-
nents do not individually hold references to other components, e.g. the input
languages of SMC [18] and SYMM [5], or where components are specified using
synchronisation skeletons [10]. The problem of extending symmetry reduction
techniques to a model of computation where such references are allowed is tack-
led, for the simple case of full symmetry between identical components, by the
segmented strategy of the SymmSpin package.

Methods for exploiting the disjoint/wreath product structure of symmetry
groups were proposed in [5], but this work did not investigate the problem of
classifying the structure of an arbitrary group, as we have done. Stabiliser chains
(see Section 3.1) are used extensively in computational group theory [3,12], and
have been utilised in symmetry breaking approaches for constraint programming
[13]. This paper is, to our knowledge, the first to apply these techniques to model
checking. The construction of minimising sets for fully symmetric groups which
we presented in Section 3.2 builds on the concept of a nice group [11], and
generalises the idea of computing orbit representatives by sorting [2,5,11].

7 Conclusions and Future Work

In this paper, we have proposed exact and approximate strategies for tackling the
NP-hard problem of computing orbit representatives in order to exploit symme-
try when model checking concurrent systems, and we have generalised existing
results in this area. We have applied techniques from computational group theory
to speed up representative computation, and to classify the structure of a sym-
metry group as a disjoint/wreath product of subgroups before search. We have
described TopSPIN, a fully automatic symmetry reduction package for SPIN, and
presented encouraging experimental results for a variety of Promela examples.

We are currently investigating further the use of local search techniques as
an approximate symmetry reduction strategy. We are also developing an ap-
proach to generalise the segmented strategy used by the SymmSpin package to
overcome potential inefficiencies associated with extending our simple model of
computation to the Promela language. TopSPIN is currently limited to verifying
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the absence of deadlock and the satisfaction of safety properties of Promela spec-
ifications. Future work includes extending TopSPIN to allow symmetry-reduced
verification of temporal properties with weak fairness, as described in [1].
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Université Libre de Bruxelles
Boulevard du Triomphe - CP-212, 1050 Bruxelles, Begium

Tel.: +32 2 650.5603; Fax:+32 2 650.5609
{tmassart, cmeuter}@ulb.ac.be

Abstract. It is well known that through code instrumentation, a dis-
tributed system’s finite execution can generate a finite trace as a partially
ordered set of events. We motivate the need to use LTL model-checking
on sequences and not on traces as defined by Diekert and Gastin, to val-
idate distributed control systems executions, abstracted by such traces,
and present an efficient symbolic algorithm to do the job. It uses the
standard method proposed by Vardi and Wolper, which from the LTL
formula, builds a monitor that accepts all the bad sequences. We show
that, given a monitor and a trace, the problem to check that both the
monitor and the trace have a common sequence is NP-complete in the
number of concurrent processes. Our method explores the possible con-
figurations symbolically, since it handles sets of configurations. Moreover,
it uses techniques similar to the partial order reduction, to avoid explor-
ing as many execution interleavings as possible. It works very well in
practice, compared to the standard exploration method, with or without
partial order reduction (which, in practice, does not work well here).

Keywords: testing of asynchronous distributed systems, monitor, global
properties, model checking of traces.

1 Introduction

A distributed control system is a set of distributed hardware equipments such
as small computers or Programmable Logic Controllers (PLCs), which run con-
current processes, communicating asynchronously through some network. The
design and implementation of such a distributed reactive system is a non-trivial
task. Validation and debugging techniques can be used during the design and
the implementation to help the developer in his work [DMM04, DGMM05]. Ver-
ification tools (e.g. [Hol97, McM92b, CCG+02]) can be used to validate a model.
Unfortunately in practice, the system’s implementation code contains thousands
of lines and dozens of variables. The state-explosion problem generally prevents
the designer from its exhaustive verification even with efficient exploration tech-
niques such as partial order reduction [God96, Val93] or symbolic model checking
[CGP99, McM92a, Bry92].
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The designer generally falls back to testing, which cannot guarantee that a
system is completely bug-free, but if achieved on a large number of test-cases
(e.g. covering all the system’s functionalities), can give a reasonable confidence
that the system is correct. For that purpose, the implementation is generally
instrumented to record relevant events. A special process, called monitor, records
the system’s events and must then check that the observed execution satisfies
the desired properties. This monitoring can either be done offline, i.e. after the
complete trace is recorded, or online, at runtime. Notice that this monitoring
technique can also be used to validate runs of a system’s model, if too complex
to be exhaustively verified. Hence, both at the design and implementation level,
it is an important activity where efficient methods must be provided.

For distributed asynchronous systems [Lyn96], a run is generally not seen
as a totally ordered sequence of events, but as a partially ordered set where
unordered events may have occurred in any order. In a simple approach, the
monitor just assumes that the events happened in the order they are received,
and check that the property is satisfied. In a predictive approach [SRA04], the
monitor must check that every compatible total order of events satisfies the
property. The causal partial order between the fired events can be obtained
through correct code instrumentation using, e.g. vector clocks [Lam78, Mat89].
The collected information of an execution is therefore abstracted as a trace, i.e. a
partially ordered set of events where two consecutive events of the same site are
temporally ordered and where communications (e.g. message transfers or shared
variable manipulations) impose an order between some distributed events.

An important point to note is that even if the control is distributed and
provides a partially ordered trace, the exact sequence the control actions are
taken is generally crucial. One can for instance think to a controlled system
where a valve A must be closed before another valve B can be opened and where
each valve is controlled by another PLC; the controlled environment is therefore
seen as centralized. Testing that an execution satisfies a global property φ reduces
therefore to verifying that every sequential execution compatible with the partial
order satisfies φ or, in other terms, model checking φ on the corresponding
trace. Therefore, we will see that our traces can not be seen as Mazurkiewicz
traces [Maz86] where the order of independent events is meaningless.

Unfortunately, even if the monitor is already built, this problem is hard and
in practice, the number of compatible sequential executions may be exponential
in the number of concurrent processes. Therefore, in the same spirit as what
is done with partial order reduction techniques, which try to minimize the ex-
ploration of execution interleavings as much as possible, we investigate here an
efficient method to practically reduce the verification time. Moreover our pro-
posed method is symbolic since it handles sets of configurations. We show in
practice that our method is very efficient in execution time, compared to the
standard exploration method with or without partial order reduction.

This paper is organized as follows. In section 2, we detail related proposals
and explain why the problem needs model-checking on sequences and not on
traces. In section 3, we introduce our model for traces and monitors, formalize
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the trace monitoring problem and show that this problem is hard even with an
already built monitor. In section 4, we present our symbolic method and show
its correctness, and in section 5, we show how this method can be refined into a
symbolic exploration algorithm. Next, in section 6, we present our experimental
results of various examples. Finally, further works are given in section 7.

2 Related Works and Motivation

In the literature, papers on global predicate detection and trace model-checking
have generally a common starting point since the system to verify is composed of
various concurrent processes synchronized by some mean. This system is mod-
eled, possibly after some code instrumentation (using e.g. [Lam78, Mat89]), as
a trace, i.e. a set of temporally partially ordered events.

Global Predicate Detection. initially aims at answering reachability ques-
tions, i.e. does there exist a possible global configuration of the system, that
satisfies a given global predicate φ. Numerous works have been done on the
detection of global predicates. Garg and Chase showed in [CG98] that this prob-
lem is NP-complete for an arbitrary predicate, even when there is no inter-
process communication. Chandy and Lamport [CL85], present a technique for
stable predicates, i.e. predicates that never turn false once they become true.
In [CDF95], Charron-Bost et al present an algorithm for observer independent
predicates. In [GW94, GW96], Garg and Waldecker give polynomial procedures
for conjunctive predicates, i.e. predicates that are conjunctions of local predi-
cates. In [CG98], Chase and Garg introduce the classes of linear and semi-linear
predicates and give an efficient procedure to solve the predicate detection prob-
lem for these classes of systems. In [GM01], Garg and Mittal introduce the notion
of regular predicates, a subset of the linear predicates, for which they present a
procedure that solves the predicate detection problem in polynomial time. This
procedure makes use of computation slicing, that is, computing all cuts compati-
ble with a given execution satisfying a given predicate. They present an efficient
procedure for computing such slices. Computation slicing on regular predicates is
examined in details in [MG01]. In [SG03], A. Sen and Garg present the temporal
logic RCTL (for regular-CTL), which is a subset of the temporal logic CTL (and
an extension, RCTL+). Every RCTL formula is a regular predicate; thus with
RCTL formulae, we can use computation slicing to solve the predicate detection
problem. In [SRA04] K. Sen et al. use an automaton to specify the system’s mon-
itor. The authors provide an explicit exploration of the state space and to limit
this exploration a window is used. The choice of a linear temporal logic as LTL
rather than a branching temporal logic as CTL seems natural since the aim is to
verify that for all total orderings of the occurred events, the corresponding runs
satisfy the property. In [SVAR04] K. Sen et al. define the logic PT-DTL which
is a variant of past time linear temporal logic, suitable for efficient distributed
model-checking on execution traces. However, if it allows efficient check, neither
PT-DTL of K. Sen et al nor RCTL of A. Sen and Garg can verify properties
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as LTL (or equivalent CTL formula) �(a→ ♦(b ∧ c)), i.e. every a is eventually
followed by a state (or a transition) where b and c are true; formula that may
be very useful during validation. Our work uses a similar framework to what
is used in [SRA04]. We investigate here on the possibility to define a method,
efficient in practice to be able to model-check any LTL formula. Therefore, we
do not limit the exploration as in [SRA04], but prefer to increase its efficiency
with a symbolic method.

Trace Model Checking. has been studied through the definition of several
linear temporal logics for Mazurkiewicz traces. A Mazurkiewicz trace [Maz86],
over an alphabet Σ with a independence relation I, can be defined as a Σ-
labelled partial order set of events with special properties not explained here.
For Mazurkiewicz traces, local and global trace logics have been defined. Local
trace logics have been proposed in the work of Thiagaranjan on TrPTL [Thi94]
and Alur, Peled and Penczek on TLC [APP95]. Global trace logics include,
among others, LTrL [TW02] proposed by Thiagarajan and Walukiewicz, and
LTL on traces [DG02] defined by Diekert and Gastin.

However, in our problem, the trace is an input which models a run that must
be checked to see if the possible ordering of events is correct. For instance if it
is required that an event a must occur before b, and if, in the trace, actions a
and b are independent and can be executed in any order, the system is seen as
incorrect. But, trace temporal logics are not “designed” to express constraints on
the particular order independent actions are executed. For instance if actions a
and b are independent, the trace T = ab expresses that a and b are concurrent.
Therefore, the LTL formula a→ ♦b which expresses on semantics on sequences,
that a is eventually followed by b is not so easily expressible in trace-LTL. There-
fore, since we do not have a priori the independence relation, these trace logics
are not adapted to model-check our runs.

3 Trace Monitoring Problem

In this section, we first introduce our framework with the notions of finite trace
which models a run of a concurrent system, and monitor which is an automata
representation of the formula to check. Then, we formalize the trace monitoring
problem and prove its NP-completeness in the number of concurrent processes.

Trace. Our runs are obtained by concurrent processes, each executing a finite
sequence of variables assignments. Moreover, due to inter-process communica-
tions, other causal relations are added. A run is modeled as a finite trace, i.e. a
finite partially ordered set of events, where each event is labeled by the assign-
ment which took place during this event. Formally:

Definition 1 (Trace). For a set of variables Var, a (finite) trace T is a finite
labeled partially ordered set (E, λ,)) where:
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– E is a finite set of events,
– λ : E �→ V ar ×N is a labeling function, mapping each event e to an assign-

ment of the form x := v. For the event e, var(e) and val(e) denote respectively
the simple variable x and value v of the corresponding assignment.

– )⊆ E × E is a partial order relation on E

In the following, we will use the following notations: ↓e denotes {e′ | e′ ) e} and
↑e denotes {e′ | e ) e′} (the reflexo-transitive closure of resp. causal predecessors
and successors). Moreover, for any set S of events, ↑S = ∪e∈S ↑e and ↓S = ∪e∈S ↓
e. We also define a cut C of a trace T , which models an “execution point” of
the corresponding distributed execution, as a consistent set of already executed
events C ⊆ E such that ↓C = C. We note CT the set of all cuts of T . The set of
enabled events of a cut is defined by: enabled(C) = {e ∈ E \ C | ↓e \ {e} ⊆ C}.
Note that for a cut C and any event e ∈ enabled(C) , the set C ∪ {e} is also a
cut.

As mentioned earlier, even if our systems are finite traces, their particular
nature, i.e., the fact that they come from a distributed controller of a global
environment which can be seen as centralized, induces that their semantics is
defined classically by the sets of (finite) sequences of events they can do.

Definition 2 (Semantics of a trace). For a set of variables Var, and a trace
T = (E, λ,)) defined with these variables, the semantics [|T ]| is defined as the
set of sequences of execution T can have. Formally:

[|T ]| =
{
σ = e1, e2, ..., e|E| | ∀1 ≤ i, j ≤ |E| : (ei ∈ E) ∧ (ei ) ej)⇒ (i ≤ j)∧

(i 	= j)⇒ (ei 	= ej)

}
Remark: if needed we can easily define the value of the variables at some point
in the execution. At the beginning of the execution, we can assume all variables
to be equal to 0. However, with our model, we cannot in general, talk about the
value of a variable x in some cut C; this value can depend on the particular path
σ taken to reach C.

Monitor. Now that we have defined the model T of a distributed system, we
need to define how a property can be expressed on T .

Since events in a trace are single assignment, we naturally first define basic
formulae as boolean expressions on variables of the trace. We restrict ourselves to
expressions using arithmetic operators (+,-,*,/), comparison operators (<,>,=)
and boolean connectors (∧, ∨, ¬). Moreover, since each trace’s event is a simple
assignment, each basic formula uses only one variable of the trace. Example of
such basic formulae are (x = 3) or ((0 < 2 ∗ x) ∧ (2 ∗ x < 5)). We denote by
F the set of such basic formulae and by var(φ), the variable appearing in a
basic formula φ. For a given basic formula φ, and an event e which executes the
assignment x := v, we naturally define :

Definition 3 (Formula triggering). An event e triggers a formula φ, if e as-
signs the variable appearing in φ and if φ evaluates to true after the assignment.
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Formally, if φ[x ← v] denotes the formula φ where the variable x is substituted
by v, then we have:

(φ |= e)⇔ ((var(e) = var(φ)) ∧ (φ[var(e) ← val(e)] = -))

Those basic formulae can be used as propositions to build more complex temporal
constraints, using LTL.

A particular care must be taken to the fact that it will be checked on finite
sequences. This can be done, as explained e.g. in [LMC01] by an obvious trans-
lation of any LTL formula into an “LTL with Δ actions” (where Δ is not in the
initial alphabet). Semantically the finite sequences are extended by an infinite
sequence of Δ actions, to mark the deadlock. For example, intuitively a system
S should satisfy ¬a iff S can not perform a a as next action. Hence S may
either perform only actions b different from a or it may deadlock. Similarly, if
© denotes the next operator in LTL, a system which satisfies ¬© a can either
deadlock immediately or perform some visible action and then satisfy ¬a. To
capture the intuition, any formula ©φ is first translated into (¬Δ ∧ ©φ) and
¬© φ into (Δ ∨ ©¬φ).

Then, the classical procedure defined by Vardi and Wolper [VW86] to build
from a LTL formula a corresponding (Büchi) automaton B able to do all the
sequences of [|¬φ]| can be used to build our monitor (seen as a standard non
deterministic finite automaton). The construction is restricted to our systems
where only one variable is modified at each event. As explained in [LMC01],
the Δ-transitions can be removed from the monitor obtained and a finite au-
tomaton is provided where transitions are labeled by basic formulae and with
a standard and not the Büchi acceptance condition. Note that the size of the
obtained monitor may be exponential in the size of the corresponding LTL for-
mula [VW86]; but generally, since in practice the size of the formula is small, it
is not a problem.

We will show that our main contribution in this paper, is an algorithm which
outperforms classical methods to compose B and T and verify that [|T ]|∩[|¬φ]| = ∅,
i.e. check that no sequence of the system has the property φ.

In the following, we simply define our monitors as any non deterministic finite
automata with basic formulae on transitions. The formal definition of a monitor
follows.

Definition 4 (Monitor). A monitor M is a tuple (M,m0, B,−→m) where:

– M is a finite set of states,
– m0 ∈M is the initial state,
– B ⊆M is a set of final “bad” states,
– −→⊆M ×F ×M is a transition relation.

The Monitoring Problem. We have seen that the monitoring problem reduces
to determine if a given trace T = (E, λ,)) and monitor M = (M,m0, B,−→m)
have a common accepted sequence of events; or in other words does there exist
a total order on E, compatible with ) such that, if the events of E are executed
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in that order, M can reach to a “bad” state. A priori, we need to examine how
the monitor reacts to every interleaving of the events in E compatible with the
partial order ). A monitor reacts to an event e if, in its current state, there exists
an outgoing transition labeled with a guard φ such that e triggers φ. next(e,m)
denotes the set of monitor states reached by triggering an event e, from a monitor
state m. Formally, next is defined as follows:

next(m, e) =

{
{m} if ∀m φ−→m m′ : e 	|= φ

{m′ | ∃m φ−→m m′ : e |= φ} otherwise

This leads us to the following definition of composition of a trace with a monitor.

Definition 5 (Composition). The composition of a trace T and a monitor
M, noted T ⊗M is a transition system (Q, q0,−→) where:

– Q ⊆ 2E ×M is the set of configurations
– q0 = (∅,m0) is the initial configuration
– −→⊆ Q×E×Q is the transition relation defined as follows: ∀(s,m) ∈ Q, ∀e ∈

enabled(s), ∀m′ ∈ next(m, e)

(s,m) e−→ (s ∪ {e},m′)

We note (s,m)
ρ� (s′,m′) iff ∃(s0,m0), (s1,m1), ..., (sn,mn), such that (s,m) =

(s0,m0), (s′,m′) = (sn,mn) and the path ρ = e1e2 · · · en with ∀ 0 ≤ i < n :
(si,mi)

ei−→ (si+1,mi+1). We also note (s,m) � (s′,m′) if ∃ρ : (s,m)
ρ� (s′,m′),

and reachable(s,m) = {m′ ∈ M | (s,m) � (E,m′)}. An simple example of
composition is presented in figure 1 where e.g. the vactor [2, 1] represents the
cut reached after execution of 2 events in P1 (x:=0; y:=3) and 1 event in P2
(w:=4).

Using these notations, we can reformulate the monitoring problem.

Definition 6 (Trace monitoring problem (TMP)). Given a trace T =
(E, λ,)) and a monitor M = (M,m0, B,−→m) the trace monitoring problem
(TMP) is to check whether reachable(∅,m0) ∩B = ∅

Remember that, by the definition of reachable, we ask here to execute the com-
plete trace before checking that the reached state is in B.

NP-Completeness. We now show that the monitoring problem is NP-complete
in the number of concurrent processes in the trace even if the formula only
uses boolean variables and where every formula on transitions is of the form
x = v. This result is a priori not completely obvious since we consider restricted
monitors that use single variables predicates on each transition and it is known
([GW96, GW94]) that checking conjunction of local predicates is polynomial in
the size of the conjunction. We present a polynomial time reduction from 3-sat
to our problem.
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Fig. 1. Example of composition

Theorem 1 (NP-completeness of TMP). [GMM06] The trace monitoring
problem is NP-complete.

Proof sketch. It is easy to see that the TMP is in NP. Indeed, one could use
a non deterministic algorithm to guess an execution (of size |E|) and check, in
polynomial time, if the corresponding total order is compatible with Tφ and if
this execution leads to a state in B. For NP-hardness, we reduce from 3-sat.
The main idea is to use a monitor to model a 3-sat formula and the trace to
model all possible valuations of its propositions. The only technicality resides in
the fact that the valuations must not contain any pair of complementary literals.
This is accomplished by properly choosing the partial order.

Note on Partial Order Reduction. Using partial order reduction [God96] to
improve the explicit exploration will not work to solve the TMP. This is because
in the trace monitoring problem, the monitor expresses constraints on all, or
most of the events of the trace. Therefore, no events is seen as “invisible”; and
the partial order reduction brings no improvement. This was another motivation
to find an effective method for the TMP. Our method is presented in the following
section.

4 Symbolic Composition

The main idea behind the symbolic exploration is to exploit the fact that the
monitor is not always sensitive to all events. Indeed, in the classical exploration,
if an event e does not assign any variable appearing in a guard of an outgoing
transition, we consider two cases: one where e is fired, and one where e is not.
But both executions correspond to the same evolution of the monitor. Hence,
it would be more efficient to consider only one execution, where e has been
optionally fired. However, we must remember these events, because they might
become relevant in the future, i.e. they could become mandatory in the future.
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(a) e ∈ [t, w] (b) e ∈ enabled(w)

Fig. 2. Symbolic transition (t, w, m)
e−→s (t′, w′, m′) with e ∈ sensitive(m)

Therefore, in our approach, each symbolic configuration will separate both kinds
of events: optional events, i.e. events that did not produce a monitor move and
do not change its state if they are not taken, and mandatory events, i.e. events
that did produce, directly or indirectly, a monitor move. In practice, a symbolic
configuration is a tuple (t, w,m), where t and w are cuts. Mandatory events
are contained in t, and optional events are contained in w\t (denoted [t, w] in
the following). Such a symbolic configuration represents an entire set of explicit
configurations {(s,m) | s ∈ CT ∧ t ⊆ s ⊆ w}.

In order to define the symbolic composition based on this idea, we first
need to introduce some notations. We define sensitive(m) = {e ∈ E | ∃m φ−→m

m′ : e |= φ}, the set of all events that will trigger a monitor move when it is in
state m.

Definition 7 (Symbolic Composition). The symbolic composition of a trace
T and a monitor M, noted T ⊗s M is a transition system (Qs, q

0
s ,−→s) where:

– Qs ⊆ 2E × 2E ×M is the set of symbolic configurations
– q0s = (∅, ∅,m0) is the initial symbolic configuration
– −→s⊆ Qs × E × Qs is the transition relation defined ∀(t, w,m) ∈ Qs, as

follows:
(i) if e 	∈ sensitive(m) ∧ e ∈ enabled(w) , then

(t, w,m) e−→s (t, w ∪ {e},m)

(ii) if e ∈ sensitive(m) ∧ e ∈ enabled(w) ∪ [t, w], then ∀m′ ∈ next(m, e)

(t, w,m) e−→s (t ∪ ↓e, (w\ ↑e) ∪ {e},m′)

We note (t, w,m)
ρ�s (t′, w′,m′) iff ∃(t0, w0,m0), ..., (tn, wn,mn), such that

(t, w,m) = (t0, w0,m0), (t′, w′,m′) = (tn, wn,mn) and such that the path ρ =
e1e2 · · · en with ∀ 0 ≤ i < n : (ti, wi,mi)

ei−→s (ti+1, wi+1,mi+1). We also note
(t, w,m) �s (t′, w′,m′) if ∃ρ : (t, w,m)

ρ�s (t′, w′,m′), and reachables(t, w,m)
= {m′ ∈M | (t, w,m) � (t′, E,m′)}, the set of monitor states, reachable at the
end of a trace’s run.

From a symbolic configuration (t, w,m), we can fire events that were not
previously examined before (events in enabled(w)), or events that were examined
before as optional and that allows now to change the current minitor state (event
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Fig. 3. Symbolic exploration

in [t, w] ∩ sensitive(m)). When firing an event e, we consider two cases. The first
case is when e is not sensitive in m. In this case, since e becomes optional, it
is simply added to w. On the other hand, if e is sensitive in m, it becomes
mandatory and must be added to t together with all its causal predecessors (↓e).
Moreover, we add e to w in order to keep t included in w, and all events added
to w in the strict future of e must be removed from w since e changed from
optional to mandatory.

We now need to prove that this symbolic composition is correct w.r.t the
classical explicit exploration.

Theorem 2 (Correctness of symbolic composition). [GMM06] The sym-
bolic composition is correct w.r.t the classical explicit composition

reachables(∅, ∅,m0) = reachable(∅,m0)

Proof sketch. First prove that the symbolic composition is consistent, i.e. that(
(∅, ∅,m0) �s (t, w,m)

)
⇒ ((↓t = t) ∧ (↓w = w) ∧ (t ⊆ w)). Then, we prove that

it is sound, i.e. that
(
(∅, ∅,m0) �s (t, w,m)

)
⇒ (∀s : (t ⊆ s ⊆ w) ∧ (↓s = s)⇒

(∅,m0) � (s,m)
)
. Finally, we prove that the symbolic composition is complete,

i.e.
(
(∅,m0) � (s,m)

)
⇒
(
∃t, w : (t ⊆ s ⊆ w) ∧ (∅, ∅,m0) �s (t, w,m)

)
.

5 Symbolic Exploration

Taking advantage of the symbolic composition presented in the previous section,
we propose our method, given in algorithm 1, which can efficiently solve the
TMP, i.e. compute if reachables(∅, ∅,m0)∩B = ∅. The idea behind this algorithm
is simple. Given a symbolic configuration (t, w,m), we first explore all non-
sensitive events. Since these events do not influence the monitor when fired, the
order in which they are fired is not important. Therefore, we can just consider
them in any order. In practice, we add to w all non-sensitive event of enabled(w),
and this repeatedly until a stabilization (lines 7–10). Afterwards, from there, we
fire all sensitive events yielding several new symbolic configurations (lines 1–
14). The sets W and T contain the symbolic configuration resp. remaining to
handle and already handled. The resulting state space for the monitor and trace
presented in figure 1 is presented in figure 3.

In order to prove the correctness of this algorithm, we need to prove that firing
non-sensitive events first is sufficient to detect if reachables(∅, ∅,m0)s ∩B = ∅ is
not empty. For this, we introduce a covering operator.
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Algorithm 1. Symbolic exploration
input : T = (E, λ,�),M = (M, m0, B,−→m)
output: reachables(∅, ∅, m0) ∩ B �= ∅
begin1

T ← ∅, W ← {(∅, ∅, m0)}2
while W �= ∅ do3

let (t, w, m) ∈ W4
W ← W \ {(t, w, m)}5
T ← T ∪ (t, w, m)6
repeat7

x ← w8
w ← w ∪ {e ∈ enabled(w) | e �∈ sensitive(m)}9

until (w = x)10
if (w = E) ∧ (m ∈ B) then11

return false12

forall (t′, w′, m′) : (t, w, m) e−→s (t′, w′, m′) ∧ (t′, w′, m′) �∈ T do13
W ← W ∪ {(t′, w′, m′)}14

return true15
end16

Definition 8 (Covering operator "). A symbolic configuration (t, w,m) is
covered by a symbolic configuration (t′, w′,m′), noted (t, w,m) " (t′, w′,m′), iff

(t′ ⊆ t) ∧ (w ⊆ w′) ∧ (m = m′)

Intuitively, (t′, w′,m′) covers (t, w,m) if (t′, w′,m′) represents more explicit con-
figurations than (t, w,m).

Lemma 1 (Monotonicity of "). [GMM06] The covering operator is mono-
tonic w.r.t the symbolic composition.(

(t1, w1,m1)
e−→s (t′1, w′

1,m
′
1) ∧ (t1, w1,m1) " (t2, w2,m2)

)
⇒(

∃(t′2, w′
2,m

′
2) : (t2, w2,m2)

e−→s (t′2, w′
2,m

′
2) ∧ (t′1, w′

1,m
′
1) " (t′2, w′

2,m
′
2)
)

Theorem 3 (Correctness of algorithm 1). Given a trace T = (E, λ,)) and
a monitor M = (M,m0, B,−→m), algorithm 1 terminates and returns true iff
reachables(∅, ∅,m0) ∩B 	= ∅.

Proof. First, we can see that E and M are finite, so is the set of possible symbolic
configurations. Therefore, termination is guaranteed since we do not explore a
symbolic configuration more than once. Moreover, theorem 2 ensures soundness,
since only valid symbolic transition are taken. However, completeness is not that
trivial, because the algorithm explore only a subset of all symbolic configurations.
This comes from the fact that non-sensitive events are always fired first. However,
if c denotes the configuration after the loop at lines 7–10, then any configuration
c′ computed during the loop is covered by c. Therefore, lemma 1 guarantees that
any configuration reachable from c′ is covered by a configuration reachable from
c. Thus, only exploring c is sufficient.
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Fig. 4. Example of where algorithm 1 leads to an exponential gain

Note that using lemma 1, we could improve algorithm 1 by replacing the test
(t′, w′,m′) ∈ T , in line 1, by (t′, w′,m′) " T , i.e does there exist a configuration
in T that covers (t′, w′,m′). An efficient data structure which handles set of
tuples-intervals (see [DRV04] and its variant [Gan02]) can be used to perform
efficiently these tests. The same efficient data structure can be used to represent
W ; then the union in line 1 adds a new configuration only if it is not already
covered by W .

Possible Exponential Improvement. In practice, as shown in the next sec-
tion, our symbolic method, given in algorithm 1, allows generally to reduce
significantly the explored state space and the verification time. We show here
the simple example given in figure 4 which provides a state space which is linear
with our symbolic method while exponential in the explicit method. Note that
this example can be extended to k processes. Hence, by using algorithm 1, we
benefit from an exponential improvement (w.r.t. k) for the state space size. For
instance for 8 processes, 17 states are explored by the symbolic algorithm against
8020 for the explicit one.

6 Experimental Results

In this section, we experimentally validate our method. We compared on ran-
domly generated traces, both in time and in number configurations, our sym-
bolic algorithm with a straightforward explicit trace exploration. Moreover, we
compared our testing method with a complete model-checking using the tool
spin [Hol97], with partial order reduction.

We conducted experiments on several examples (seen as distributed con-
trollers). For each example, we examined a correct model and a faulty model,
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Table 1. Experimental results (“-” means that the execution ran out of memory)

Experiment Explicit Symbolic Spin
Model Processes Events Property Error Time Conf. Error Time Conf. Error
Peterson 2 10000 Mutex NO 1.39s 21551 NO 0.35s 4001 0.06s

2 100000 Mutex NO 16.88s 215544 NO 3.45s 40001 0.06s
2 1000000 Mutex - - - NO 34.75s 400002 0.06s

Peterson 2 10000 Mutex YES 1.11s 21384 YES 0.01s 4 0.05s
Faulty 2 100000 Mutex YES 15.95s 214727 YES 0.05s 4 0.05s

2 1000000 Mutex - - - YES 0.53s 4 0.05s
ABProtocol 2 10000 Received NO 2.17s 31185 NO 0.42s 4654 0.15s

2 100000 Received NO 31.08s 316414 NO 4.25s 46684 0.15s
2 1000000 Received - - - NO 43.09s 466887 0.15s

ABProtocol 2 10000 Received YES 2.06s 31495 YES 0.01s 5 0.13s
Faulty 2 100000 Received YES 29.70s 315808 YES 0.06s 5 0.13s

2 1000000 Received - - - YES 0.53s 5 0.13s
Philosopher 3 100 Fork NO 1.03s 6190 NO 0.05s 299 0.40s

5 100 Fork NO 87.02s 60727 NO 0.21s 2875 12.01s
10 100 Fork - - - NO 1.52s 26791 -

Philosopher 3 100 Fork YES 0.09s 1187 YES 0.01s 63 0.38s
Faulty 5 100 Fork YES 78.72s 55982 YES 0.01s 78 11.01s

10 100 Fork - - - YES 0.01s 55 -

where a bug was intentionally introduced. Traces were generated by instrument-
ing the code to emit relevant events (i.e. assignments). The partial order relations
were obtained using vector clocks.

Table 1 presents the results of these experiments. For each experiment, the
first four columns respectively present the model, the number of processes, the
number of events in the trace and the property. Next, for both the explicit, and
symbolic method, columns 5 to 10 show if an error was found or not, the time
needed for exploration and the number of configurations used. The last column
present the times needed for the complete model-checking with partial order
reduction. A “-” in the table indicates that no result could be obtained because
the process ran out of memory.1

The first example we considered was the Peterson mutual exclusion protocol
with two processes, where communication is done through shared variables. We
used a monitor to check mutual exclusion (a safety property).

The second model we considered was the Alternating-bit protocol between two
process, i.e. a sender and a receiver. This time the communication is achieved
using asynchronous channel. We used a monitor to check that every message
sent was correctly received.

On those two examples, we can see that the symbolic exploration works well
in practice, compared to the explicit exploration method, both with safety and
liveness property. It is worth noting that, in the faulty version of both models,
the error was detected rapidly. However, on those two examples, the complete
spin model checking can be done very efficiently. This should be expected since
the model is relatively small.

The last example we considered was the Dining Philosopher problem. The
monitor was used to check that when the first philosopher takes his left fork, then

1 Explorations and model-checking were limited to 1GB of memory.
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his left neighbor cannot eat until he has finished to eat. Note that this property
cannot be expressed in RCTL+ of [SG03] because it involves an until operator.
We considered 3, 5 and 10 philosophers. On this example, we can see that using
the symbolic method allows to handle a larger number of processes. Indeed,
when dealing with 10 philosophers, the explicit exploration fails to terminate,
whereas the symbolic method still works. Moreover, in the faulty model, with 10
philosophers, the complete spin model checking fails to terminate, whereas the
symbolic exploration still detects the error that was introduced.

7 Future Works

Our symbolic method will be integrated into our distributed controllers design
environment dSL [DMM04, DGMM05] to allow efficient testing of real industrial
distributed controllers. For this purpose, our method should be extended to
online monitoring, and further developed to handle more complex formulae. A
comparison between our tool and other existing tools could then be done both
at the expressivity and performance levels.

We also intend to investigate the use of our method in different frameworks.
A first candidate is the validation of Message Sequence Charts (MSC). We must
study how our method can improve the efficiency of existing MSC validation
methods. Moreover, we would like to explore the possibility of integrating other
techniques such as computation slicing [MG05], in order to gain in time an space
during the validation.

Finally, we are also interested in the extension of our method to the model-
checking of complete systems. The combined use of our method with unfold-
ing technique developed by McMillan [McM95] and further refined by Esparza
[ERV96] seems a priori a promising approach.

Acknowledgments. We would like thank the anonymous reviewers, whose
comments allowed us to significantly improve the quality of this paper.
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Abstract. The paper introduces the construct of temporal testers as a composi-
tional basis for the construction of automata corresponding to temporal formulas
in the PSL logic. Temporal testers can be viewed as (non-deterministic) trans-
ducers that, at any point, output a boolean value which is 1 iff the corresponding
temporal formula holds starting at the current position.

The main advantage of testers, compared to acceptors (such as Büchi au-
tomata) is that they are compositional. Namely, a tester for a compound formula
can be constructed out of the testers for its sub-formulas. In this paper, we extend
the application of the testers method from LTL to the logic PSL.

Besides providing the construction of testers for PSL, we indicate how the
symbolic representation of the testers can be directly utilized for efficient model
checking and run-time monitoring.

1 Introduction

The standard way of model checking an LTL property ϕ over a finite-state system S,
represented by the automatonMS , is based on the construction of an ω-automatonA¬ϕ

that accepts all sequences that violate the property ϕ. Having both the system and its
specification represented by automata, we may form the product automatonM

S
×A¬ϕ

and check that it accepts the empty language, implying that there exists no computation
of S which refutes ϕ [14].

Usually, the automaton A¬ϕ is a non-deterministic Büchi automaton, which is con-
structed using an explicit-state representation. In order to employ it in a symbolic
(BDD-based) model checker, it is necessary to encode the automaton by the introduc-
tion of auxiliary variables. Another drawback of the normal (tableau-based) construc-
tion is that it is not compositional. That is, having constructed automataAϕ andAψ for
LTL formulas ϕ and ψ, there is no simple recipe for constructing the automaton for a
compound formula which combines ϕ and ψ, such as ϕ U ψ.

The article [9] introduces a compositional approach to the construction of automata
corresponding to LTL formulas. This construction is based on the notion of a temporal
tester that has been introduced first in [8]. A tester for an LTL formula ϕ can be viewed
as a transducer that keeps observing a state sequence σ and, at every position j ≥
0, outputs a boolean value which equals 1 iff (σ, j) |= ϕ. While acceptors, such as
the Büchi automaton Aϕ, do not compose, transducers do. In Fig. 1, we show how
transducers for the formulas ϕ, ψ, and p U q can be composed into a transducer for the
formula ϕ U ψ.
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T [p U q]

p

q

T [ϕ]

T [ψ]

Fig. 1. Composition of transducers to form T [ϕ U ψ]

There are several important advantages to the use of temporal testers as the basis for the
construction of automata for temporal formulas:

• The construction is compositional. Therefore, it is sufficient to specify testers for
the basic temporal formulas: X !p and p U q, where p and q are assertions (state
formulas). Testers for more complex formulas can be derived by composition as in
Fig. 1 .

• The testers for the basic formulas are naturally symbolic. Thus, a general tester,
which is a synchronous parallel composition (automata product) of symbolic mod-
ules can also be easily represented symbolically.

• As shown below, the basic processes of model checking and run-time monitoring
can be performed directly on the symbolic representation of the testers. There is no
need for determinization or reduction to explicit state representation.

In the work presented in this paper, we generalize the temporal tester approach to the
more expressive logic PSL, recently introduced as a new standard logic for specifying
hardware properties [1]. Due to compositionality, it is only necessary to provide the
construction of testers for the basic operators introduced by PSL.

In addition, we show how to construct an optimal symbolic run-time monitor. By
optimality, we mean that the monitor extracts as much information as possible from the
observed trace. In particular, an optimal monitor stops as soon it can be deduced that
the specification is violated or satisfied, regardless of the possible continuations of the
observed trace.

2 Accellera PSL

In this paper, we only consider a subset of PSL. For brevity, we omit the discussions of
OBE (Optional Branching Extension) formulas that are based on CTL. Note that using
testers we can obtain a model checking algorithm even for CTL∗ branching formulas
by combining PSL testers with the work in [9]. Regarding run-time monitoring, which
together with model checking is the primary motivation for our work, branching for-
mulas are not applicable at all. In addition, we do not consider clocked formulas and
formulas with abort operator. This is not a severe limitation since none of the above
add any expressive power to PSL. One can find a rewriting scheme for the @ operator
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(clock operator) in [6] and for the abort operator in [12]. The rewriting rules produce a
semantically equivalent formula not containing the operators, which is linear in the size
of the original.

Due to lack of space, we do not formally define logic PSL but follow very closely
the definitions from [6]. The only exceptions are the one mentioned above, and, for
convenience, we define one additional operator 〈r〉ϕ as

v � 〈r〉ϕ⇐⇒ ∃j <|v| s.t. v̄0..j |≡ r, vj.. � ϕ.

3 Computational Model

3.1 Fair Discrete Systems with Finite Computations

We take a just discrete system(JDS), which is a variant of fair transition system [10], as
our computational model. Under this model, a system D : 〈V,Θ,R,J , F 〉 consists of
the following components:

• V : A finite set of system variables. A state of the system D provides a type-
consistent interpretation of the system variables V . For a state s and a system vari-
able v ∈ V , we denote the value assigned to v by the state s by s[v] .

• Θ: The initial condition. This is an assertion (state formula) characterizing the ini-
tial states. A state is defined to be initial if it satisfies Θ.

• R(V, V ′): The transition relation, which is an assertion that relates the values of
the variables in V interpreted by a state s to the values of the variables V ′ in an
R-successor state s′.

• J : A set of justice (weak fairness) requirements. Each justice requirement is an
assertion. An infinite computation must include infinitely many states satisfying
the assertion.

• F : The termination condition, which is an assertion specifying the set of final states.
Each finite computation must end in a final state.

A computation of an JDS D is a non-empty sequence of states σ : s0, s1, s2, ...,
satisfying the requirements:

• Initiality: s0 is initial.
• Consecution: For each i ∈ [0, |σ|), the state si+1 is a R-successor of state si. That

is, 〈si, si+1〉 ∈ R(V, V ′) where, for each v ∈ V , we interpret v as si[v] and v′ as
si+1[v].

• Justice: If σ is infinite, then for every J ∈ J , σ contains infinitely many occur-
rences of J-states.

• Termination: If σ = s0, s1, s2, ..., sk is finite, then sk must satisfy F .

A sequence of states σ : s0, s1, s2, ... that only satisfies all conditions for being a
computation except initiality is called an uninitialized computation.

Given two JDS’s, D1 and D2, their synchronous parallel composition, D1 ||| D2,
is the JDS whose sets of variables and justice requirements are the unions of the
corresponding sets in the two systems, whose initial and termination conditions are
the conjunctions of the corresponding assertions, and whose transition relation is a
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conjunction of the two transition relations. Thus, a step in an execution of the composed
system is a joint step of the systems D1 and D2.

3.2 Interpretation of PSL Formulas over JDS

We assume that the set of atomic propositionsP is a subset of the variables V , so we can
easily evaluate all the propositions at a given state of a JDS. We say that a letter l ∈ 2P

corresponds to a state s if p ∈ l iff s[p] = 1. Similarly, we define a correspondence
between words and computations. We say, that a computation σ models (or satisfies)
PSL formula ϕ, denoted σ � ϕ, if the corresponding word v satisfies PSL formula ϕ.

4 Temporal Testers

One of the main problems in constructing a Büchi automaton for a PSL formula (or for
that matter any ω-regular language) is that the conventional construction is not compo-
sitional. In particular, given Büchi automataAϕ and Aψ for formulas ϕ and ψ, it is not
trivial to build an automaton for ϕ U ψ. Compositionality is an important considera-
tion, especially in the context of PSL. It is expected that specifications are written in a
modular way, and PSL has several language constructs to facilitate that. For example,
any property can be given a name, and a more complex property can be built by simply
using a named sub-property instead of an atomic proposition.

One way to achieve compositionality with Büchi automata is to use alternation [3].
Nothing special is required from the Büchi automata to be composed in such man-
ner, but the presence of universal branching in the resulting automaton is undesirable.
Though most model checkers can deal with existential non-determinism directly and
efficiently, universal branching is usually preprocessed at exponential cost.

Our approach is based on the observation that while the main property of Büchi
automata (as well as any other automata) is to correctly identify a language membership
of a given sequence of letters, starting from the very first letter; it turns out that for
composition it is also very useful to know whether a word is in the language starting
from an arbitrary position i. We refer to this new class of objects as testers. Essentially,
testers are transducers that at each step output whether the suffix of the input sequence
is in the language. Of course, the suffix is not known by the time the decision has to be
made, so the testers are inherently non-deterministic.

Formally, a tester for a PSL formula ϕ is a JDS Tϕ, which has a distinguished
boolean variable xϕ, such that:

• Soundness: For every computation σ : s0, s1, s2, ... of Tϕ , si[xϕ] = 1 iff σi.. |= ϕ
• Completeness: For every sequence of states σ′ : s′0, s

′
1, s

′
2, ..., there is a matching

computation σ : s0, s1, s2, ... such that for each i, si and s′i agree on the interpreta-
tion of ϕ-variables.

Intuitively, the second condition requires that a tester must be able to correctly inter-
pret xϕ for an arbitrary input sequence. Otherwise, the first condition can be trivially
satisfied by a JDS that has no computations.
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5 LTL Testers

We are going to continue the presentation of testers by considering two very important
PSL operators, namely X !(next) and U (until). First, we show how to build testers for
two basic formulasX !b and b1 U b2, where b, b1, and b2 are boolean expressions. Then,
we demonstrate high compositionality of the testers by easily extending the result to
cover full LTL. Note that our construction for LTL operators is very similar to the one
presented in [8].

5.1 A Tester for ϕ = X!b

Let Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 be the tester we wish to construct. The components of
Tϕ are defined as follows:

T (X !b) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Vϕ : P ∪ xϕ, where P is a set of atomic propositions
Θϕ : 1

Rϕ(V, V ′) : xϕ = b′

Jϕ : ∅
Fϕ : ¬xϕ

It almost immediately follows from the construction that T (X !b) is indeed a good tester
for X !b. The soundness of the T (X !b) is guaranteed by the transition relation with the
exception that we still have a freedom to incorrectly interpret xϕ at the very last state.
This case is handled separately by insisting that every final state must interpret xϕ as
false . The completeness follows from the fact that we do not restrict P variables by the
transition relation, and we can always interpret xϕ properly, by either matching b′ or
setting it to false in the last state.

5.2 A Tester for ϕ = b1 U b2

The components of Tϕ are defined as follows:

T (b1 U b2) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Vϕ : P ∪ xϕ

Θϕ : 1
Rϕ(V, V ′) : xϕ = b2 ∨ (b1 ∧ x′ϕ)

Jϕ : b2 ∨ ¬xϕ

Fϕ : b2 ∨ ¬xϕ

Unlike the previous tester, T (b1 U b2) has a non-empty justice set. A technical reason is
that the transition relation allows xϕ to be continuously set to true without having a sin-
gle state that actually satisfies b2. The situation is ruled out by the justice requirement.
Another way to look at the problem is that Rϕ represents an expansion formula for the
U (strong until) operator, namely b1 U b2 ⇐⇒ b2 ∨ (b1 ∧ X ![b1 U b2]). In general,
starting with an expansion formula is a good first step when building a tester. However,
the expansion formula alone is usually not sufficient for a proper tester. Indeed, consider
the operator W(weak until), defined as b1 W b2 ≡ ¬(true U ¬b1) ∨ b1 U b2, which
has exactly the same expansion formula, namely b1 W b2 ⇐⇒ b2∨(b1∧X ![b1 W b2]).
We use justice to differentiate between the two operators.
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6 Tester Composition

In Fig. 2, we present a recursive algorithm that builds a tester for an arbitrary LTL
formulaϕ. In Example 1, we illustrate the algorithm by applying the tester construction
for the formula ϕ = true U

(
X ![b1 U b2] ∨ (b3 U [b1 U b2])

)
.

• Base Case: If ϕ is a basic formula (i.e., ϕ = X!b or ϕ = b1 U b2), use construction from
Section 5. For a trivial case, when the formula ϕ does not contain any temporal operators,
we can use a tester for false U ϕ.

• Induction Step: Let ψ be an innermost basic sub-formula of ϕ, then Tϕ = Tϕ[ψ/xψ] |||
Tψ , where ϕ[ψ/xψ] denotes the formula ϕ in which each occurrence of the sub-formula
ψ is replaced with xψ .

Fig. 2. Tester construction for an arbitrary LTL formula ϕ

Example 1. Tester Construction for ϕ = true U
(
X ![b1 U b2] ∨ [b1 U b2])

)
We start by identifying b1 U b2 to be the innermost basic sub-formula and building the
corresponding tester, Tb1Ub2 with the output variable y. Let α = ϕ[b1 U b2/y]; after
the substitution α = true U

(
X !z ∨ y

)
. Note that we performed the substitution twice,

but there is no need for two testers, which can result in significant savings. We proceed
in similar fashion and build one more tester TX!y with the output variable x. After the
substitutions, we obtain β = true U [x ∨ y], which satisfies the conditions of the base
case. The final result can be expressed as:

Tϕ = Tβ ||| TX!y ||| Tb1Ub2 .

Though we have assumed ϕ is an LTL formula, the algorithm can be extended to PSL
by considering additional basic formulas.

7 Associating a Regular Grammar with a SERE

Following [7], a grammar G = 〈V , T ,P ,S〉 consists of the following:

• V : A finite set of variables.
• T : A finite set of terminals. We assume that V and T are disjoint. In our framework,
T consists of boolean expressions and a special terminal ε.

• P : A finite set of productions. We only consider right-linear grammars, so all pro-
ductions are of the form V → aW or V → a, where a is a terminal, and V and W
are variables.

• S: A special variable called a start symbol.

We say a grammar G is associated with a SERE r if, intuitively, they both define the
same language. While this definition is not accurate, we show a precise construction
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of an associated grammar for a given SERE in [12]. For example, we associate the
following grammar G with SERE r = (a1b1)[∗] && (a2b2)[∗]

V1 → ε | (a1 ∧ a2)V2
V2 → (b1 ∧ b2)V1

Theorem 1. For every SERE r of length n, there exists an associated grammar G with
the number of productions O(2n). If we restrict SERE’s to the three traditional op-
erators: concatenation ( ; ), union ( | ), and Kleene closure ( [∗] ), the number of
productions becomes linear in the size of r.

8 PSL Testers

There are only two additional basic formulas that we need to consider to handle full
PSL, namely ϕ = 〈r〉b and ϕ = r, where r is a SERE and b is a boolean expression. All
other PSL temporal operators can be expressed using those two and the LTL operators,
X ! and U . For example, r! ≡ 〈r〉true , and r �→ b ≡ ¬(〈r〉¬ϕ).

8.1 A Tester for ϕ = 〈r〉b
Let Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 be the tester we wish to construct. Assume that xϕ is
the output variable. Let G = 〈V , T ,P ,S〉 be a grammar associated with r. Without the
loss of generality, we assume G has variables V1, . . . , Vn with V1 being the start symbol.
In addition, each variable Vi, has derivations of the form:

Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

where α1, . . . , αm, β1, . . . , βn are boolean expressions. The case that variable Vi does
not have a particular derivation Vi → βjVj or Vi → αk, is covered by having βj =
false , and similarly, αk = false . Note that by insisting on this specific form, which
does not allow ε productions, we can not express whether an empty string is in the
language. However, since, by definition of 〈〉 operator, a prefix that satisfies r must be
non-empty, we do not need to consider this. The tester Tϕ is given by:

Tϕ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vϕ : P ∪ xϕ ∪ {X1, . . . , Xn, Y1, . . . , Yn}
Θϕ : 1
Rϕ : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to ρ the conjunct
Xi = (α1 ∧ b) ∨ · · · ∨ (αm ∧ b) ∨ (β1 ∧X ′

1) ∨ · · · ∨ (βn ∧X ′
n)

and the conjunct
Yi → (α1 ∧ b) ∨ · · · ∨ (αm ∧ b) ∨ (β1 ∧ Y ′

1) ∨ · · · ∨ (βn ∧ Y ′
n)

the output variable is constrained by the conjunct
xϕ = X1

Jϕ : {¬Y1 ∧ · · · ∧ ¬Yn, X1 = Y1 ∧ · · · ∧Xn = Yn}
Fϕ : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to F the conjunct
Xi = (α1 ∧ b) ∨ · · · ∨ (αm ∧ b)



580 A. Pnueli and A. Zaks

Example 2. A Tester for ϕ = 〈{pq}[∗]〉b.

To illustrate the construction, consider formula 〈{pq}[∗]〉b. Following the algorithm
from [12] and removing ε productions, the associated right-linear grammar for the
SERE {pq}[∗] is given by

V1 → pV2
V2 → q | qV1

Consequently, a tester for 〈{pq}[∗]〉b is given by

T (〈{pq}[∗]〉b) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vϕ : P ∪ xϕ ∪ {X1, X2, Y1, Y2}
Θϕ : 1

Rϕ(V, V ′) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(X1 = (p ∧X ′

2)) ∧
(X2 = (q ∧ b) ∨ (q ∧X ′

1)) ∧
(Y1 → (p ∧ Y ′

2)) ∧
(Y2 → (q ∧ b) ∨ (q ∧ Y ′

1)) ∧
xϕ = X1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Jϕ : {¬Y1 ∧ ¬Y2, X1 = Y1 ∧X2 = Y2}
Fϕ : (X1 = false) ∧ (X2 = q ∧ b)

The variables {X1, . . . , Xn, Y1, . . . , Yn} are expected to check that the rest of the
sequence from now on has a prefix satisfying the SERE r. Thus, the subsequence
sj , . . . , sk, . . . � 〈r〉b iff there exists a generation sequence V j = V1, V

j+1, . . . , V k,
such that for each i, j ≤ i < k, there exists a grammar rule V i → βV i+1, where
si ‖= β, V k → α, and sk ‖= (α ∧ b).

The generation sequence is represented in a run of the tester by a sequence of true
valuations for the variables Zj = Z1, Z

j+1, . . . , Zk where Zi ∈ {X i, Y i} for each i ∈
[j..k]. An important element in this checking is to make sure that any such generation
sequence is finite. This is accomplished through the double representation of each Vi

by Xi and Yi. The justice requirement (X1 = Y1) ∧ · · · ∧ (Xn = Yn) guarantees
that that any true Xi is eventually copied into Yi. The justice requirement ¬Y1 ∧ · · · ∧
¬Yn guarantees that all true Yi’s are eventually falsified. Together, they guarantee that
there exists no infinite generation sequence. The double representation approach was
introduced in [11].

8.2 A Tester for ϕ = r

We start the construction exactly the same way as we did for ϕ = 〈r〉b, in Section 8.1.
Let Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 be the tester we wish to construct. Assume that xϕ is
the output variable. Let G = 〈V , T ,P ,S〉 be a grammar associated with r.

The tester Tϕ is given by:
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Tϕ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vϕ : P ∪ xϕ ∪ {X1, . . . , Xn, Y1, . . . , Yn}
Θϕ : 1

Rϕ(V, V ′) : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to ρ the conjunct
Xi = α1 ∨ · · · ∨ αm ∨ (β1 ∧X ′

1) ∨ · · · ∨ (βn ∧X ′
n)

and the conjunct
α1 ∨ · · · ∨ αm ∨ (β1 ∧ Y ′

1) ∨ · · · ∨ (βn ∧ Y ′
n)→ Yi

the output variable is constrained by the conjunct
xϕ = X1

Jϕ : {Y1 ∧ · · · ∧ Yn, X1 = Y1 ∧ · · · ∧Xn = Yn}
Fϕ : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to F the conjunct
Xi = α1 ∨ · · · ∨ αm ∨ β1 ∨ · · · ∨ βn

The variables {X1, . . . , Xn, Y1, . . . , Yn} are expected to check that the rest of the
sequence from now on has a prefix that does not violate SERE r. We follow a similar
approach as for the tester ϕ = 〈r〉b. However, now we are more concerned with false
values of the variables X1 . . .Xn. The duality comes from the fact that, now, we are
trying to prevent postponing the violation of the formula r forever.

8.3 Complexity of the Construction

Theorem 2. For every PSL formula ϕ of length n, there exists a tester with O(2n)
variables. If we restrict SERE’s to three traditional operators: concatenation ( ; ), union
( | ), and Kleene closure ( [∗] ), the number of variables is linear in the size of ϕ.

To justify the result, we can just count the fresh variables introduced at each step of
the tester construction. There is only linear number of sub-formulas, so there is a linear
number of output variables. The only other variables introduced are the ones that are
used to handle SERE’s. According to Theorem 1, the associated grammars contain at
most O(2n) non-terminals (O(n) - for the restricted case). We conclude by observing
that testers for the formulas ϕ = 〈r〉b and ϕ = r introduce exactly two variables, Xi

and Yi, for each non-terminal Vi.

9 Using Testers for Model Checking

One of the main advantages of our construction is that all the steps, as well as the final
result – the tester itself, can be represented symbolically. That is particularly handy if
one is to use symbolic model checking [2]. Assume that the formula under consideration
is ϕ, and Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 is the corresponding tester. Let JDS D represent
the system we wish to model check.

We are going to use traditional automata theoretic approach based on synchronous
composition, as in [2]. We perform the following steps:
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– ComposeD with Tϕ to obtain D ||| Tϕ.
– Check if D ||| Tϕ has a (fair) computation, such that s0[xϕ] = 0. D ||| Tϕ has such

a computation iff D does not satisfy ϕ.

As you can see, a tester can be used anywhere instead of an automaton. Indeed, we can
always obtain an automaton from a tester by restricting the initial state to interpret xϕ

as true.

10 Run-Time Monitoring with Testers

The problem of run-time monitoring can be described as follows. Assume a reactive
system D and a PSL formula ϕ, which formalizes a property that D should satisfy. In
order to test the conjecture that D satisfies ϕ, we construct a program M , to which we
refer as a monitor, that observes individual behaviors of D. Behaviors of D are fed to
the monitor state by state. After observing the finite sequence σ : s0, . . . , sk for some
k ≥ 0, we expect the monitor to be able to answer a subset of the following questions:

1. Does σ satisfy the formula ϕ?
2. Is ϕ negatively determined by σ? That is, is it the case that σ · η 	|= ϕ for all finite

or infinite completions η.
3. Is ϕ positively determined by σ? That is, is it the case that σ · η |= ϕ for all finite

or infinite completions η?
4. Is ϕ σ−monitorable? That is, is it the case that there exists a finite η such that ϕ is

positively or negatively determined by σ ·η. IfD is expected to run forever then it is
useless to continue monitoring after observing σ such that ϕ is not σ−monitorable.

Solving the above questions leads to a creation of an optimal monitor - a monitor that
extracts as much information as possible from the observation σ. In particular, an opti-
mal monitor detects a violation of the property as early as possible. Of course, a monitor
can do better if we supply it with some implementation details of the system D, which
may allow to deduce a violation even earlier [13]. In the extreme case, when a monitor
knows everything aboutD the monitoring problem is reduced to model checking.

10.1 Monitoring with Testers

Let D : 〈P,Θ,R,J , F 〉 be a reactive system with observable variables P , and let ϕ be
a PSL formula over P , which validity with respect to D we wish to test. Assume that
Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 is the tester for ϕ, where the variables Vϕ = P ∪ A are
partitioned into the variables of D and additional auxiliary variables A. Let xϕ be the
distinguished output variable of the tester T .

For an assertion (state formula) α, we define the Rϕ-predecessor and Rϕ-successor
of α by

•Rϕ α = ∃V ′
ϕ : Rϕ(Vϕ, V

′
ϕ) ∧ α′

•α Rϕ = unprime(∃Vϕ : Rϕ(Vϕ, V
′
ϕ) ∧ α)

where unprime simply replaces all next state variables with current state variable. Re-
member that the transition relationRϕ has two copies of each variable, one representing
a current state and the other copy (a primed one) the next state.
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Let σ : s0, s1, . . . , sk be a finite observation produced by system D. That is, a se-
quence of evaluations of the variables P . We define the symbolic monitoring trace
M = α0, α1, . . . , αk as the sequence of assertions given by

α0 = Θϕ ∧ xϕ ∧ (P=s0), and αi+1 = (αi Rϕ) ∧ (P=si+1), i ∈ [0, k),

where P = s stands for
∧
v∈P

v = s[v].

Essentially, αi represents a ”current” state of the monitor, which is more precisely
just a set of states of the tester Tϕ. Whenever, the system makes a step from si to si+1,
a monitor takes the corresponding step from αi to αi+1 according to the transition
relation Rϕ and the interpretation of the propositions by the state si+1. The whole
process can be described as, on the fly, synchronous, composition of the system and
the tester, in which the later is determinized using classical subset construction. Note
that we only need to worry about the existential non-determinism, A similar approach,
but for alternating automata was also used for a so called breadth-first traversal in [?].
The monitoring sequence can be used to answer the first of the monitoring questions as
stated by the following claim:

Claim 1 (Finitary satisfaction). For a PSL formula ϕ, the finite sequence σ : s0, s1,
. . . , sk satisfies ϕ, i.e., σ � ϕ, iff the formula αk ∧ Fϕ is satisfiable.

The correctness of the claim results from the following observations. The tester Tϕ can
be interpreted as a non-deterministic automaton for acceptance of sequences satisfying
ϕ if we insist that xϕ is true in the initial state. Furthermore, the assertion αk represents
all the automaton (tester) states which can be reached after reading the input σ. If any
such evaluation is consistent with the assertion Fϕ, which represents the set of final
states, then this points to an accepting run of the automaton.

10.2 Deciding Negative Determinacy

Claim 1 has settled the first monitoring task. Next we consider one of the remaining
tasks. Namely, we show how to decide whether, for a given σ, σ · η 	|= ϕ for all infinite
or finite completions η.

In order to do this, we have to perform some offline calculations as a preparation.
We generalize the notion of a single-step predecessor to an eventual predecessor by
defining

R∗
ϕ α = α ∨Rϕ α ∨Rϕ (Rϕ α) ∨ · · ·

Consider the fix-point expression presented in Equation (1).

feas = [μX : (Rϕ X) ∨ Fϕ]
∨

[νY : Rϕ Y ∧
∧

J∈J
R∗

ϕ (Y ∧ Jϕ)] (1)

The first expression captures all the states that have a path to a final state. The second
expression captures a maximal set of tester states Y such that every non-final state
s ∈ Y has an Y -successor and, for every justice requirement J , s has a Y -path leading
to some Y -state which also satisfies J . The following can be proven:
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Claim 2 (Feasible states). The set feas characterizes the set of all states which origi-
nate an uninitialized computation.

Assuming that we have precomputed the assertion feas, the following claim tells us how
to decide whether a finite observation σ is sufficient in order to negatively determine ϕ:

Claim 3 (Negative Determinacy). The PSL formula ϕ is negatively determined by the
finite observation σ = s0, s1, . . . , sk iff αk ∧ feas is unsatisfiable.

The claim is justified by the observation that αk ∧ feas being unsatisfiable means that
there is no way to complete the finite observation σ into a finite or infinite observation
which will satisfy ϕ.

10.3 Deciding Positive Determinacy

In order to decide positive determinacy, we need to monitor the incoming observations
not only by assertion sequences which attempt to validate ϕ but also by an assertion
sequence which attempts to refute ϕ. Consequently, we define the negative symbolic
monitoring traceM− = β0, β1, . . . , βk by

β0 = Θϕ ∧ ¬xϕ ∧ (P=s0), and βi+1 = (βi Rϕ) ∧ (P=si+1), i ∈ [0, k)

Claim 4 (Positive Determinacy). The PSL formula ϕ is positively determined by the
finite observation σ = s0, s1, . . . , sk iff βk ∧ feas is unsatisfiable.

10.4 Detecting Non-monitorable Prefixes

Unfortunately, not all properties can be effectively monitored. Consider a property
p, which is not σ-monitorable for any σ prefix. No useful information can be

gained after observing a finite prefix if the property only depends on the things that
must happen infinitely often. A good monitor should be able to detect such situations
and alert the user. Next, we show how to decide whether ϕ is σ-monitorable, for a
given σ.

Let M = α0, α1, . . . , αk and M− = β0, β1, . . . , βk be the positive and negative
symbolic monitoring traces that correspond to σ. Let Γ represent a set of assertions.
We define the Rϕ-successor and eventual Rϕ-successor of Γ by

•Γ Rϕ = {(γ Rϕ) ∧ (P = s) | γ ∈ Γ, s is some state of the system D}
•Γ R∗

ϕ = Γ ∨Rϕ Γ ∨Rϕ (Rϕ Γ ) ∨ · · ·

Claim 5 (Monitorability). A PSL formula ϕ is σ−monitorable, where σ=s0, s1, . . . ,
sk, iff there exists an assertion γ such that either γ ∈ (αk R∗

ϕ) or γ ∈ (βk R∗
ϕ),

and (γ ∧ feas) is unsatisfiable.

The claim almost immediately follows from the definition of σ−monitorable proper-
ties, Claim 3, and Claim 4. Note that the algorithm can be very inefficient due to the
double-exponential complexity. One way to cope with the problem is to consider each
state in αk and βk individually. The idea is very similar to never-violate states intro-
duced in [5]. A state of a Büchi automaton is called never violate if, on any input letter,
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there is a transition to another never-violate state. Similarly, we can define never-satisfy
states and obtain a reasonable approximation to the problem of monitorability. Note that
the complexity of this solution is exponential, which hopefully can be managed using
BDD’s. In addition, the never-violate and never-satisfy states can be pre-computed be-
fore the monitoring starts. However, it remains to be seen whether the approximation
works well in practice.

11 Related Work

It is very interesting to compare our approach to the one suggested in [4], which uses
alternating automata. We have already mentioned some high-level distinctions between
testers and alternating automata in Section 4. However, the question remains about
which construction is better. It turns out that both approaches yield very similar re-
sults, assuming universal non-determinism is removed from the alternating automata.
Although that is a somewhat unexpected conclusion, it is not hard to justify it.

Without going into the details of algorithm described in [4], it is enough to mention
that each state in the alternating automaton is essentially labeled with a sub-formula.
To remove universal non-determinism, we follow classical subset construction. In par-
ticular, we assign a boolean variable x for each sub-formula ϕ to represent whether the
corresponding state is in the subset. One can easily verify that x is nothing more but the
output variable of the tester Tϕ and follows the same transition relation.

To finish the partial determinization and define the final states in the new automata,
the authors of [4] use the same trick with double representation as we do. At this
step, the automata obtained after the subset construction is composed with itself via
a cartesian product. This step is conceptually the same as introducing Y variables in
the tester construction. However, we only introduce the extra variables when dealing
with SERE’s. For the LTL portion of the formula, the tester construction avoids the
quadratic blow out associated with the cartesian product by essentially building a gen-
eralized Büchi with multiple acceptance sets (i.e., multiple justice requirements). If one
to insist on a single acceptance set, our approach would yield an automaton identical
to the one obtained in [4]. Note that, for symbolic model checking, using a generalized
Büchi automaton might be more efficient then the corresponding Büchi automaton.

While our approach may not necessarily yield a better automaton, it never performs
worse, and there are several significant benefits. Since model checking is very expen-
sive, we expect that, in practice, automata for commonly occurring sub-properties will
be hand-tuned. In such a case, it is more beneficial to work with testers since an al-
ternating automaton requires an exponential blow-up due to universal non-determinism
that cannot be locally optimized.

Another important advantage is that PSL testers can be used anywhere instead of
LTL testers. For example, if one were to extend CTL∗ with PSL operators, our approach
combined with [9] immediately gives a model checking algorithm for the new logic.

12 Conclusion

In this paper, we have shown a new approach towards model checking logic PSL, re-
cently introduced as a new standard for specifying hardware properties. Our approach
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is based on testers that, unlike automata, are highly compositional, which is very ad-
vantageous in the context of PSL.

In addition, we have described a framework for symbolic run-time monitoring. In
particular, we have identified some of the major questions that a good monitor should
be able to answer and shown how to answer those questions using symbolic algorithms.
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Abstract. This contribution discusses two main lines of developments concern-
ing the use of formal methods in security engineering. Fully automated and highly
specialized methods that hide most of the formal theory from its users are com-
pared to formal security models centered around explicit formal system models.
It is argued that only the latter offer the perspective to comprehensively control
the development process with its various security aspects and phases. In putting
more emphasis on the combination of theories, fragmentation could be overcome
by an integration of the specialized methods that are presently still applied in
isolation.

1 Introduction

For most of the questions concerning the industrial perspective of formal techniques
including the topics addressed at this I-Day there will be no simple answers. The cur-
rent situation in formal methods is characterized by a vast amount of approaches most
often pursued in isolation and difficult to overlook even by experts. To assess obstacles,
potential benefits, and costs for an industrial use, first of all it is therefore necessary to
roughly classify the main lines of development.

In the author’s view, approaches like the AbsInt tool for execution time analysis
[2] and the ongoing Boogie development [6], are very likely to be adopted on a broad
basis by industrial users. There is no reason not to believe that in security engineering
program analysis to detect covert channels, following approaches developed in [1] and
specialized tools for analyzing security protocols, like the AVISPA tool [3] are on the
right track toward commercial applications.

Such approaches hide a deep and complex theory and highly sophisticated imple-
mentation1 behind a front end that seamlessly fits to existing, well established pro-
gramming environments and notations. They are easy to use since the formal analysis
is carried out automatically with results that can be interpreted directly in the given
context. Hiding the internal structure of the underlying model also provides protection
against inadequate usage. Finally, the extra costs for the acquisition and application
of these tools make no real difference, neglecting the expenses for research that was
necessary to develop them.

1 From this point of view to call them ”‘lightweight plugins”’ is much too disrespectful.

J. Misra, T. Nipkow, and E. Sekerinski (Eds.): FM 2006, LNCS 4085, pp. 587–591, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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However, even if support for error prone and tedious activities is offered at a high
level of expertise beyond that of typical human experts, and even if the approaches scale
up to the size of real world applications, their isolated use will limit the impact of formal
methods on the overall development process. Fragmentation seems to be a consequence
of the advantages mentioned above.

The strength in automatic problem solving comes along with restrictions to cer-
tain aspects, like protocol correctness, and development phases, like coding. Hiding
the underlying formal models and theory makes it difficult to adapt these methods
to new scenarios and, above all, combine them into an integrated approach necessary
for a comprehensive treatment of complex developments. A multi-applicative smart
card, for example, might use access control to protect the applications (against each
other), protocols to communicate with the outside world, in particular to download
new applications, and non-generic but security critical mechanisms inside the
applications.

What seems to be missing is an explicit, sufficiently rich system model at various
levels of abstraction that is shared by highly specialized analysis methods for generic
mechanisms like access control and cryptographic protocols.

The author is not completely confident that we will see formal methods used to
control, record, and assess comprehensive developments on a scientifically objectified
basis in the near future. Nevertheless, after arguing that the program indicated above
seems to suit the spirit of the Common Criteria framework, some encouraging own
experiences will be mentioned as a basis for a brief discussion of steps necessary to
keep this vision on the agenda.

2 Formal Methods in the Common Criteria

To a large extent the engineering practice for critical systems will (and in the opinion of
the author has to be) shaped by mandatory guidelines like the Common Criteria (CC)
for IT security. Formal methods will never leave the state of an unsystematic, acciden-
tal, and largely incompatible use without such frameworks. Most of the (commercial)
formal activities of the DFKI group related to IT security were part of developments
intended to meet the CC requirements.

Although not stipulating a particular development method or life cycle model, the
CC insists on laying down requirements and tracking them through appropriately doc-
umented design stages connected by well defined relationships.

In our work we adopt the view that the formal Security Model (as required by the
CC) should consist of an (abstract) specification of the relevant parts of the system to-
gether with certain security mechanisms (or measures). Although this is not explicitly
requested we then proved that the intended security properties (or principles) are ac-
tually satisfied. This is the place where the specific techniques for modeling and prov-
ing security properties, like protocol analysis [3,7] and information flow analysis at
the specification level [5], come into play. In this context specialized automated tech-
niques, if integrated into the overall formal model, will lower the burden of proof work.
However, in this setting one has to be prepared to establish a formal relationship to the
system model and to possibly integrate several security issues.
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To allow for such an integration an explicit formal system model is needed. This
has to be given by the developer using a specification language which is expressive
and general enough to cover all necessary aspects. In most cases this means that in the
general case we have to carry out interactive proofs.

Whether or not one day automatic techniques used in this setting will reduce the
interactive proof work to some residue that can be neglected remains an open question.

The formal model also serves as a starting point for a subsequent refinement to tech-
nical solutions, for example on platforms like smart cards. This includes the relationship
to non-formal technical documents. In cases where the specification technique did not
guarantee (logical) consistency, refinements were used for model construction by pro-
totypic implementations.

architectural model

specification of measures

refine correct

principles

security model

functional specification

refine correct

consistent

architectural model

specification of measures

refine correct

principles

security model

functional specification

refine correct

consistent

Fig. 1. CC-Components for Formal Development

During the design stage formal debugging techniques are useful since interactive
proofs still are very sensible to changes despite reasonable progress in (proof) reuse.

Yet it should be stated that the use of formal methods advocated here can be
”trivialized” (intendedly or unintendedly). This is due to the open nature of formal
modeling which is difficult to restrict by guidelines or official CC interpretations. For
example, a pure restatement of, say, some access control rules without relation to a sys-
tem model and its refinement or the proof of information flow properties realized by
them will not offer much benefit except that the formal2 requirements of the CC are
(possibly) met. Such a use of formal techniques will sooner or later discredit the whole
community.

2 In the legal sense.
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3 Experience

The group at DFKI developed several security models as part of industrial consortia fol-
lowing the scheme above. Specifications and proofs were carried out in the Verification
Support Environment (VSE) [4].

In all cases the formal model covered the critical part of the system under considera-
tion. Moreover, the models contained all details and cases mentioned in the non-formal
design documents.

In particular, when discussing the possible benefits of formal methods, this working
use of formal methods should well be distinguished from the idealized and simplified
models often appearing in case studies performed to demonstrate the principal theory
behind some method.

The formal specifications were readable and understandable by most of the other
(technical) team members after they had been briefly introduced to VSE. However, this
does not hold for the theory used to formulate and prove the desired security proper-
ties. Whenever the formal reflection (using that theory) revealed problems they were
discussed using the formal specification as a reference. The majority of problems was
detected (by our experts) while writing down the specification. However, due to the
complexity of the system without the proofs no one felt really confident that there were
no further vulnerabilities left.

Again note that it is not enough to show that some solution is secure in principle. This
is sufficient for mathematical results discussed in the scientific community. Here we
use formal methods to control developments in all their detail using tools that guarantee
sound reasoning.

The formal work was carried out as part of the ongoing project including revisions. It
caused no critical delays. Redoing proofs turned out to be critical. When in some cases
we monitored our work it turned out that up to 50% of the proof work resulted from
(our own) specification errors and revisions.

The use of formal methods as outlined above increased the costs considerably. How-
ever, due to our estimates the additional costs were comparable to those of other expert
teams.

Taking all this as an indication that formal modeling and analysis along the lines
briefly described above is not just a mere vision, what are the necessary steps on the
road to a comprehensive use of formal methods in security engineering?

– All of our developments were basically built from scratch. Except for the basic
modeling techniques (abstract data types, state based systems, concurrency, infor-
mation flow, protocol traces) we could not build on any formal (security) engineer-
ing experiences manifested in guidelines or even generic models (or parts thereof).
To develop such patterns for formal modeling on top of the existing theories and to
extend these where necessary from an application oriented point of view seems to
be the most important task.

– In particular, notions of refinement for security mechanisms (analyzed in a formal
way) have to be developed.

– Combination of theories is another critical issue.
– In the academic community there seems not to be enough appreciation for the kind

of work indicated above.
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– On the other hand collaboration with industrial partners (for example in application
oriented research projects) is absolutely necessary to obtain the appropriate domain
knowledge.

– The academic community should take part in and (try to) influence the further de-
velopment of criteria like the CC.
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Abstract. Formal methods in the industrial wild, outside the academic
greenhouse, are still considered rather exotic, or even esoteric. Sometimes
they are admired, more often smiled at, and most times simply ignored.
There are some niches, though, where they display their abstract beauty.
One of those places offering suitable environmental conditions is security.
Which are the specific fertilizers there? Which particular sub-species have
proven versatile and sturdy enough to survive in harsh industrial climate?
Who recognizes the strong blessings of their hardly accessible blossoms?
We share our grower’s experience with them in the security field.

Keywords: Formal methods, security, software engineering, evaluation,
models.

1 Security as a Software Engineering Problem

In the development of large IT systems, design errors and implementation bugs
inevitably occur. Similarly to safety-critical systems, systems involving security-
sensitive data face high risks because their failure can cause great damage. The
risk involved with them is even higher than with safety-critical systems, because
their deficiencies will not only cause problems accidentally, but will be searched
for actively and exploited systematically.

One cannot expect to cope with the problem by legal or educational means,
and organizational and physical measures have limited strength and scope. So
the only really effective way to prevent attacks is by removing any potential
loopholes and vulnerabilities. This is hard to achieve though: since security is a
non-functional and holistic property that pervades the whole system and thus
intricate to specify, and since systems are usually fairly complex, security flaws
are notoriously hard to avoid, find, and correct. It’s even harder to convince
oneself, or one’s contractors/customers, of the absence of such flaws.

2 The Solution Offered by Formal Methods

System security can only be approximated, by careful requirements analysis,
systematic design and development, and extensive reviews and checks during all
development phases. Formal methods provide the most rigorous tools for this.

J. Misra, T. Nipkow, and E. Sekerinski (Eds.): FM 2006, LNCS 4085, pp. 592–597, 2006.
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During requirements analysis, abstract models help keeping the overview
(by concentration on the essentials) and understanding the security issues
and by a systematic approach, e.g. generic patterns simplifying the analysis.

During design and documentation, formalizations enhance the quality of
specifications and other descriptions by preventing ambiguities, incomplete-
ness, and inconsistencies.

During implementation, formal analysis can be used for systematically test-
ing — or even verifying with mathematical precision — the correctness of
the actual product wrt. its specification.

Although formal methods usually require high sophistication and large effort,
in the security area the risks are often so high that it still pays to use them
since they offer a higher level of assurance than any other known method. This
explains why IT developers like Siemens are willing to apply them for their most
security-critical products and solutions, and why standardized and widely used
security evaluation criteria like the Common Criteria require their use for higher
levels of assurance.

The use of security evaluation and certification is motivated in two ways:

intrinsically: developers can use it for internal quality control
extrinsically: developers are forced into it by market pressure or, more often,

by legal requirements. According to our observations, in most cases this form
of motivation is the decisive factor.

3 Formal Security Modeling

Every formal method naturally requires a formal model of the system to be
analyzed. A formal security model is an abstract description (in an appropriate
formal notation) of the real system and its desired properties, focusing on the
relevant security issues.
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Interpretation

Abstraction

The description includes the security policy, defining what actions, data flow,
etc. is allowed, typically by a relationship between subjects and objects. The
model usually describes also the mechanisms that are meant to enforce the given
policy, typically in terms of system state or sequences of states. Security verifi-
cation can then check (at the abstraction level of the model) whether the mech-
anisms actually enforce the policy. Even if the model is not used for subsequent
testing or verification, the very act of producing a formal model is already of
enormous value, since many errors already show up during this process.

Several factors influence the shape of a formal model.
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The formality level should be adequate:
– the more formal, the more precision
– the less formal, the less special skills are required

The choice of formalism depends on:
– the application domain, modeler’s experience, tool availability, ...
– its quality: it should be simple, expressive, flexible, and mature

The abstraction level should be:
– high enough to maintain overview and to minimize efforts
– low enough not to loose important detail

The use of refinement promises to offer the best of both high-level and low-
level descriptions, yet at the cost of some extra effort

When formalizing a system, information on the following is required.

System architecture: which components exist and how they are connected
Security-related concepts: e.g., actors, objects, states, messages, . . .
Threats, security goals, and objectives: describing which attacks shall be

countered, e.g. for integrity: which data contents are only allowed to be
modified by whom during which times, or on transit from where to where

Security mechanisms: their relation to the goals and how they are applied,
e.g. who signs which contents for what purpose and where signatures are
checked. They should be described precisely but at high level, e.g., abstract
message format/contents but not concrete syntax.

There are four classes of practically relevant formal security models, about
which we briefly share our experience.

3.1 Automata Models

The most general way of describing systems at an abstraction level suitable for
security analysis is by state transition automata. Many such formalisms exist,
e.g. the Input/Output Automata by Lynch and Tuttle [LT89]. Such automata
can be seen as the basic model upon which the more specific classes of models,
described below, are built.

For convenient description of a large variety of reactive systems, we have
introduced Interacting State Machines (ISMs) [OL04], whose distinctive feature
is buffered I/O that can occur simultaneously on multiple connections. ISM
models

Data State

Local State:

Input Buffers:

Out

Control State

In
T a  s  r  n

Global State
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can be verified with the interactive theorem prover Isabelle [NPW02]. We have
applied ISMs when updating the Lotz-Kessler-Walter model [LKW99] employed
as the formal security model of the Infineon SLE 66 smart card processor, which
— with the help of the LKW model — was the first of its kind to receive an
EAL5 certification. An ISM model [OLW05] was employed also for the EAL5
certification of the memory management of the successor chip, the SLE 88.

3.2 Access Control Models

Classical access control models, like the well-known Bell-LaPadula model [BL73],
have proven too restricted for practical use. Currently much more important are
role-based access control (RBAC) models [SCFY96]. Subjects are related with
roles, which may be hierarchically structured, and finally roles are related with
access rights to objects.

user group

subgroups

groups
permission

entry

gperms

uperms

We have used an RBAC model to describe the complex access control policies
of a medical information system. It involves two independent hierarchies, one of
roles and sub-roles determining privileges to perform certain actions, and one
of groups and subgroups determining the permissions to access certain data el-
ements. When we modeled the system according to the specifications provided
by our customers, we asked them many “nagging questions”, which lead to clar-
ifications that boosted the quality of the specifications.

3.3 Information Flow Models

Classical information flow models include the noninterference model by Goguen
and Meseguer [GM82] and many others, and prominent recent examples include
[Man03]. They describe which information may flow between which domains in
a very abstract way such that they can capture also indirect and partial flow of
information.

secret
public

downgr.

confidential

Although we have contributed to this research field ourselves [Ohe04], we
consider such models on the one hand too powerful and on the other hand too
difficult to be of much practical use these days.
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3.4 Crypto Protocol Models

Probably the most successful class of security models so far are crypto proto-
col models describing the message traffic of security protocols. Mostly secrecy
and authentication goals can be specified and then verified automatically using
model-checkers tailored for this application.

Yes.

Is it you, Alice?

We have participated in a recent EU-funded project called Automated Valida-
tion of Internet Security Protocols and Applications (AVISPA) [AH-03], which
dealt with the subject very successfully. One of its highlight applications was the
H.530 authentication for mobile roaming in a multimedia scenario. Two vulner-
abilities were found and corrected, and the solution is being patented.
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While most branches of engineering consist of methodologies for building com-
plex systems from simple components, formulating incremental and composi-
tional methods for Security Engineering has been a daunting task: in general,
security properties are not preserved under refinement or composition. The rea-
son is that the nondestructive composition operations require that their static
assumptions about the environment are maintained; but Security Engineering is
concerned with dynamic, adversarial environments, and what happens when the
assumptions fail.

The problem is compounded by the fact that establishing security of a system
often involves not only logical and computational structures, but also a wide
range of mathematical methods of cryptography. The notions of security thus
span across a multi-dimensional space of methods and approaches, which have
not yet been systematized on a solid semantical foundation. But practice is faster
than theory, and complex secure protocols are being designed and deployed in
many systems, often complex and critical.

The goal of our research effort towards the Protocol Derivation System (Pds),
and of our development towards the Protocol Derivation Assistant (Pda) is to
capture, formalize and advance the sound rules and methods of incremental
protocol development, that have evolved in practice of Security Engineering. In
this talk, I shall summarize the results of this effort so far, and present a case
study of GDoI, the standard protocol for group communication and multicast
over IPSec [3]. Although carefully designed and thoroughly analyzed, through
seven internet drafts prior to standardization, this protocol turned out to have
vulnerabilities invalidating the basic stated requirements: an attempt to derive
it incrementally, together with the desired security properties, led to a deriva-
tion of an attack, which in turn allowed evaluation of the repair options [4]. The
derivations were built and will be presented using the Protocol Derivation Assis-
tant, a development environment with support for collaboration and integration
[1,2].

GDoI was analyzed in joint work with Catherine Meadows. Pda can be freely
downloaded from [1].
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Abstract. We give an overview over a soundly based secure software en-
gineering methodology and associated tool-support developed over the
last few years under the name of Model-based Security Engineering
(MBSE). We focus in particular on applications in industry.

The difficulty of designing security mechanisms correctly has motivated very
successful research using mathematical concepts and tools to ensure correct de-
sign of security-critical components of bounded size such as security protocols,
including [BAN89, KMM94, Low96, Pau98]. Unfortunately, due to a perceived
high cost in personnel training and use, formal methods have not yet been em-
ployed very widely in industrial development [Hoa96, Hei99, KK04]. To increase
industry acceptance in the context of security-critical systems, it would be ben-
eficial to integrate security requirements analysis with a standard development
method, which should be easy to learn and to use [CW96]. Also, security concerns
must be considered in every phase of software development, from requirements
engineering to design, implementation, testing, and deployment [DS00].

Some other challenges for using sound engineering methods for secure sys-
tems development exist. Currently a large part of effort both in analyzing and
implementing specifications is wasted since these are often formulated impre-
cisely and unintelligibly, if they exist at all. If increased precision by use of a
particular notation brings an additional advantage, such as automated tool sup-
port for security analysis, this may however be sufficient incentive for providing
it. Since software developers often hesitate to learn a particular formal method
to do this, because of limited resources in time and training, one needs to instead
use the artifacts that are at any rate constructed in industrial software develop-
ment. Examples include specification models in the Unified Modeling Language
(UML), source code, and configuration data. Also, the boundaries of the specified
components with the rest of the system need to be carefully examined, for exam-
ple with respect to implicit assumptions on the system context. Lastly, a more
technical issue is that formalized security properties are not always preserved by
refinement, which is the so-called refinement problem. Since an implementation
is necessarily a refinement of its specification, an implementation of a secure
specification may, in such a situation, not be secure, which is clearly undesir-
able, and also hinders the use of stepwise development. In this paper, we give
an overview over an approach that aims to address these problems.
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Fig. 1. a) Model-based Security Engineering; b) Model-based Security Tool Suite

Model-basedSecurity Engineering. In MBSE [Jür02, Jür04, Jür05a, Jür05b,
Jür06, Jür07], recurring security requirements (such as secrecy, integrity, authen-
ticity and others) and security assumptions on the system environment, can be
specified either within a UML specification, or within the source code (Java or C)
as annotations. The associated tools [UML04] (Fig. 1b) generate logical formulas
formalizing the execution semantics and the annotated security requirements. Au-
tomated theorem provers and model checkers automatically establish whether the
security requirements hold. If not, a Prolog-based tool automatically generates an
attack sequence violating the security requirement, which can be examined to de-
termine and remove the weakness. This way we encapsulate knowledge on prudent
security engineering as annotations in models or code and make it available to de-
velopers who may not be security experts. Since the analysis that is performed is
too sophisticated to be done manually, it is also valuable to security experts.

One can use MBSE within model-based development (Fig. 1a). Here one first
constructs a model of the system. Then, the implementation is derived from the
model: either automatically using code generation, or manually, in which case
one can generate test sequences from the model to establish conformance of the
code regarding the model. The goal is to increase the quality of the software while
keeping the implementation cost and the time-to-market bounded. For security-
critical systems, this approach allows one to consider security requirements from
early on in the development process, within the development context, and in a
seamless way through the development cycle: One can first check that the system
fulfills the relevant security requirements on the design level by analyzing the
model and secondly that the code is in fact secure by generating test sequences
from the model. However, one can also use our analysis techniques and tools
within a traditional software engineering context, or where one has to incorporate
legacy systems that were not developed in a model-based way. Here, one starts
out with the source code. Our tools extract models from the source code, which
can then again be analyzed against the security requirements. Using MBSE, one
can incorporate the configuration data (such as user permissions) in the analysis,
which is very important for security but often neglected.
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Security Design Analysis Using UMLsec [Jür04]. The UMLsec extension
is given in form of a UML profile using the standard UML extension mechanisms.
Stereotypes are used together with tags to formulate the security requirements
and assumptions. Constraints give criteria that determine whether the require-
ments are met by the system design, by referring to a precise semantics of the
used fragment of UML. The security-relevant information added using stereo-
types includes security assumptions on the physical level of the system, security
requirements related to the secure handling and communication of data, and se-
curity policies that system parts are supposed to obey. The UMLsec tool-support
in Fig. 1b) can be used to check the constraints associated with UMLsec stereo-
types mechanically, based on XMI output of the diagrams from the UML drawing
tool in use [UML04, Jür05b]. There is also a framework for implementing ver-
ification routines for the constraints associated with the UMLsec stereotypes.
Thus advanced users of the UMLsec approach can use this framework to im-
plement verification routines for the constraints of self-defined stereotypes. The
semantics for the fragment of UML used for UMLsec is defined in [Jür04] using
so-called UML Machines, which is a kind of state machine with input/output
interfaces similar to Broy’s Focus model, whose behavior can be specified in a no-
tation similar to that of Abstract State Machines (ASMs), and which is equipped
with UML-type communication mechanisms. On this basis, important security
requirements such as secrecy, integrity, authenticity, and secure information flow
are defined. To support stepwise development, we show secrecy, integrity, au-
thenticity, and secure information flow to be preserved under refinement and
the composition of system components. We have also developed an approach
that supports the secure development of layered security services (such as lay-
ered security protocols). UMLsec can be used to specify and implement security
patterns, and is supported by dedicated secure systems development processes,
in particular an Aspect-Oriented Modeling approach which separates complex
security mechanisms (which implement the security aspect model) from the core
functionality of the system (the primary model) in order to allow a security verifi-
cation of the particularly security-critical parts, and also of the composed model.

Code Security Assurance [Jür05a, Jür06]. Even if specifications exist for
the implemented system, and even if these are formally analyzed, there is usually
no guarantee that the implementation actually conforms to the specification. To
deal with this problem, we use the following approach: After specifying the
system in UMLsec and verifying the model against the given security goals as
explained above, we make sure that the implementation correctly implements
the specification with techniques explained below. In particular, this approach is
applicable to legacy systems. In ongoing work, we are automating this approach
to free one of the need to manually construct the UMLsec model.

Run-Time Security Monitoring Using Assertions. A simple and effective alter-
native is to insert security checks generated from the UMLsec specification that
remain in the code while in use, for example using the assertion statement that
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is part of the Java language. These assertions then throw security exceptions
when violated at run-time. In a similar way, this can also be done for C code.

Model-Based Test Generation. For performance-intensive applications, it may
be preferable not to leave the assertions active in the code. This can be done
by making sure by extensive testing that the assertions are always satisfied. We
can generate the test sequences automatically from the UMLsec specifications.
More generally, this way we can ensure that the code actually conforms to the
UMLsec specification. Since complete test coverage is often infeasible, our ap-
proach automatically selects those test cases that are particularly sensitive to
the specified security requirements.

Automated Code Verification Against Interface Specifications. For highly non-
deterministic systems such as those using cryptography, testing can only provide
assurance up to a certain degree. For higher levels of trustworthiness, it may
therefore be desirable to establish that the code does enforce the annotations by a
formal verification of the source code against the UMLsec interface specifications.
We have developed an approach that does this automatically and efficiently by
proving locally that the security checks in the specification are actually enforced
in the source code.

Automated Code Security Analysis. We developed an approach to use automated
theorem provers for first-order logic to directly formally verify crypto-based Java
implementations based on control flow graphs that are automatically generated
(and without first manually constructing an interface specification). It supports
an abstract and modular security analysis by using assertions in the source
code. Thus large software systems can be divided into small parts for which a
formal security analysis can be performed more easily and the results composed.
Currently, this approach works especially well with nicely structured code (such
as created using the MBSE development process).

Secure Software-Hardware Interfaces. We have tailored the code security analysis
approach to software close to the hardware level. More concretely, we considered
the industrial Cryptographic Token Interface Standard PKCS 11 which defines
how software on untrustworthy hardware can make use of tamper-proof hardware
such as smart-cards to perform cryptographic operations on sensitive data. We
developed an approach for automated security analysis with first-order logic
theorem provers of crypto protocol implementations making use of this standard.

Analyzing Security Configurations. We have also performed research on
linking the UMLsec approach with the automated analysis of security-critical
configuration data. For example, our tools automatically checks SAP R/3 user
permissions for security policy rules formulated as UML specifications [Jür04].
Because of its modular architecture and its standardized interfaces, the tool can
be adapted to check security constraints in other kinds of application software,
such as firewalls or other access control configurations.
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Industrial Applications of MBSE include:
Biometric Authentication. For a project with an industrial partner, MBSE was
chosen to support the development of a biometric authentication system at the
specification level, where three significant security flaws were found [Jür05b].
We also applied it to the source-code level for a prototypical implementation
constructed from the specification [Jür05a].

Common Electronic Purse Specifications. MBSE was applied to a security anal-
ysis of the Common Electronic Purse Specifications (CEPS), a candidate for
a globally interoperable electronic purse standard supported by organizations
representing 90 % of the world’s electronic purse cards (including Visa Interna-
tional). We found three significant security weaknesses in the purchase and load
transaction protocols [Jür04], proposed improvements to the specifications and
showed that these are secure [Jür04]. We also performed a security analysis of a
prototypical Java Card implementation of CEPS.

Web-Based Banking Application. In a project with a German bank, MBSE was
applied to a web-based banking application to be used by customers to fill out
and sign digital order forms [Jür04]. The personal data in the forms must be
kept confidential, and orders securely authenticated. The system uses a propri-
etary client authentication protocol layered over an SSL connection supposed
to provide confidentiality and server authentication. Using the MBSE approach,
the system architecture and the protocol were specified and verified with regard
to the relevant security requirements.

In other applications [Jür04], MBSE was used . . .

– to uncover a flaw in a variant of the Internet protocol TLS proposed at IEEE
Infocom 1999, and suggest and verify a correction of the protocol.

– to perform a security verification of the Java implementation Jessie of SSL.
– to correctly employ advanced Java 2 or CORBA security concepts in a way

that allows an automated security analysis of the resulting systems.
– for an analysis of the security policies of a German mobile phone operator.
– for a security analysis of the specifications for the German Electronic Health

Card in development by the German Ministry of Health.
– for the security analysis of an electronic purse system developed for the

Oktoberfest in Munich.
– for a security analysis of an electronic signature pad based contract signing

architecture under consideration by a German insurance company.
– in a project with a German car manufacturer for the security analysis of an

intranet-based web information system.
– with a German chip manufacturer and a German reinsurance company for

security risk assessment, also regarding Return on Security Investment.
– in applications specifically targeted to service-based, health telematics, and

automotive systems.

Outlook. Given the current insatisfactory state of computer security in prac-
tice, MBSE seems a promising approach, since it enables developers who are
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not experts in security to make use of security engineering knowledge encap-
sulated in a widely used design notation. Since there are many highly subtle
security requirements which can hardly be verified with the “naked eye”, even
security experts may profit from this approach. Thus one can avoid mistakes
that are difficult to find by testing alone, such as breaches of subtle security re-
quirements, as well as the disadvantages of the “penetrate-and-patch” approach.
Since preventing security flaws early in the system life-cycle can significantly re-
duce costs, this gives a potential for developing securer systems in a cost-efficient
way. MBSE has been successfully applied in industrial projects involving German
government agencies and major banks, insurance companies, smart card and car
manufacturers, and other companies. The approach has been generalized to other
application domains such as real-time and dependability. Experiences show that
the approach is adequate for use in practice, after relatively little training. On the
basis of the book [Jür04] and the associated tutorial material and tools [UML04],
usage of UMLsec can in fact be rather easily taught to industrial developers.
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Abstract. In this talk I will discuss our experience with one particular
development methodology for security related software. I will describe
the general principles it follows, the tools used, and the resources needed.
Then I will offer some opinions on why this approach is effective and
practical for achieving even moderate levels of security. When the goal
is a very high level security, I will explain why I believe that at least the
general principles, if not the specific details, are probably essential.

1 Introduction

I will begin by describing the development of a security related software system,
the Tokeneer ID Station (TIS). I will discuss the nature of the system and the
approach taken by the experienced software devlopment professionals at Praxis
Critical Systems, now Praxis High Integrity Systems. This work was carried out
as an evaluation exercise organized by a research team in my organization. Then
I will describe a further exercise in which we had a small group of student interns
try to use the same methodology and support tools on the same basic problem.
Finally, I will take a step back and make some general comments on the use of
formal techniques in the development of security related software.

2 Praxis Professionals Tackle the Problem

2.1 The Problem

Tokeneer is an access control system for a secure enclave such as a secure com-
puter room or laboratory[2]. It is used as a technology demonstration vehicle
for token technologies and biometric technologies. By its nature, it is a realistic,
but not quite real, security system. The basic usage scenario is that a person ap-
proaches a locked door and follows the instructions on a display panel to insert a
token, such as a smart card, then places his finger on a fingerprint reader. If the
user is known, the token is authentic, and the fingerprint matches the owner of
the token, the door is unlocked for a set period of time. Once inside the enclave,
he has the privileges authorized for his identity. There are facilities for an alarm,
a guard station with emergency override capability, an audit log, etc.

In our exercise, Praxis was hired to develop the control software to the stan-
dards called for at Common Criteria EAL5 or better. The Common Criteria is an
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open internation standard for security related software development and evalua-
tion. It has seven Evaluation Assurance Levels, EAL1-EAL7. EAL4 is, roughly,
best commercial practice. By implication, then, EAL5-EAL7 are beyond current
commercial development practices. In particular, they require increasing use of
formal techniques.

2.2 Methodology and Artifacts

The basic development process is really quite conventional in outline. The
added power comes from the use of notations solidly grounded in appropriate
mathematics.

The process began with a review of all available documentation and discus-
sions with the stakeholders. The goal in this stage was an accurate understand-
ing of the customer’s requirements and the scope of the desired system. This
included identifying what was contained in the system to be developed, what
was in the environment and interacted with the system, and what was external
and did not interact directly with the system. The artifact produced was a fairly
conventional but quite carefully done requirements document.

The next stage was writing a formal functional specification in the formal
specification notation Z and English. This covered all the things the system was
supposed to do but not how it did those things.

Because we were developing a security related system within the general
framework described in the Common Criteria, we provided the contractor with
a somewhat generic Protection Profile describing the desired security proper-
ties. From this, Praxis produced a Security Target describing exactly what they
would deliver for the agreed cost and schedule. In our role as customers, we
worked with Praxis to make sure that the items we cared about were included
and unnecessary items were excluded. From the Security Target, in English,
Praxis wrote a shorter document, in English and Z, with precise statements of
the critical system security properties.

From the formal functional specification, Praxis wrote a design document, also
in Z and English. This document described how the specified functionality would
be implemented. They also produced a more architectural document describing
the components and subsystems and the data repositories and flows.

In their final stage, Praxis wrote the inputs, outputs, preconditions, postcon-
ditions, invariants, and other annotations for each of the code modules using ths
SPARK annotation language and the executable SPARK code itself.

Our contract with Praxis did not require them to deliver any specific test
plan or results. In fact, they did deliver some assurance evidence in the form of
sample proofs of the identified security properties.

The delivered code and other artifacts were sent to an independent company,
SPRE, Inc. in Albuqueque New Mexico, for independent testing. The results were
outstanding[2]. A few key statistics: a team of three people working part time
wrote 9,939 lines of Spark executable code plus 16,564 lines of annotations over
a nine month period. The all-inclusive rate was 38 LOC/day, significantly better
than the industry average. The stated reliability goal was 99.99% reliability with
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a 90% confidence level. When the independent testers had enough test results
to justify this confidence level, they had found zero failures.

2.3 Principles

All steps in the development methodology are guided by some basic principles
of good engineering:

– Write right - write clearly, simply, unambiguously using the most suitable
language for the purpose

– Step, don’t leap - the step from one stage of the development to the next
should be semantically small

– Say something once - each stage should add some information or decisions
not stated earlier

– Check here before going there - each step should be reviewed and verified as
soon as possible, usually against the previous step(s)

– Argue your corner - document the reasons for each design decision
– Use the right tools for the job - at each step, use the most effective verification

technique or tool
– Use you brains - there is no substitute for rigorous, careful thought

3 Amateurs Get Involved

When the contract with Praxis and SPRE ended, we felt that we had good
evidence that the methodology worked very well when followed by experienced
professionals. An important unanswered question was whether anyone else could
do it. Fortunately, we had an ideal group of test subjects available. We had three
summer student interns almost completely uncorrupted by knowledge of any as-
pect of the methodology. There were two undergraduate students of mathematics
and computing and one computer science graduate student. One had seen Spark
in a course and none had encountered Z previously.

3.1 Support Provided

We gave them a short 4 day course in reading and writing Z, using the Z Refer-
ence Manual[3] and the Z/EVES tool. We spent about 5 days on Spark and gave
them each a copy of the Spark textbook[1]. Praxis provided a version of their
tool set under an academic license. We also explained the whole development
methodology.

3.2 The Challenge and Results

We spent a few days explaining the Tokeneer system and then told the students
that there were some new requirements. Specifically, security policy now required
three factors for identification and authentication. In addition to a token (some-
thing you have) and a biometric reading (an aspect of who you are), the user
had to enter a password (something you know).
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The students were told to exercise the entire methodology. That is, they were
given all the artifacts produced by Praxis and had to update the requirements
document, the functional specification, the formal design documents, the security
properties, the Spark annotations, and the executable code. A few of us were
available to play the role of customers and state what we wanted delivered, and
to answer any questions they might have on Z or Spark. Praxis provided the
same kind of support they provide to their corporate customers; they answered
Spark questions by email.

Once again, the results were everything we hoped for. In the 10 - 12 weeks
they were with us, the students did everythig we asked them to do. There was
neither time nor budget for independent testing, but the work was subjected to
human review and checking by Z/EVES and the Spark tools.

4 Conclusions

4.1 Bottom Line

The experiences with Tokeneer described here, as well as my experience on other
projects, have convinced me that it is feasible to produce software reaching the
high assurance levels in the Common Criteria. There is a body of objective evi-
dence that the use of formal techniques can produce results more quickly and re-
liably and at lower cost than traditional methods. To me, it is an indication of the
maturity of formal techniques that a philosophy of correctness by construction,
guided by sound engineering practices and supported by appropriate mathemat-
ics, is proven and practical. Can we explain why these techniques are so effective?

4.2 Why?

This is more speculative and less objective, I believe that there are some at-
tributes of formal techniques which might account for their good results.

– Clarity (no ambiguity). Z, like a number of other specification notations,
has a mathmatically defined semantics. The meaning of a Z specification is
unambiguous. Spark allows no implementation dependent constructs, unlike
the majority of programming languages.

– Abstraction (chosen level of detail). Z and other specification languages al-
low the user to express information he considers important and omit minor
details. Good judgement is needed to establish the right level of abstraction,
but this is very helpful in reaching a proper understanding of the system.

– Precision (as much as is useful). Specification languages such as Z have the
mathematical power to make very precise statements when necessary.

– Organization (logical structure). When writing in a language based on math-
ematical logic, organization is often easier to get than to avoid.

4.3 What Choice Do We Have?

We certainly have a choice of formal techniques. Z and Spark were suitable
technologies for the Tokeneer work and, indeed, for a wide range of security
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critical systems. However, other formal techniques have the basic attributes listed
above and could also be used. And, for specifying some systems, Z would not be
suitable at all.

That said, my opinion is that formal techniques are the only way to achieve
high assurance of security for the complex systems we are developing today.
The attributes listed above are helpful in achieving functional goals, but are
essential in reaching security goals. Security is basically a negative property,
establishing that certain potential bad things won’t happen. The only way I
know to establish such a property relies on a thorough understanding of the
system involved, reached with the help of the attributes listed above. And formal
techniques are the only way I know to bring those attributes to bear on the
problem.
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Abstract. Security-critical systems are an important application area
for formal methods. However, such systems often contain cryptographic
subsystems. The natural definitions of these subsystems are probabilistic
and in most cases computational. Hence it is not obvious how one can
treat cryptographic subsystems in a sound way within formal methods,
in particular if one does not want to encumber the proof of an overall
system by probabilities and computational restrictions due only to its
cryptographic subsystems.

We survey our progress on integrating cryptography into formal mod-
els, in particular our work on reactive simulatability (RSIM), a refine-
ment notion suitable for cryptography. We also present the underlying
system model which unifies a computational and a more abstract presen-
tation and allows generic distributed scheduling. We show the relation
of RSIM and other types of specifications, and clarify what role the clas-
sical Dolev-Yao (term algebra) abstractions from cryptography can play
in the future.

1 Secure Channels as an Example of Cryptography
Within Larger Systems

Imagine you are using formal methods to prove the correctness of a distributed
system with respect to an overall specification. This system uses SSL/TLS for
secure communication between its components; this is a widely used standard
for cryptographically protecting messages on otherwise insecure channels [10].
What does the use of SSL mean for the overall proof?

Clearly, the nicest solution would be if you would not need to bother that
SSL is a cryptographic subsystem, but could simply abstract from it by a se-
cure channel, as if that channel were realized by a dedicated and protected wire.
Most formal methods for distributed systems have a notion of secure channels
as a basic communication mechanism, or can easily specify one. Essentially, a
unidirectional secure channel correctly delivers messages from one specific sender
to one specific recipient and to no other party. Hence simply using such a secure-
channel abstraction for SSL would be perfect for the overall system proof. How-
ever, is this abstraction sound? SSL is realized with cryptographic primitives,
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such as Diffie-Hellman key exchange and symmetric encryption and authenti-
cation. These systems are not perfectly unbreakable; e.g., an adversary with
sufficient computing time can deterministically insert forged messages or learn
the messages sent by honest participants. Hence the simple secure-channel ab-
straction that we discussed is certainly not sound in the standard absolute sense.
Nevertheless, it seems “essentially” correct in the sense that for adversaries with
reasonably bounded computational power, and if one ignores very small proba-
bilities, the differences seem to disappear. Hence the two main questions are:

– Can we rigorously define a soundness notion in which a cryptographic re-
alization like SSL can be a refinement of a non-cryptographic specification
like simple secure channels?

– Does SSL have features that differ so much from the secure-channel abstrac-
tion that they are not abstracted away by this potential soundness notion,
and if yes, can the secure-channel abstraction be slightly modified to acco-
modate these features?

As an answer to the first question, we introduced in [15] the notion of reactive
simulatability (RSIM), which we survey below. It is not only applicable to the
example of secure channels, but very broadly for abstractions of cryptographic
systems. As to the second question, SSL indeed has such features (imperfections).
For instance, an adversary who observes the underlying communication lines
can easily see who communicates when with whom, and even the length of the
communicated messages, because typical encryption leaves this length more or
less unchanged. The adversary can also suppress messages.

Similar to this example, the overall approach when proving a system with
cryptographic subsystems is usually as follows: First, find a good “natural” ab-
straction of the cryptographic subsystem. Secondly, investigate whether the nat-
ural abstraction has to be extended by certain imperfections such as leaking
traffic patterns and message lengths. Thirdly, prove the real cryptographic sys-
tem sound with respect to this modified abstraction in the RSIM sense. During
the third step, one often also changes the cryptographic implementation a little
because typical classical realizations concentrated on specific security properties
and did not aim at realizing an overall abstraction.

2 Reactive Simulatability

Reactive simulatability (RSIM) is a notion for comparing two systems, typically
called real and ideal system [15,16]. In terms of the formal-methods commu-
nity one might call RSIM an implementation or refinement relation, specifically
geared towards the preservation of what one might call secrecy properties com-
pared with functional properties. In Figure 1, the ideal system is called TH
(trusted host), and the protocol machines of the real system are called M1,
. . . Mn. The ideal or real system interacts with arbitrary so-called honest users,
collectively denoted by a machine H, and an adversary A, who is often given
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Fig. 1. Overview of reactive simulatability (RSIM)

more power than the honest users. In real systems A typically controls the net-
work and can manipulate messages on the bitstring level. The option for A and
H to communicate directly corresponds to known- and chosen-message attacks.

Reactive simulatability between the real and ideal system essentially means
that for every adversary A on the real system there exists an equivalent adversary
A′ on the ideal system, such that arbitrary honest users H cannot distinguish
whether they interact with the real system and A, or with the ideal system and
A′. Indistinguishability of families of random variables, here the two families of
views of the honest users, is a well-known cryptographic notion from [18]. There
exist stronger universal and blackbox version of this definition [15], depending
mainly on the quantifier order.

The RSIM notion is based on simulatability definitions for secure (one-step)
function evaluation [11,12,5,14,8]. It is also highly related to the observational
equivalence notions for a probabilistic π-calculus from [13]. A notion very similar
to RSIM was later also called UC [9].

3 System Model

In principle, RSIM can be defined over many system models by regarding the
boxes in Figure 1 as (possibly probabilistic) I/O automata, Turing machines,
CSP or π-calculus processes, etc.. Even large parts of most theorems and proofs
about RSIM are on this box-level and could be instantiated in many ways. For
the rigorous definitions, we have used a system model with probabilistic I/O
automata, and with a well-defined computational realization by Turing machines
for computational aspects. Two important aspects are:

– It is usually not sufficient that individual transitions of the automata are
polynomial-time (“transaction poly”), and not even that the runtime of each
automaton is polynomial in the entire inputs so far (“weakly poly”), because
these notions do not compose. One usually needs overall polynomial-time
restrictions in the initial inputs.

– We allow generic distributed scheduling for the asynchronous case. This
means that for each part of the distributed computation that may be
scheduled separately, we can designate an arbitrary other machine as the
scheduler. This allows us to define adversarial scheduling with realistic infor-
mation as well as, e.g., adversary-scheduled secure channels, local distributed
algorithms not under control of the adversary, and specific fair schedulers.



Formal Methods and Cryptography 615

4 Individual Security Properties

Reactive simulatability is great once it has been proved for a pair of an abstrac-
tion and a cryptographic realization, because then arbitrary larger systems can
be proved with the abstraction and the results are also true with the realization.
However, it is a strong property, and sometimes the consequences for the real-
ization are not desired. Hence it is important to also have notions of individual
security properties, such as the integrity of certain messages or the absence of
information flow between certain parties. These properties can be given similar
links between abstract formulations usual in formal methods and cryptographic
realizations; see, e.g., [15,2,3].

5 Dolev-Yao Models

In the past, formal methods have usually abstracted from cryptographic op-
erations by term algebras called Dolev-Yao models or symbolic cryptography.
Justifying these abstractions is non-trivial because the term algebras are used
as initial models; in particular it is assumed that terms for which no explicit
equations and derivation rules for an adversary exist in the algebra are perfectly
secret from the adversary. We have shown that a Dolev-Yao model of several
important core cryptographic primitives, with small extensions similar to those
we mentioned for SSL above, can indeed be implemented soundly in the sense of
RSIM under standard cryptographic assumptions, see in particular [4,17]. How-
ever, we have also shown recently that extending these results to other primitives
like hashing or XOR is not possible, at least not in the same very strong sense
and with similar generality as our positive results.

In the context of larger systems, we see Dolev-Yao models as a tool on a
middle level, useful for proving protocols that use standard cryptography in a
blackbox way, but still rather explicitly. Within proofs of overall systems, we
believe that even more abstract specifications of cryptographic subsystems, such
as entire secure channels or entire secure payments, are more suitable.

6 Conclusion

An overview of all our own results on relating cryptography and formal methods,
including concrete abstractions from cryptography that are sound in the RSIM
sense, can be found at http://www.zurich.ibm.com/security/models/. The
papers listed there also contain more references to related literature by others.

A particular area of where we can see formal methods for cryptography gain-
ing more industrial relevance is web services security, at least if the current trend
continues to make web services security specification, like all web services spec-
ifications, highly extensible and configurable, so that one may not be able to
prove all standards-compatible realizations in advance. A first analysis of how
formal-methods considerations and cryptographic considerations play together
in this context can be found in [1]. For purely formal considerations based on
Dolev-Yao models we also refer to [7,6].
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Verified Software Grand Challenge

Jim Woodcock

Abstract. Some practitioners in industry and researchers from univer-
sities believe its now practical to use formal methods to produce software,
even non-critical software, and that this will turn out to be the cheapest
way to do it. Given the right computer-based tools, the use of formal
methods could become widespread and transform the practice of soft-
ware engineering. The computer science community recently committed
itself to making this a reality within the next fifteen to twenty years.
Collectively, we have a lot of experience in the successful use of formal
methods in industry, and this is being strengthened by a new wave of
tools shielding users from deep technical issues. The time is now right
for a concerted push at software verification, and considerable activity
is already under way in the Verified Software Grand Challenge and its
pilot projects.
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